1
|
Slingerland S, van der Zee S, Carli G, Slomp AC, d'Angremont E, Boertien JM, van Laar T. Cholinergic Degeneration and Cognitive Function in Early GBA1-Related Parkinson's Disease. Ann Neurol 2025. [PMID: 40237446 DOI: 10.1002/ana.27248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE The phenotype of patients with Parkinson's disease carrying GBA1 variants (GBA-PD) suggest similarities to symptomatology associated with early cholinergic system degeneration. Therefore, this study aims to investigate the clinical features and the cholinergic innervation pattern in patients with early GBA-PD versus those without the GBA1 mutation (non-GBA-PD). METHODS A total of 46 GBA-PD and 104 non-GBA-PD subjects were included. Clinical assessments included motor and non-motor evaluation, as well as a comprehensive neuropsychological examination. Cholinergic system integrity was assessed using 1 8F-Fluoroethoxybenzovesamicol (18F-FEOBV) positron emission tomography (PET) to investigate the differences between GBA-PD and non-GBA-PD. Given the higher prevalence of females in GBA-PD, analyses were repeated when stratified by sex. Additionally, we examined the association between cognitive domains and whole-brain cholinergic binding in both groups. Exploratory analyses examined clinical and 18F-FEOBV binding differences among GBA1 variants. RESULTS GBA-PD patients exhibited a higher burden of non-motor symptoms and lower cognitive performance on executive functions and attention. We observed a more pronounced cholinergic denervation in GBA-PD, compared to non-GBA-PD, primarily in the anterior, central, and limbic regions. However, the distribution of cholinergic loss and its association with attention and executive dysfunction was comparable between GBA-PD and non-GBA-PD. In addition, the clinical presentation and cholinergic binding differed significantly between sexes. INTERPRETATION These results suggest an important role of early cholinergic denervation in GBA-PD patients, which is related to more severe cognitive dysfunction. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Sofie Slingerland
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Anne C Slomp
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Emile d'Angremont
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Spargo TP, Sands CF, Juan IR, Mitchell J, Ravanmehr V, Butts JC, De-Paula RB, Kim Y, Hu F, Wang Q, Vitsios D, Garg M, Middleton L, Tyrlik M, Messa M, Del Angel G, Calame DG, Saade H, Robak L, Hollis B, Cuddapah VA, Zoghbi HY, Shulman JM, Petrovski S, Al-Ramahi I, Tachmazidou I, Dhindsa RS. Haploinsufficiency of ITSN1 is associated with a substantial increased risk of Parkinson's disease. Cell Rep 2025; 44:115355. [PMID: 40056900 PMCID: PMC12124131 DOI: 10.1016/j.celrep.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
Despite its significant heritability, the genetic basis of Parkinson's disease (PD) remains incompletely understood. Here, in analyzing whole-genome sequence data from 3,809 PD cases and 247,101 controls in the UK Biobank, we discover that protein-truncating variants in ITSN1 confer a substantially increased risk of PD (p = 6.1 × 10-7; odds ratio [95% confidence interval] = 10.5 [5.2, 21.3]). We replicate this association in three independent datasets totaling 8,407 cases and 413,432 controls (combined p = 4.5 × 10-12). Notably, ITSN1 haploinsufficiency has also been associated with autism spectrum disorder, suggesting variable penetrance/expressivity. In Drosophila, we find that loss of the ITSN1 ortholog Dap160 exacerbates α-synuclein-induced neuronal toxicity and motor deficits, and in vitro assays further suggest a physical interaction between ITSN1 and α-synuclein. These results firmly establish ITSN1 as a PD risk gene with an effect size exceeding previously established loci, implicate vesicular trafficking dysfunction in PD pathogenesis, and potentially open new avenues for therapeutic development.
