1
|
Coll F, Blane B, Bellis KL, Matuszewska M, Wonfor T, Jamrozy D, Toleman MS, Geoghegan JA, Parkhill J, Massey RC, Peacock SJ, Harrison EM. The mutational landscape of Staphylococcus aureus during colonisation. Nat Commun 2025; 16:302. [PMID: 39805814 PMCID: PMC11730646 DOI: 10.1038/s41467-024-55186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution. Here we applied a genome-wide mutation enrichment approach to a genomic dataset of 3060 S. aureus colonization isolates from 791 individuals. Despite limited within-host genetic diversity, we observed an excess of protein-altering mutations in metabolic genes, in regulators of quorum-sensing (agrA and agrC) and in known antibiotic targets (fusA, pbp2, dfrA and ileS). We demonstrated the phenotypic effect of multiple adaptive mutations in vitro, including changes in haemolytic activity, antibiotic susceptibility, and metabolite utilisation. Nitrogen metabolism showed the strongest evidence of adaptation, with the assimilatory nitrite reductase (nasD) and urease (ureG) showing the highest mutational enrichment. We identified a nasD natural mutant with enhanced growth under urea as the sole nitrogen source. Inclusion of 4090 additional isolate genomes from 731 individuals revealed eight more genes including sasA/sraP, darA/pstA, and rsbU with signals of adaptive variation that warrant further characterisation. Our study provides a comprehensive picture of the heterogeneity of S. aureus adaptive changes during colonisation, and a robust methodological approach applicable to study in host adaptive evolution in other bacterial pathogens.
Collapse
Affiliation(s)
- Francesc Coll
- Applied Microbial Genomics Unit, Department of Molecular Basis of Disease, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katherine L Bellis
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marta Matuszewska
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Toska Wonfor
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Dorota Jamrozy
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Joan A Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Ewan M Harrison
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Burian M, Wolz C, Yazdi AS. Transcriptional adaptation of staphylococci during colonization of the authentic human environment: An overview of transcriptomic changes and their relationship to physiological conditions. Front Cell Infect Microbiol 2022; 12:1062329. [PMID: 36467739 PMCID: PMC9712997 DOI: 10.3389/fcimb.2022.1062329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/06/2023] Open
Abstract
Staphylococci are commensals of human skin and mucous membranes, but some species can also cause serious infections. Host niches during both colonization and infection differ greatly and are characterized by specific environmental conditions (pH, temperature, oxygen, nutrient availability, and microbiota) that can affect gene expression and virulence of microbes. To successfully occupy extremely different habitats at different anatomical sites, Staphylococci are equipped with a variety of regulatory elements that allow specific adaptation to the changing environments. Not surprisingly, gene expression in vivo can be significantly different from the expression pattern observed in vitro. Niche specific stimuli that influence the bacterial ability to either cause infection or maintain colonization are only partially understood. Here, we describe habitat specific conditions and discuss the available literature analyzing staphylococcal gene expression, focusing on Staphylococcus aureus and S. epidermidis during colonization of the nose and skin.
Collapse
Affiliation(s)
- Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Glucose Mediates Niche-Specific Repression of Staphylococcus aureus Toxic Shock Syndrome Toxin-1 through the Activity of CcpA in the Vaginal Environment. J Bacteriol 2022; 204:e0026922. [PMID: 36106854 PMCID: PMC9578429 DOI: 10.1128/jb.00269-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus chronically colonizes up to 30% of the human population on the skin or mucous membranes, including the nasal tract or vaginal canal. While colonization is often benign, this bacterium also has the capability to cause serious infections. Menstrual toxic shock syndrome (mTSS) is a serious toxinosis associated with improper use of tampons, which can induce an environment that is favorable to the production of the superantigen known as toxic shock syndrome toxin-1 (TSST-1). To better understand environmental signaling that influences TSST-1 production, we analyzed expression in the prototype mTSS strain S. aureus MN8. Using transcriptional and protein-based analysis in two niche-related media, we observed that TSST-1 expression was significantly higher in synthetic nasal medium (SNM) than in vaginally defined medium (VDM). One major divergence in medium composition was high glucose concentration in VDM. The glucose-dependent virulence regulator gene ccpA was deleted in MN8, and, compared with wild-type MN8, we observed increased TSST-1 expression in the ΔccpA mutant when grown in VDM, suggesting that TSST-1 is repressed by catabolite control protein A (CcpA) in the vaginal environment. We were able to relieve CcpA-mediated repression by modifying the glucose level in vaginal conditions, confirming that changes in nutritional conditions contribute to the overexpression of TSST-1 that can lead to mTSS. We also compared CcpA-mediated repression to other key regulators of tst, finding that CcpA regulation is dominant compared to other characterized regulatory mechanisms. This study underlines the importance of environmental signaling for S. aureus pathogenesis in the context of mTSS. IMPORTANCE Menstrual toxic shock syndrome (mTSS) is caused by strains of Staphylococcus aureus that overproduce a toxin known as toxic shock syndrome toxin-1 (TSST-1). This work studied how glucose levels in a model vaginal environment could influence the amount of TSST-1 that is produced by S. aureus. We found that high levels of glucose repress TSST-1 production, and this is done by a regulatory protein called catabolite control protein A (CcpA). The research also demonstrated that, compared with other regulatory proteins, the CcpA regulator appears to be the most important for maintaining low levels of TSST-1 in the vaginal environment, and this information helps to understand how changes in the vaginal environmental can lead to mTSS.
