1
|
Ji X, Xu Q, Lu Y, Liu B, Xiao F, Ni Q, Xu S, Liu R, Li G, Wu B, Zhou S, Wang H. Deep clinical and genetic analysis of 17p13.3 region: 38 pediatric patients diagnosed using next-generation sequencing and literature review. BMC Med Genomics 2025; 18:90. [PMID: 40390087 PMCID: PMC12090631 DOI: 10.1186/s12920-025-02155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Chromosome 17p13.3 is a region of genomic instability associated with different neurodevelopmental diseases. The malformation spectrum of 17p13.3 microdeletions ranges from an isolated lissencephaly sequence to Miller-Dieker syndrome, while 17p13.3 microduplications result in autism, learning disabilities, microcephaly and other brain malformations. This study aims to provide a more comprehensive delineation of the clinical and genetic characteristics associated with 17p13.3 alterations. METHODS We retrospectively analyzed the next-generation sequencing (NGS) data of more than 40 thousand patients from January 2016 to December 2021 and identified 38 pediatric patients with copy-number variations (CNVs) or single-nucleotide variations (SNVs) in 17p13.3 region. Published patients with CNVs in the 17p13.3 region were also collected and we performed a Chi-square test to compare the phenotype spectrum of microdeletions and microduplications. RESULTS Among the 27 CNV patients, 20 patients with microdeletions and 7 patients with microduplications were found. PAFAH1B1 was the most frequently deleted gene and CRK was the most frequently duplicated gene. Affected genes in 11 SNV patients included PAFAH1B1 and PRPF8. Developmental delay was the most common abnormality detected in the 38 patients (29/38, 76.3%). Of note, Case 10 presented omphalocele and Case 23 presented scoliosis, webbed neck and bone cyst, all of which were unusual variant phenotypes in this region. The Chi-square test revealed that epilepsy, lissencephaly and short stature were statistically significant with microdeletions, while behavioral abnormalities and hand and foot abnormalities were significant with microduplications (p < 0.01). CONCLUSIONS While PAFAH1B1, YWHAE and CRK are associated with major phenotypes of 17p13.3, RTN4RL1 may be involved in white matter changes and HIC1 might contribute to the occurrence of omphalocele. This study provided a comprehensive understanding of genetic information and phenotype spectrum of the 17p13.3 region.
Collapse
Affiliation(s)
- Xiaoshan Ji
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bo Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qi Ni
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Suzhen Xu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Renchao Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Gang Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
2
|
Denommé-Pichon AS, Collins SC, Bruel AL, Mikhaleva A, Wagner C, Vancollie VE, Thomas Q, Chevarin M, Weber M, Prada CE, Overs A, Palomares-Bralo M, Santos-Simarro F, Pacio-Míguez M, Busa T, Legius E, Bacino CA, Rosenfeld JA, Le Guyader G, Egloff M, Le Guillou X, Mencarelli MA, Renieri A, Grosso S, Levy J, Dozières B, Desguerre I, Vitobello A, Duffourd Y, Lelliott CJ, Thauvin-Robinet C, Philippe C, Faivre L, Yalcin B. YWHAE loss of function causes a rare neurodevelopmental disease with brain abnormalities in human and mouse. Genet Med 2023; 25:100835. [PMID: 36999555 DOI: 10.1016/j.gim.2023.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.
Collapse
Affiliation(s)
- Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA.
| | - Stephan C Collins
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | - Quentin Thomas
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Neurology, Dijon Bourgogne University Hospital, Dijon, France
| | - Martin Chevarin
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Mathys Weber
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Carlos E Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Alexis Overs
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - María Palomares-Bralo
- European Reference Network, ERN-ITHACA; Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, IdiPAZ, Madrid, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Fernando Santos-Simarro
- European Reference Network, ERN-ITHACA; Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, IdiPAZ, Madrid, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Marta Pacio-Míguez
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Tiffany Busa
- Department of Medical Genetics, CHU Timone Enfants, AP-HM, Marseille, France
| | - Eric Legius
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, KU Leuven University Hospital, Belgium
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Gwenaël Le Guyader
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France
| | - Matthieu Egloff
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France; Experimental and Clinical Neurosciences Laboratory, INSERM, University of Poitiers, Poitiers, France
| | - Xavier Le Guillou
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France
| | | | - Alessandra Renieri
- Medical Genetics, Azienda Ospedaliero-Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; U.O.C. Pediatria, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Levy
- Genetics Department, Robert-Debré University Hospital, APHP, Paris, France
| | - Blandine Dozières
- Department of Pediatric Neurology and Metabolic Diseases, Robert Debré University Hospital, APHP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology and Medical Genetics, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Antonio Vitobello
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA
| | - Yannis Duffourd
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | | | - Christel Thauvin-Robinet
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Christophe Philippe
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Binnaz Yalcin
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France.