Collapse
Affiliation(s)
- Thomas P Spargo
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Chloe F Sands
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA
| | - Isabella R Juan
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vida Ravanmehr
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA
| | - Jessica C Butts
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, USA
| | - Ruth B De-Paula
- Quantitative and Computational Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Youngdoo Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Waltham, MA, USA
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Manik Garg
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lawrence Middleton
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michal Tyrlik
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Mirko Messa
- Translational Genomics, Centre for Genomics Research, Discovery Sciences BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Guillermo Del Angel
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Waltham, MA, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Hiba Saade
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Laurie Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ben Hollis
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vishnu A Cuddapah
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK; Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Ioanna Tachmazidou
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Dhindsa
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Cattaneo C, Pagonabarraga J. Sex Differences in Parkinson's Disease: A Narrative Review. Neurol Ther 2025; 14:57-70. [PMID: 39630386 PMCID: PMC11762054 DOI: 10.1007/s40120-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 01/27/2025] Open
Abstract
Sex differences in epidemiology, clinical features, and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. Parkinson's disease (PD) is not an exception: men and women suffering from PD have different levels of disability. Research has been performed using multiple databases and scientific journals; this review summarizes the available evidence on sex differences in PD regarding epidemiology, risk factors, genetics, clinical phenotype, social impact, and therapeutic management. The role of hormones in determining such differences is also briefly discussed. The results confirm the existence of differences between men and women in PD; women have a higher risk of developing disabling motor complications and non-motor fluctuations compared to men, while men have a higher risk of developing cognitive impairment, postural instability, and gait disorders. Improving our knowledge in these differences may result in the implementation of strategies for disease-tailored treatment and management.
Collapse
|
4
|
Bovenzi R, Conti M, Simonetta C, Bissacco J, Mascioli D, Michienzi V, Pieri M, Cerroni R, Liguori C, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Contribution of testosterone and estradiol in sexual dimorphism of early-onset Parkinson's disease. J Neural Transm (Vienna) 2025; 132:61-66. [PMID: 39052119 PMCID: PMC11735587 DOI: 10.1007/s00702-024-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Early-onset Parkinson's disease (EOPD) occurs during the fertile life, when circulating neuroactive sex hormones might enhance the sexual dimorphism of the disease. Here, we aimed to examine how sex hormones can contribute to sex differences in EOPD patients. A cohort of 34 EOPD patients, 20 males and 14 females, underwent comprehensive clinical evaluation of motor and non-motor disturbances. Blood levels of estradiol, total testosterone, follicle-stimulating hormone, and luteinizing hormone were measured in all patients and correlated to clinical features. We found that female patients exhibited greater non-motor symptoms and a relatively higher rate of dystonia than males. In females, lower estradiol levels accounted for higher MDS-UPDRS-II and III scores and more frequent motor complications, while lower testosterone levels were associated with a major occurrence of dystonia. In male patients, no significant correlations emerged. In conclusion, this study highlighted the relevance of sex hormone levels in the sexual dimorphism and unique phenotype of EOPD.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Matteo Conti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Clara Simonetta
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Jacopo Bissacco
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Davide Mascioli
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Vito Michienzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Rocco Cerroni
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Mariangela Pierantozzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, Rome, 00133, Italy.
| |
Collapse
|
5
|
Alzate Sanchez AM, Janssen MLF, Temel Y, Roberts MJ. Aging suppresses subthalamic neuronal activity in patients with Parkinson's disease. Eur J Neurosci 2024; 60:6160-6174. [PMID: 38880896 DOI: 10.1111/ejn.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Age is a primary risk factor for Parkinson's disease (PD); however, the effects of aging on the Parkinsonian brain remain poorly understood, particularly for deep brain structures. We investigated intraoperative micro-electrode recordings from the subthalamic nucleus (STN) of PD patients aged between 42 and 76 years. Age was associated with decreased oscillatory beta power and non-oscillatory high-frequency power, independent of PD-related variables. Single unit firing and burst rates were also reduced, whereas the coefficient of variation and the structure of burst activity were unchanged. Phase synchronization (debiased weighed phase lag index [dWPLI]) between sites was pronounced in the beta band between electrodes in the superficial STN but was unaffected by age. Our results show that aging is associated with reduced neuronal activity without changes to its temporal structure. We speculate that the loss of activity in the STN may mediate the relationship between PD and age.