Collapse
|
4
|
Burian M, Plange J, Schmitt L, Kaschke A, Marquardt Y, Huth L, Baron JM, Hornef MW, Wolz C, Yazdi AS. Adaptation of Staphylococcus aureus to the Human Skin Environment Identified Using an ex vivo Tissue Model. Front Microbiol 2021; 12:728989. [PMID: 34621255 PMCID: PMC8490888 DOI: 10.3389/fmicb.2021.728989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The healthy human epidermis provides physical protection and is impenetrable for pathogenic microbes. Nevertheless, commensal and pathogen bacteria such as Staphylococcus aureus are able to colonize the skin surface, which may subsequently lead to infection. To identify and characterize regulatory elements facilitating adaptation of S. aureus to the human skin environment we used ex vivo tissue explants and quantified S. aureus gene transcription during co-culture. This analysis provided evidence for a significant downregulation of the global virulence regulator agr upon initial contact with skin, regardless of the growth phase of S. aureus prior to co-culture. In contrast, the alternative sigma factor B (sigB) and the antimicrobial peptide-sensing system (graRS) were expressed during early colonization. Consistently, sigB target genes such as the clumping factor A (clfA) and fibrinogen and fibronectin binding protein A (fnbA) were strongly upregulated upon skin contact. At later timepoints of the adhesion process, wall teichoic acid (WTA) synthesis was induced. Besides the expression of adhesive molecules, transcription of molecules involved in immune evasion were increased during late colonization (staphylococcal complement inhibitor and staphylokinase). Similar to nasal colonization, enzymes involved in cell wall metabolism (sceD and atlA) were highly transcribed. Finally, we detected a strong expression of proteases from all three catalytic classes during the entire colonization process. Taken together, we here present an ex vivo skin colonization model that allows the detailed characterization of the bacterial adaptation to the skin environment.
Collapse
Affiliation(s)
- Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Johanna Plange
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Laurenz Schmitt
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Anke Kaschke
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Laura Huth
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
5
|
Antineutrophil cytoplasmic antibodies (ANCA) - their role in pathogenesis, diagnosis, and treatment monitoring of ANCA-associated vasculitis. Cent Eur J Immunol 2021; 45:218-227. [PMID: 33456335 PMCID: PMC7792441 DOI: 10.5114/ceji.2019.92494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) constitutes a group of rare diseases characterized by necrotizing inflammation of small blood vessels and the presence of ANCA. Increasing clinical and experimental evidences support their pathogenic role in AAV, but the exact mechanism is not fully understood. Recently, the important role of neutrophil extracellular traps (NETs) in pathogenesis of AAV is underlined. There is an indication that NETs can be a source for the formation of ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3 (PR3). Though the mechanism of action of ANCA is still under exploration, ANCA serology is being increasingly used for classification of AAV and revealed as kenner in defining various disease subsets associated with different genetic background, clinical features, treatment response, and prognosis. Controversy exists regarding the utility of serial measurements of ANCA in patients with AAV to monitor treatment and predict disease relapse.