| |
Collapse
|
3
|
Baker EK, Brewer CJ, Ferreira L, Schapiro M, Tenney J, Wied HM, Kline-Fath BM, Smolarek TA, Weaver KN, Hopkin RJ. Further expansion and confirmation of phenotype in rare loss of YWHAE gene distinct from Miller-Dieker syndrome. Am J Med Genet A 2023; 191:526-539. [PMID: 36433683 PMCID: PMC10099970 DOI: 10.1002/ajmg.a.63057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Deletion of 17p13.3 has varying degrees of severity on brain development based on precise location and size of the deletion. The most severe phenotype is Miller-Dieker syndrome (MDS) which is characterized by lissencephaly, dysmorphic facial features, growth failure, developmental disability, and often early death. Haploinsufficiency of PAFAH1B1 is responsible for the characteristic lissencephaly in MDS. The precise role of YWHAE haploinsufficiency in MDS is unclear. Case reports are beginning to elucidate the phenotypes of individuals with 17p13.3 deletions that have deletion of YWHAE but do not include deletion of PAFAH1B1. Through our clinical genetics practice, we identified four individuals with 17p13.3 deletion that include YWHAE but not PAFAH1B1. These patients have a similar phenotype of dysmorphic facial features, developmental delay, and leukoencephalopathy. In a review of the literature, we identified 19 patients with 17p13.3 microdeletion sparing PAFAH1B1 but deleting YWHAE. Haploinsufficiency of YWHAE is associated with brain abnormalities including cystic changes. These individuals have high frequency of epilepsy, intellectual disability, and dysmorphic facial features including prominent forehead, epicanthal folds, and broad nasal root. We conclude that deletion of 17p13.3 excluding PAFAH1B1 but including YWHAE is associated with a consistent phenotype and should be considered a distinct condition from MDS.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Casey J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leonardo Ferreira
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mark Schapiro
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Jeffrey Tenney
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Heather M Wied
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Beth M Kline-Fath
- Division of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Clinical findings and genetic analysis of patients with copy number variants involving 17p13.3 using a single nucleotide polymorphism array: a single-center experience. BMC Med Genomics 2022; 15:268. [PMID: 36544138 PMCID: PMC9773569 DOI: 10.1186/s12920-022-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 17p13.3 microdeletions or microduplications (collectively known as copy number variants or CNVs) have been described in individuals with neurodevelopmental disorders. However, 17p13.3 CNVs were rarely reported in fetuses. This study aims to investigate the clinical significance of 17p13.3 CNVs with varied sizes and gene content in prenatal and postnatal samples. METHODS Eight cases with 17p13.3 CNVs out of 8806 samples that had been subjected to single nucleotide polymorphism array analysis were retrospectively analyzed, along with karyotyping, clinical features, and follow-up. RESULTS Eight cases with 17p13.3 CNVs consisted of five fetuses, one aborted embryo and two probands manifested severe congenital defects. The indications of prenatal testing varied considerably for the five fetuses, including ultrasound abnormalities (n = 3), segmental deletions indicated by non-invasive prenatal testing (n = 1), and intellectual disability in the mother of one fetus (n = 1). Of them, two and six harbored copy number gains and losses involving 17p13.3, respectively. The size of the detected 17p13.3 CNVs ranged from 576 kb to 5.7 Mb. Case 1 was diagnosed with 17p13.3 duplication syndrome, and cases 4, 6, and 7 with Miller-Dieker syndrome (MDS). Microdeletions of the 17p13.3 region in two cases (cases 5 and 8) involving YWHAE and CRK, sparing PAFAH1B1, were classified as pathogenic. Case 2 harbored a 576 kb microduplication, encompassing YWHAE and CRK but not PAFAH1B1, which was of maternal origin and considered a variant of uncertain significance. Case 3 carried one 74.2 Mb mosaic duplication of approximately 3.5 on chromosome 17p13.2q25.3, and two deletions at 17p13.3p13.2 and 17q25.3. The karyotype of case 3 was 46,XY,r(17)(p13q25). For five fetuses, only case 2 continued gestation and showed normal development at the age of 15 months; the others were subjected to termination of pregnancy. CONCLUSION The clinical findings of 17p13.3 microdeletions or microduplications varied among subjects, and 17p13.3 CNVs often differ in size and gene content. Microdeletions or microduplications containing the typical MDS region, as well as the microdeletions involving YWHAE and CRK, could be classified as pathogenic. The clinical significance of small duplications including YWHAE and CRK but not PAFAH1B1 remains uncertain, for which parental testing and clinical heterogeneity should be considered in genetic counseling.