Collapse
Affiliation(s)
- Ana M Alzate Sanchez
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Fernández-Vidal JM, Aracil-Bolaños I, García-Sánchez C, Campolongo A, Curell M, Rodríguez-Rodriguez R, Aibar-Duran JÁ, Kulisevsky J, Pascual-Sedano B. Cognitive phenotyping of GBA1-Parkinson's disease: A study on deep brain stimulation outcomes. Parkinsonism Relat Disord 2024; 128:107127. [PMID: 39357432 DOI: 10.1016/j.parkreldis.2024.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Heterozygous variants in the glucocerebrosidase (GBA1) gene are the most common genetic risk factor for Parkinson's Disease (PD). GBA1-PD patients exhibit earlier disease onset, severe motor impairment, and heightened cognitive decline. Deep Brain Stimulation (DBS) offers motor improvement for PD patients, but its cognitive effects, particularly in GBA1-PD, are debated. METHODS This study involved 96 PD patients who underwent subthalamic nucleus DBS at Hospital de la Santa Creu i Sant Pau between 2004 and 2023. Clinical and neuropsychological assessments were conducted pre- and post-surgery, focusing on Mattis Dementia Rating Scale (MDRS) and Frontal Systems Behavior Scale (FrSBe). Patients were categorized into GBA1-PD and non-GBA1-PD groups, with non-GBA1-PD further divided into cognitive fast-progressors and slow-progressors. RESULTS GBA1 variants were present in 13.5 % of patients. GBA1-PD patients showed greater cognitive decline over time, particularly in attention, conceptualization, and memory, compared to non-GBA1-PD. Non-GBA1-PD fast-progressors exhibited significant cognitive deterioration in initiation and conceptualization within the first year post-DBS. Motor outcomes improved similarly across all groups, but slow-progressors showed a greater reduction in Levodopa Equivalent Daily Dose (LEDD). CONCLUSIONS GBA1-PD patients experience more rapid cognitive decline, particularly in posterior-cortical and fronto-striatal functions. Additionally, a subset of non-GBA1-PD patients shows significant early cognitive decline post-DBS, especially in executive functions. Baseline MDRS scores do not predict cognitive outcomes, highlighting the need for further research to refine prognostic tools. Despite cognitive challenges, GBA1-PD patients benefit from DBS in terms of motor outcomes, underscoring the importance of individualized assessments for DBS suitability, regardless of genetic status.
Collapse
Affiliation(s)
| | - Ignacio Aracil-Bolaños
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED, Carlos III Health Institute (ISCIII), Madrid, Spain.
| | - Carmen García-Sánchez
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Spain; Department of Medicine Autonomous University of Barcelona, Barcelona, Spain
| | - Antonia Campolongo
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Mireia Curell
- Master in Neuropsychology, Diagnosis and Neuropsychological Rehabilitation, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | | | - Jaime Kulisevsky
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED, Carlos III Health Institute (ISCIII), Madrid, Spain; Department of Medicine Autonomous University of Barcelona, Barcelona, Spain
| | - Berta Pascual-Sedano
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED, Carlos III Health Institute (ISCIII), Madrid, Spain; Department of Medicine Autonomous University of Barcelona, Barcelona, Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
7
|
Dos Santos JCC, Mano GBC, da Cunha Barreto-Vianna AR, Garcia TFM, de Vasconcelos AV, Sá CSG, de Souza Santana SL, Farias AGP, Seimaru B, Lima MPP, Goes JVC, Gusmão CTP, Junior HLR. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson's Disease: a New Genetic State of the Art. Mol Neurobiol 2024; 61:6754-6770. [PMID: 38347286 DOI: 10.1007/s12035-024-04008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting 2-3% of those aged over 65, characterized by motor symptoms like slow movement, tremors, and muscle rigidity, along with non-motor symptoms such as anxiety and dementia. Lewy bodies, clumps of misfolded proteins, contribute to neuron loss in PD. Mutations in the GBA1 gene are considered the primary genetic risk factor of PD. GBA1 mutations result in decreased activity of the lysosomal enzyme glucocerebrosidase (GCase) resulting in α-synuclein accumulation. We know that α-synuclein aggregation, lysosomal dysfunction, and endoplasmic reticulum disturbance are recognized factors to PD susceptibility; however, the molecular mechanisms connecting GBA1 gene mutations to increased PD risk remain partly unknown. Thus, in this narrative review conducted according to a systematic review method, we aimed to present the main contributions arising from the molecular impact of the GBA1 gene to the pathogenesis of PD providing new insights into potential impacts for advances in the clinical care of people with PD, a neurological disorder that has contributed to the substantial increase in the global burden of disease accentuated by the aging population. In summary, this narrative review highlights the multifaceted impact of GBA1 mutations in PD, exploring their role in clinical manifestations, genetic predispositions, and molecular mechanisms. The review emphasizes the importance of GBA1 mutations in both motor and non-motor symptoms of PD, suggesting broader therapeutic and management strategies. It also discusses the potential of CRISPR/Cas9 technology in advancing PD treatment and the need for future research to integrate these diverse aspects for improved diagnostics and therapies.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center, UNICHRISTUS, Fortaleza, Ceara, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| | | | | | - Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande Do Norte, Caico, Rio Grande Do Norte, Brazil
| | | | | | | | - Ana Gabriela Ponte Farias
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Beatriz Seimaru
- Barão de Mauá University Center, CBM, Ribeirão Preto, São Paulo, Brazil
| | | | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
8
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Avenali M, Zangaglia R, Cuconato G, Palmieri I, Albanese A, Artusi CA, Bozzali M, Calandra-Buonaura G, Cavallieri F, Cilia R, Cocco A, Cogiamanian F, Colucci F, Cortelli P, Di Fonzo A, Eleopra R, Giannini G, Imarisio A, Imbalzano G, Ledda C, Lopiano L, Malaguti MC, Mameli F, Minardi R, Mitrotti P, Monfrini E, Spagnolo F, Tassorelli C, Valentino F, Valzania F, Pacchetti C, Valente EM. Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort. J Neurol Neurosurg Psychiatry 2024; 95:309-315. [PMID: 37879897 PMCID: PMC10958298 DOI: 10.1136/jnnp-2023-332387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND GBA variants increase the risk of developing Parkinson disease (PD) and influence its outcome. Deep brain stimulation (DBS) is a recognised therapeutic option for advanced PD. Data on DBS long-term outcome in GBA carriers are scarce. OBJECTIVE To elucidate the impact of GBA variants on long-term DBS outcome in a large Italian cohort. METHODS We retrospectively recruited a multicentric Italian DBS-PD cohort and assessed: (1) GBA prevalence; (2) pre-DBS clinical features; and (3) outcomes of motor, cognitive and other non-motor features up to 5 years post-DBS. RESULTS We included 365 patients with PD, of whom 73 (20%) carried GBA variants. 5-year follow-up data were available for 173 PD, including 32 mutated subjects. GBA-PD had an earlier onset and were younger at DBS than non-GBA-PD. They also had shorter disease duration, higher occurrence of dyskinesias and orthostatic hypotension symptoms.At post-DBS, both groups showed marked motor improvement, a significant reduction of fluctuations, dyskinesias and impulsive-compulsive disorders (ICD) and low occurrence of most complications. Only cognitive scores worsened significantly faster in GBA-PD after 3 years. Overt dementia was diagnosed in 11% non-GBA-PD and 25% GBA-PD at 5-year follow-up. CONCLUSIONS Evaluation of long-term impact of GBA variants in a large Italian DBS-PD cohort supported the role of DBS surgery as a valid therapeutic strategy in GBA-PD, with long-term benefit on motor performance and ICD. Despite the selective worsening of cognitive scores since 3 years post-DBS, the majority of GBA-PD had not developed dementia at 5-year follow-up.