Collapse
|
6
|
Allergy-A New Role for T Cell Superantigens of Staphylococcus aureus? Toxins (Basel) 2020; 12:toxins12030176. [PMID: 32178378 PMCID: PMC7150838 DOI: 10.3390/toxins12030176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus superantigens (SAgs) are among the most potent T cell mitogens known. They stimulate large fractions of T cells by cross-linking their T cell receptor with major histocompatibility complex class-II molecules on antigen presenting cells, resulting in T cell proliferation and massive cytokine release. To date, 26 different SAgs have been described in the species S. aureus; they comprise the toxic shock syndrome toxin (TSST-1), as well as 25 staphylococcal enterotoxins (SEs) or enterotoxin-like proteins (SEls). SAgs can cause staphylococcal food poisoning and toxic shock syndrome and contribute to the clinical symptoms of staphylococcal infection. In addition, there is growing evidence that SAgs are involved in allergic diseases. This review provides an overview on recent epidemiological data on the involvement of S. aureus SAgs and anti-SAg-IgE in allergy, demonstrating that being sensitized to SEs—in contrast to inhalant allergens—is associated with a severe disease course in patients with chronic airway inflammation. The mechanisms by which SAgs trigger or amplify allergic immune responses, however, are not yet fully understood. Here, we discuss known and hypothetical pathways by which SAgs can drive an atopic disease.
Collapse
|
7
|
Tuffs SW, Haeryfar SMM, McCormick JK. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018; 7:pathogens7020053. [PMID: 29843476 PMCID: PMC6027230 DOI: 10.3390/pathogens7020053] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON N6A 3K7, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
8
|
Enterotoxin Gene Cluster-Encoded SEI and SElN from Staphylococcus aureus Isolates are Crucial for the Induction of Human Blood Cell Proliferation and Pathogenicity in Rabbits. Toxins (Basel) 2016; 8:toxins8110314. [PMID: 27801832 PMCID: PMC5127111 DOI: 10.3390/toxins8110314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SElN, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SElN led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSElN led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens.
Collapse
|
9
|
Hodille E, Alekseeva L, Berkova N, Serrier A, Badiou C, Gilquin B, Brun V, Vandenesch F, Terman DS, Lina G. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity. Front Microbiol 2016; 7:441. [PMID: 27148168 PMCID: PMC4832122 DOI: 10.3389/fmicb.2016.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy.
Collapse
Affiliation(s)
- Elisabeth Hodille
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Ludmila Alekseeva
- UMR1253 STLO, Agrocampus Ouest, Institut National de la Recherche AgronomiqueRennes, France; Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscow, Russia
| | - Nadia Berkova
- UMR1253 STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique Rennes, France
| | - Asma Serrier
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France
| | - Cedric Badiou
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France
| | - Benoit Gilquin
- iRTSV-BGE, Université Grenoble AlpesGrenoble, France; CEA, iRTSV-BGEGrenoble, France; Biologie à Grande Echelle, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Virginie Brun
- iRTSV-BGE, Université Grenoble AlpesGrenoble, France; CEA, iRTSV-BGEGrenoble, France; Biologie à Grande Echelle, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - François Vandenesch
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | | | - Gerard Lina
- International Center for Infectiology ResearchLyon, France; CNRS UMR5308, Inserm U1111, Ecole Normale Supérieure de Lyon - Université Lyon 1Lyon, France; Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| |
Collapse
|
10
|
Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes 2016; 4:proteomes4010011. [PMID: 28248221 PMCID: PMC5217363 DOI: 10.3390/proteomes4010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.
Collapse
|
11
|
George SE, Nguyen T, Geiger T, Weidenmaier C, Lee JC, Liese J, Wolz C. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol Microbiol 2015; 98:1073-88. [PMID: 26303846 DOI: 10.1111/mmi.13174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 01/18/2023]
Abstract
Bacteria respond to ever-changing environments through several adaptive strategies. This includes mechanisms leading to a high degree of phenotypic variability within a genetically homogeneous population. In Staphylococcus aureus, the capsular polysaccharide (CP) protects against phagocytosis, but also impedes adherence to endothelial cells and/or matrix proteins. We analysed the regulation of core biosynthesis genes (capA-P) necessary for CP synthesis using single-cell assays (immunofluorescence and promoter-activity). In persistent human carriers, we found a distinct subpopulation of nasal S. aureus to be CP positive. In vitro, cap expression is also heterogeneous and strongly growth-phase dependent. We asked whether this peculiar expression pattern (earlyOff/lateHeterogen) is orchestrated by the quorum system Agr. We show that the Agr-driven effector molecule RNAIII promotes cap expression largely via inactivation of the repressor Rot. High NaCl, deletion of CodY or Sae also resulted in higher cap expression but did not change the earlyOFF/lateHeterogen expression pattern. Activity of the quorum system itself is largely homogenous and does not account for the observed heterogeneity of cap expression or the strictly growth phase dependent expression. Our findings are in contrast to the prevailing view that quorum sensing is the main driving force for virulence gene expression when bacterial cell densities increase.