Collapse
|
5
|
Zhang YL, Jing XY, Zhen L, Pan M, Han J, Li DZ. Prenatal diagnosis of Miller-Dieker syndrome/PAFAH1B1-related lissencephaly: Ultrasonography and genetically investigative results. Eur J Obstet Gynecol Reprod Biol 2022; 274:28-32. [PMID: 35567955 DOI: 10.1016/j.ejogrb.2022.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To present the experience on prenatal diagnosis of Miller-Dieker syndrome (MDS)/PAFAH1B1-related lissencephaly to further determine fetal phenotypes of this syndrome. STUDY DESIGN This was a retrospective study of ten pregnancies with fetal MDS/PAFAH1B1-related lissencephaly identified by chromosomal microarray (CMA)/exome sequencing (ES). Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, CMA or ES results and pregnancy outcomes. RESULTS Two cases were diagnosed in the first trimester because of an increased nuchal translucency. The remaining eight cases were identified at late gestation, including four in the second trimester because of fetal cardiac anomalies or ventriculomegaly, and four in the third trimester because of ventriculomegaly. CMA revealed 17p13.3 deletions in nine cases, and ES detected a de novo PAFAH1B1 missense mutation in one case. CONCLUSION The prenatal presentation of MDS/PAFAH1B1-related lissencephaly depended on the gestational age when the diagnosis was made. Mild ventriculomegaly was the most common prenatal sonographic sign identified in cases of MDS/PAFAH1B1-related lissencephaly. It is important that fetal MRI and invasive testing with CMA should be considered in fetuses with apparently 'isolated' mild ventriculomegaly.
Collapse
Affiliation(s)
- Yong-Ling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang-Yi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Pan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Kearney JA, Copeland-Hardin LD, Duarte S, Zachwieja NA, Eckart-Frank IK, Hawkins NA. Fine mapping and candidate gene analysis of a dravet syndrome modifier locus on mouse chromosome 11. Mamm Genome 2022; 33:565-574. [PMID: 35606653 DOI: 10.1007/s00335-022-09955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Pathogenic variants in SCN1A result in a spectrum of phenotypes ranging from mild febrile seizures to Dravet syndrome, a severe infant-onset epileptic encephalopathy. Individuals with Dravet syndrome have developmental delays, elevated risk for sudden unexpected death in epilepsy (SUDEP), and have multiple seizure types that are often refractory to treatment. Although most Dravet syndrome variants arise de novo, there are cases where an SCN1A variant was inherited from mildly affected parents, as well as some individuals with de novo loss-of-function or truncation mutations that presented with milder phenotypes. This suggests that disease severity is influenced by other factors that modify expressivity of the primary mutation, which likely includes genetic modifiers. Consistent with this, the Scn1a+/- mouse model of Dravet syndrome exhibits strain-dependent variable phenotype severity. Scn1a+/- mice on the 129S6/SvEvTac (129) strain have no overt phenotype and a normal lifespan, while [C57BL/6Jx129]F1.Scn1a+/- mice have severe epilepsy with high rates of premature death. Low resolution genetic mapping identified several Dravet syndrome modifier (Dsm) loci responsible for the strain-dependent difference in survival of Scn1a+/- mice. To confirm the Dsm5 locus and refine its position, we generated interval-specific congenic strains carrying 129-derived chromosome 11 alleles on the C57BL/6J strain and localized Dsm5 to a 5.9 Mb minimal region. We then performed candidate gene analysis in the modifier region. Consideration of brain-expressed genes with expression or coding sequence differences between strains along with gene function suggested numerous strong candidates, including several protein coding genes and two miRNAs that may regulate Scn1a transcript.
Collapse
Affiliation(s)
- Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 8-510, Chicago, IL, 60611, USA.
| | - Letonia D Copeland-Hardin
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Samantha Duarte
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Nicole A Zachwieja
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Isaiah K Eckart-Frank
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 8-510, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Lan YX, Yang P, Zeng Z, Yadav N, Zhang LJ, Wang LB, Xia HC. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen Res 2022; 17:440-449. [PMID: 34269221 PMCID: PMC8463967 DOI: 10.4103/1673-5374.317986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques. The results revealed that both OB-derived OECs and OM-derived OECs highly expressed genes and proteins that regulate cell growth, proliferation, apoptosis and vascular endothelial cell regeneration. The differentially expressed genes and proteins of OB-derived OECs play a key role in regulation of nerve regeneration and axon regeneration and extension, transmission of nerve impulses and response to axon injury. The differentially expressed genes and proteins of OM-derived OECs mainly participate in the positive regulation of inflammatory response, defense response, cytokine binding, cell migration and wound healing. These findings suggest that differentially expressed genes and proteins may explain why OB-derived OECs and OM-derived OECs exhibit different therapeutic roles. This study was approved by the Animal Ethics Committee of the General Hospital of Ningxia Medical University (approval No. 2017-073) on February 13, 2017.