Collapse
Affiliation(s)
- Micol Avenali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | | | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | - Marco Bozzali
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Filippo Cogiamanian
- Neurophysiopathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Colucci
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Gabriele Imbalzano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | - Claudia Ledda
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Turin, Italy
| | | | - Francesca Mameli
- Neurophysiopathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | | | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
11
|
Brimblecombe KR, Connor-Robson N, Bataille CJR, Roberts BM, Gracie C, O'Connor B, Te Water Naude R, Karthik G, Russell AJ, Wade-Martins R, Cragg SJ. Inhibition of striatal dopamine release by the L-type calcium channel inhibitor isradipine co-varies with risk factors for Parkinson's. Eur J Neurosci 2024; 59:1242-1259. [PMID: 37941514 PMCID: PMC11426196 DOI: 10.1111/ejn.16180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.
Collapse
Affiliation(s)
- Katherine R Brimblecombe
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Carole J R Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Bradley M Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Caitlin Gracie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bethan O'Connor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Gayathri Karthik
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
12
|
Houle N, Feaster T, Mira A, Meeks K, Stepp CE. Sex Differences in the Speech of Persons With and Without Parkinson's Disease. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:96-116. [PMID: 37889201 PMCID: PMC11000784 DOI: 10.1044/2023_ajslp-22-00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Sex differences are apparent in the prevalence and the clinical presentation of Parkinson's disease (PD), but their effects on speech have been less studied. METHOD Speech acoustics of persons with (34 females and 34 males) and without (age- and sex-matched) PD were examined, assessing the effects of PD diagnosis and sex on ratings of dysarthria severity and acoustic measures of phonation (fundamental frequency standard deviation, smoothed cepstral peak prominence), speech rate (net syllables per second, percent pause ratio), and articulation (articulatory-acoustic vowel space, release burst precision). RESULTS Most measures were affected by PD (dysarthria severity, fundamental frequency standard deviation) and sex (smoothed cepstral peak prominence, net syllables per second, percent pause ratio, articulatory-acoustic vowel space), but without interactions between them. Release burst precision was differentially affected by sex in PD. Relative to those without PD, persons with PD produced fewer plosives with a single burst: females more frequently produced multiple bursts, whereas males more frequently produced no burst at all. CONCLUSIONS Most metrics did not indicate that speech production is differentially affected by sex in PD. Sex was, however, associated with disparate effects on release burst precision in PD, which deserves further study. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24388666.
Collapse
Affiliation(s)
- Nichole Houle
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Taylor Feaster
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Amna Mira
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Kirsten Meeks
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Otolaryngology–Head & Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
13
|
Saffie Awad P, Teixeira-Dos-Santos D, Santos-Lobato BL, Camargos S, Cornejo-Olivas M, de Mello Rieder CR, Mata IF, Chaná-Cuevas P, Klein C, Schumacher Schuh AF. Frequency of Hereditary and GBA1-Related Parkinsonism in Latin America: A Systematic Review and Meta-Analysis. Mov Disord 2024; 39:6-16. [PMID: 37921246 DOI: 10.1002/mds.29614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Identifying hereditary parkinsonism is valuable for diagnosis, genetic counseling, patient prioritization in trials, and studying the disease for personalized therapies. However, most studies were conducted in Europeans, and limited data exist on admixed populations like those from Latin America. OBJECTIVES This study aims to assess the frequency and distribution of genetic parkinsonism in Latin America. METHODS We