Collapse
Affiliation(s)
- Shilpa E George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tran Nguyen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Jean C Lee
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jan Liese
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Prevalence of enterotoxin genes in Staphylococcus aureus colonising food handlers: does nasal carriage status matter? Eur J Clin Microbiol Infect Dis 2015; 34:2177-81. [PMID: 26306787 DOI: 10.1007/s10096-015-2465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
This study investigated the association between the presence of staphylococcal enterotoxin (SE) genes and nasal carriage status, and determined temporal changes in the prevalence of these genes in Staphylococcus aureus strains isolated from healthy carriers between 2002 and 2011. Three large samples of food handlers recruited in 2002, 2003 and 2011 were nasally sampled on two occasions to determine S. aureus colonisation status. Those carrying the same spa type on both occasions were defined as persistent carriers. Genes for SEs SEA-SEU were amplified and associations between carriage status and presence of SE genes were investigated. Although 80 % of nasal isolates harboured at least one SE gene over the sampling period, persistent carriers were significantly more likely to harbour enterotoxigenic S. aureus than transiently colonised subjects [odds ratio (OR) 2.52-3.06]. Strains from persistent carriers more commonly harboured sea, seb and sem. The prevalence of classical SE genes and sej, sem, sen, seo, seq and ses was stable over time, but seh, sel, sep, ser, set and selu increased significantly. Increased toxigenicity of isolates from persistent carriers is consistent with the elevated antibody levels to classical SEs previously reported in persistent carriers, supporting the hypothesis that superantigen production in the nasal cavity may enhance colonisation.
Collapse
|
13
|
Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization. Toxins (Basel) 2015; 7:1821-36. [PMID: 26008236 PMCID: PMC4448176 DOI: 10.3390/toxins7051821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vβ-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vβ specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vβ8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization.
Collapse
|
14
|
Host–pathogen interactions in epidermolysis bullosa patients colonized with Staphylococcus aureus. Int J Med Microbiol 2014; 304:195-203. [DOI: 10.1016/j.ijmm.2013.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front Immunol 2014; 4:507. [PMID: 24409186 PMCID: PMC3884195 DOI: 10.3389/fimmu.2013.00507] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/15/2022] Open
Abstract
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
Collapse
Affiliation(s)
- Aisling F Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - Thomas R Rogers
- Sir Patrick Dun Laboratory, Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital , Dublin , Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| |
Collapse
|
16
|
Peres AG, Madrenas J. The broad landscape of immune interactions with Staphylococcus aureus: from commensalism to lethal infections. Burns 2013; 39:380-8. [PMID: 23313242 DOI: 10.1016/j.burns.2012.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is a gram-positive bacterium that is present in the nostrils of a quarter of the general population without causing any apparent disease. However, S. aureus can also act as a pathogen to cause severe infections. The factors determining the balance between its commensal and pathogenic states are not understood. Emerging evidence suggests that S. aureus, in addition to inducing a pro-inflammatory response, may have the capacity to modulate the host immune system. The latter is in part the result of recognition of specific molecules embedded in the peptidoglycan layer of the staphylococcal cell wall that bind to TLR2 on host antigen-presenting cells and induce a strong IL-10 response that down regulates the adaptive T cell response. This mechanism can partially explain the duality of interactions between S. aureus and the human immune system by favoring nasal colonization instead of staphylococcal diseases. In this review, we discuss the molecular and cellular basis of this mechanism and explore its clinical implications.