Collapse
Affiliation(s)
- Yuan-Xiang Lan
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ping Yang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Neeraj Yadav
- Department of Neurosurgery, General Hospital of Ningxia Medical University; School of International Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Jian Zhang
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Bin Wang
- Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - He-Chun Xia
- Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
8
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|
9
|
Li C, Zhang J, Li J, Qiao G, Zhan Y, Xu Y, Yang H. BACs-on-Beads Assay for the Prenatal Diagnosis of Microdeletion and Microduplication Syndromes. Mol Diagn Ther 2021; 25:339-349. [PMID: 33826125 DOI: 10.1007/s40291-021-00522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate the clinical value of BACs-on-Beads (BoBs) assay in detection of microdeletion and microduplication syndromes. METHODS A total of 6,814 cases of amniotic fluid cells collected from January 2015 to July 2020 in our hospital were analyzed by chromosomal karyotyping and BoBs assay. Fluorescence in situ hybridization (FISH) or chromosomal microarray analysis (CMA) provided further validation for the cases of microdeletion and microduplication. RESULTS Thirty microdeletion and microduplication syndromes were identified by BoBs with an incidence of ~1/227, including 22q11.2 microduplication (0.044%, 3/6814), DiGeorge I syndrome (0.044%, 3/6814), 17p11.2 microduplication (0.015%, 1/6814), Smith-Magenis syndrome (0.015%, 1/6814), 17p11.2p11.3 microduplication (0.015%, 1/6814), Williams-Beuren syndrome (0.088%, 6/6814), 7q11.2 microduplication (0.029%, 2/6814), DiGeorge II syndrome (0.015%, 1/6814), 18p11.32p11.21 microduplication (0.015%, 1/6814), Wolf-Hirschhorn syndrome (0.029%, 2/6814), 4p16.3 microduplication (0.015%, 1/6814), Langer-Giedion syndrome (0.015%, 1/6814), Miller-Dieker syndrome (0.015%, 1/6814), Cri du Chat syndrome (0.015%, 1/6814), Xp22.31 microdeletion (0.059%, 4/6814), Prader-Willi syndrome (0.015%, 1/6814). High concordance was obtained between BoBs and FISH or CMA. However, only four cases were detected by chromosomal karyotyping. CONCLUSION BoBs assay can rapidly detect microdeletion and microduplication syndromes, which compensates the shortcomings of conventional chromosomal karyotyping and greatly improves the efficiency and accuracy of prenatal diagnosis.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Guyuan Qiao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Ying Zhan
- Department of Obstetrics and Gynecology, 518 Hospital of PLA, Xi'an, 710043, Shaanxi, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, 127 West ChangLe Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
Shi X, Huang W, Lu J, He W, Liu Q, Wu J. Prenatal diagnosis of Miller-Dieker syndrome by chromosomal microarray. Ann Hum Genet 2020; 85:92-96. [PMID: 33026665 DOI: 10.1111/ahg.12407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the experience on prenatal diagnosis of Miller-Dieker syndrome (MDS) to further delineate the fetal presentation of this syndrome. METHODS This was a retrospective study. Fetal MDS was diagnosed prenatally by chromosomal microarray (CMA). Clinical data were reviewed for these cases, including maternal characteristics, indications for prenatal diagnosis, sonographic findings, CMA results, and pregnancy outcomes. RESULTS Four cases were diagnosis as MDS by CMA. The most common sonographic features were ventriculomegaly (3/4) and polyhydramnios (2/4). Deletion sizes ranged from 1.5 to 5.4 Mb. All microdeletions were located at the MDS critical region and showed haploinsufficiency of the YWHAE, CRK, and PAFAH1B1. All patients chose to terminate the pregnancy. Parental chromosome analysis were preformed in three cases and demonstrated that two cases were de novo and one case was caused by inherited derivative chromosomes from parental balanced translocations. CONCLUSION The most common prenatal ultrasound findings of MDS were ventriculomegaly and polyhydramnios. CMA can improve diagnostic precision for detecting MDS.
Collapse
Affiliation(s)
- Xiaomei Shi
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weiwei Huang
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jian Lu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei He
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qian Liu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|