conducted a systematic review and meta-analysis of the frequency of parkinsonian syndromes associated with genetic pathogenic variants in Latin America. We defined hereditary parkinsonism as those caused by the genes outlined by the MDS Nomenclature of Genetic Movement Disorders and heterozygous carriers of GBA1 pathogenic variants. A systematic search was conducted in PubMed, Web of Science, Embase, and LILACS in August 2022. Researchers reviewed titles and abstracts, and disagreements were resolved by a third researcher. After this screening, five researchers reanalyzed the selection criteria and extracted information based on the full paper. The frequency for each parkinsonism-related gene was determined by the presence of pathogenic/likely pathogenic variants among screened patients. Cochran's Q and I2 tests were used to quantify heterogeneity. Meta-regression, publication bias tests, and sensitivity analysis regarding study quality were also used for LRRK2-, PRKN-, and GBA1-related papers. RESULTS We included 73 studies involving 3014 screened studies from 16 countries. Among 7668 Latin American patients, pathogenic variants were found in 19 different genes. The frequency of the pathogenic variants in LRRK2 was 1.38% (95% confidence interval [CI]: 0.52-2.57), PRKN was 1.16% (95% CI: 0.08-3.05), and GBA1 was 4.17% (95% CI: 2.57-6.08). For all meta-analysis, heterogeneity was high and publication bias tests were negative, except for PRKN, which was contradictory. Information on the number of pathogenic variants in the other genes is further presented in the text. CONCLUSIONS This study provides insights into hereditary and GBA1-related parkinsonism in Latin America. Lower GBA1 frequencies compared to European/North American cohorts may result from limited access to gene sequencing. Further research is vital for regional prevalence understanding, enabling personalized care and therapies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Paula Saffie Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
- Clínica Santa María, Santiago, Chile
| | | | - Bruno Lopes Santos-Lobato
- Hospital Ophir Loyola, Belém, Brazil
- Laboratório de Neuropatologia Experimental, Universidade Federal do Pará, Belém, Brazil
| | - Sarah Camargos
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Científica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | | | - Ignacio F Mata
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pedro Chaná-Cuevas
- Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Artur F Schumacher Schuh
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Keavney JL, Mathur S, Schroeder K, Merrell R, Castillo-Torres SA, Gao V, Crotty GF, Schwarzschild MA, Poma JM. Perspectives of People At-Risk on Parkinson's Prevention Research. JOURNAL OF PARKINSON'S DISEASE 2024; 14:399-414. [PMID: 38489198 PMCID: PMC11091608 DOI: 10.3233/jpd-230436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
The movement toward prevention trials in people at-risk for Parkinson's disease (PD) is rapidly becoming a reality. The authors of this article include a genetically at-risk advocate with the LRRK2 G2019 S variant and two patients with rapid eye movement sleep behavior disorder (RBD), one of whom has now been diagnosed with PD. These authors participated as speakers, panelists, and moderators in the "Planning for Prevention of Parkinson's: A Trial Design Forum" hosted by Massachusetts General Hospital in 2021 and 2022. Other authors include a young onset person with Parkinson's (PwP) and retired family physician, an expert in patient engagement in Parkinson's, and early career and veteran movement disorders clinician researchers. Several themes emerged from the at-risk participant voice concerning the importance of early intervention, the legitimacy of their input in decision-making, and the desire for transparent communication and feedback throughout the entire research study process. Challenges and opportunities in the current environment include lack of awareness among primary care physicians and general neurologists about PD risk, legal and psychological implications of risk disclosure, limited return of individual research study results, and undefined engagement and integration of individuals at-risk into the broader Parkinson's community. Incorporating the perspectives of individuals at-risk as well as those living with PD at this early stage of prevention trial development is crucial to success.