Collapse
Affiliation(s)
- Adam G Peres
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
17
|
van der Kooi-Pol MM, de Vogel CP, Westerhout-Pluister GN, Veenstra-Kyuchukova YK, Duipmans JC, Glasner C, Buist G, Elsinga GS, Westra H, Bonarius HPJ, Groen H, van Wamel WJB, Grundmann H, Jonkman MF, van Dijl JM. High anti-staphylococcal antibody titers in patients with epidermolysis bullosa relate to long-term colonization with alternating types of Staphylococcus aureus. J Invest Dermatol 2012; 133:847-850. [PMID: 23014336 DOI: 10.1038/jid.2012.347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Magdalena M van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corné P de Vogel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerlinde N Westerhout-Pluister
- Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Yanka K Veenstra-Kyuchukova
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - José C Duipmans
- Department of Dermatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Goffe S Elsinga
- IQ Therapeutics, Rozenburglaan 13a, Groningen, The Netherlands
| | - Hans Westra
- IQ Therapeutics, Rozenburglaan 13a, Groningen, The Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, Groningen, The Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hajo Grundmann
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Chowdhary VR, Tilahun AY, Clark CR, Grande JP, Rajagopalan G. Chronic exposure to staphylococcal superantigen elicits a systemic inflammatory disease mimicking lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2054-62. [PMID: 22798666 DOI: 10.4049/jimmunol.1201097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic nasal and skin colonization with superantigen (SAg)-producing Staphylococcus aureus is well documented in humans. Given that trans-mucosal and trans-cutaneous absorption of SAgs can occur, we determined whether chronic exposure to small amounts of SAg per se could activate autoreactive CD4(+) and CD8(+) T cells and precipitate any autoimmune disease without further external autoantigenic stimulation. Because HLA class II molecules present SAg more efficiently than do mouse MHC class II molecules, HLA-DQ8 transgenic mice were implanted s.c. with mini-osmotic pumps capable of continuously delivering the SAg, staphylococcal enterotoxin B (total of 10 μg/mouse), or PBS over 4 wk. Chronic exposure to staphylococcal enterotoxin B resulted in a multisystem autoimmune inflammatory disease with features similar to systemic lupus erythematosus. The disease was characterized by mononuclear cell infiltration of lungs, liver, and kidneys, accompanied by the production of anti-nuclear Abs and deposition of immune complexes in the renal glomeruli. The inflammatory infiltrates in various organs predominantly consisted of CD4(+) T cells bearing TCR Vβ8. The extent of immunopathology was markedly reduced in mice lacking CD4(+) T cells and CD28, indicating that the disease is CD4(+) T cell mediated and CD28 dependent. The absence of disease in STAT4-deficient, as well as IFN-γ-deficient, HLA-DQ8 mice suggested the pathogenic role of Th1-type cytokines, IL-12 and IFN-γ. In conclusion, our study suggests that chronic exposure to extremely small amounts of bacterial SAg could be an etiological factor for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vaidehi R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
19
|
Johannessen M, Sollid JE, Hanssen AM. Host- and microbe determinants that may influence the success of S. aureus colonization. Front Cell Infect Microbiol 2012; 2:56. [PMID: 22919647 PMCID: PMC3417514 DOI: 10.3389/fcimb.2012.00056] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
20
|
Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012; 16:601-12. [PMID: 22530584 DOI: 10.1517/14728222.2012.682573] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pandemic human pathogen, Staphylococcus aureus, displays high levels of antibiotic resistance and is a major cause of hospital- and community-associated infections. S. aureus disease manifestation is to a great extent due to the production of a large arsenal of virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with impaired immune systems or in advanced stages of disease. AREAS COVERED Important S. aureus toxins, their roles in pathogenesis, rationales for selecting S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based passive immunization are discussed. This review will focus on hyper-virulent community-associated methicillin-resistant S. aureus because of their recent surge and clinical importance. EXPERT OPINION Antibodies against genome-encoded toxins may be more broadly applicable than those directed against toxins found only in a sub-population of S. aureus isolates. Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S. aureus genome-encoded toxins.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Laboratory of Human Bacterial Pathogenesis, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Weidenmaier C, Goerke C, Wolz C. Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 2012; 20:243-50. [PMID: 22494802 DOI: 10.1016/j.tim.2012.03.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 01/06/2023]
Abstract
Approximately 20% of the healthy human population is persistently colonized in the nasal cavity with Staphylococcus aureus, which constitutes a major risk for infection. S. aureus seems to predominantly colonize the anterior part of the nasal cavity by adhering to nasal surface structures and escaping the host innate and adaptive immune responses. Several bacterial and host factors that play a role in these processes have been identified in the past few years and were in part functionally evaluated in appropriate colonization models. However, the dynamics of host-pathogen crosstalk is only partially understood.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University Hospital Tübingen, University of Tübingen, Elfriede-Aulhorn Straße 6, 72076 Tübingen, Germany
| | | | | |
Collapse
|