Collapse
Affiliation(s)
- Jessi L. Keavney
- Parkinson’s Foundation, Parkinson’s Advocates in Research Program, Pendergrass, GA, USA
| | | | - Karlin Schroeder
- Parkinson’s Foundation, Associate Vice President of Community Engagement, New York, NY, USA
| | | | - Sergio A. Castillo-Torres
- Edmond J. Safra Fellow in Movement Disorders, Servicio de Movimientos Anormales, Fleni, Buenos Aires, Argentina
| | - Virginia Gao
- Movement Disorders Fellow, Columbia University Irving Medical Center and Weill Cornell Medicine, New York, NY, USA
| | - Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A. Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John M. Poma
- Parkinson’s Foundation, People with Parkinson’s Advisory Council, Glen Allen, VA, USA
| |
Collapse
|
15
|
Panteghini C, Reale C, Colangelo I, Suerz M, Catania A, Garavaglia B, Invernizzi F. Sex distribution and classification of GBA1 variants in an Italian cohort of Parkinson's disease patients analyzed over the last seventeen years. Parkinsonism Relat Disord 2023; 117:105919. [PMID: 37948831 DOI: 10.1016/j.parkreldis.2023.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Heterozygous GBA1 variants are among the most frequent genetic risk factors for Parkinson's disease (PD). Male sex is a risk factor in the development of PD but the sex prevalence of GBA1 carriers in PD patients remains debatable. Molecular analysis of the GBA1 gene is complicated by the presence of a highly homologous pseudogene GBAP1. METHOD Starting from 2006, we screened GBA1 gene in a large cohort of 1762 PD patients through different techniques developed over the years. Identified variants were classified employing the GBA1-PD browser and compared on the basis of frequency and sex distribution. RESULTS Within a group of 684 patients (40.2% Males -M-) analyzed with RFLP technique looking for the two most common GBA1 mutations L444P and N370S, 29 resulted positive (4.23%). Out of 537 patients (67.4% M) analyzed with PCR that amplifies the portion of the gene between exon 8 and exon 11, we found 53 positive carriers (9.87%). Out of 424 patients (60.8% M) analyzed with NGS custom gene panel with allele-specific PCR, 50 resulted positive (11.79%). Since 2022, we also analyzed 117 patients (56.4% M) with long PCR sequenced with NGS, identifying 17 positive samples (14.52%). CONCLUSION In our study, we highlight that screening the entire GBA1 gene with specific techniques increases the diagnostic rate. Regarding variants distribution, males have shown a higher frequency of the severe variants and complex alleles, whereas mild variants are equally distributed in both sexes and risk variants are more frequent in females especially the T369 M.
Collapse
Affiliation(s)
- Celeste Panteghini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Chiara Reale
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy.
| | - Isabel Colangelo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Marta Suerz
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Alessia Catania
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Barbara Garavaglia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| | - Federica Invernizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and Neurogenetics, Milan, Italy
| |
Collapse
|
16
|
Sosero YL, Gan‐Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy. Ann Clin Transl Neurol 2023; 10:850-864. [PMID: 37021623 PMCID: PMC10270275 DOI: 10.1002/acn3.51776] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD has a generally benign clinical presentation and variable pathology, with inconsistent presence of Lewy bodies and marked Alzheimer's disease pathology. The mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among others. As novel therapies targeting LRRK2 are under development, understanding the role and function of LRRK2 in PD is becoming increasingly important. Here, we outline the epidemiological, pathophysiological, and clinical features of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2 and possible future directions for research.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
| | - Ziv Gan‐Or
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Neurology and NeurosurgeryMcGill UniversityMontréalQuébecH3A 0G4Canada
| |
Collapse
|
17
|
Reale C, Invernizzi F, Panteghini C, Garavaglia B. Genetics, sex, and gender. J Neurosci Res 2023; 101:553-562. [PMID: 34498752 DOI: 10.1002/jnr.24945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.
Collapse
Affiliation(s)
- Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| |
Collapse
|
18
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
19
|
Sex-Specific Microglial Responses to Glucocerebrosidase Inhibition: Relevance to GBA1-Linked Parkinson's Disease. Cells 2023; 12:cells12030343. [PMID: 36766684 PMCID: PMC9913749 DOI: 10.3390/cells12030343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglia are heterogenous cells characterized by distinct populations each contributing to specific biological processes in the nervous system, including neuroprotection. To elucidate the impact of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk factor for Parkinson's Disease (PD). Interestingly, glucocerebrosidase inhibition particularly impaired the ability of female microglia to enhance the Nrf2-dependent detoxification pathway in neurons, attenuating the sex differences observed in this neuroprotective function. This finding is consistent with the clinical impact of GBA1 mutations, in which the 1.5-2-fold reduced risk of developing idiopathic PD observed in female individuals is lost in the GBA1 carrier population, thus suggesting a sex-specific role for microglia in the etiopathogenesis of PD-GBA1.
Collapse
|
20
|
Ortega RA, Bressman SB, Raymond D, Ozelius LJ, Katsnelson V, Leaver K, Swan MC, Shanker V, Miravite J, Wang C, Bennett SAL, Saunders-Pullman R. Differences in Sex-Specific Frequency of Glucocerebrosidase Variant Carriers and Familial Parkinsonism. Mov Disord 2022; 37:2217-2225. [PMID: 36054306 PMCID: PMC9669136 DOI: 10.1002/mds.29197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although men and women with the LRRK2 G2019S variant appear to be equally likely to have Parkinson's disease (PD), the sex-distribution among glucocerebrosidase (GBA) variant carriers with PD, including limited to specific variant severities of GBA, is not well understood. Further, the sex-specific genetic contribution to PD without a known genetic variant is controversial. OBJECTIVES To better understand sex differences in genetic contribution to PD, especially sex-specific frequencies among GBA variant carriers with PD (GBA PD) and LRRK2-G2019S variant carriers with PD (LRRK2 PD). METHODS We assess differences in the sex-specific frequency in GBA PD, including in subsets of GBA variant severity, LRRK2 PD, and idiopathic PD in an Ashkenazi Jewish cohort with PD. Further, we expand prior work evaluating differences in family history of parkinsonism. RESULTS Both idiopathic PD (267/420 men, 63.6%) (P < 0.001) and GBA PD overall (64/107, 59.8%) (P = 0.042) were more likely to be men, whereas no difference was seen in LRRK2 PD (50/99, 50.5%) and LRRK2/GBA PD (5/10, 50%). However, among GBA PD probands, severe variant carriers were more likely to be women (15/19 women, 79.0%) (P = 0.005), whereas mild variant carriers (44/70 men, 62.9%) (P = 0.039) and risk-variant carriers (15/17 men, 88.2%) (P = 0.001) were more likely to be men. CONCLUSIONS Our study demonstrates that the male-sex predominance present in GBA PD overall was not consistent across GBA variant severities, and a female-sex predominance was present among severe GBA variant carriers. Therefore, research and trial designs for PD should consider sex-specific differences, including across GBA variant severities. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoriya Katsnelson
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Katherine Leaver
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Matthew C Swan
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Joan Miravite
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sci 2022; 12:brainsci12070917. [PMID: 35884724 PMCID: PMC9313069 DOI: 10.3390/brainsci12070917] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease and gender differences have been described on several aspects of PD. In the present commentary, we aimed to collect and discuss the currently available evidence on gender differences in PD regarding biomarkers, genetic factors, motor and non-motor symptoms, therapeutic management (including pharmacological and surgical treatment) as well as preclinical studies. Methods: A systematic literature review was performed by searching the Pubmed and Scopus databases with the search strings “biomarkers”, “deep brain stimulation”, “female”, “gender”, “genetic”, “levodopa”, “men”, “male”, “motor symptoms”, “non-motor symptoms”, “Parkinson disease”, “sex”, “surgery”, and “women”. Results: The present review confirms the existence of differences between men and women in Parkinson Disease, pointing out new information regarding evidence from animal models, genetic factors, biomarkers, clinical features and pharmacological and surgical treatment. Conclusions: The overall goal is to acquire new informations about sex and gender differences in Parkinson Disease, in order to develop tailored intervetions.
Collapse
|
22
|
Gan-Or Z, Wood NW. Mendelian Randomization Studies: A Path to Better Understand Sex and Gender Differences in Parkinson's Disease? Mov Disord 2021; 36:2220-2222. [PMID: 34658065 DOI: 10.1002/mds.28765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|