1
|
Negash AA, Ferreira A, Asrat D, Aseffa A, Cools P, Van Simaey L, Vaneechoutte M, Bentley SD, Lo SW. Genomic characterization of Streptococcus pneumoniae isolates obtained from carriage and disease among paediatric patients in Addis Ababa, Ethiopia. Microb Genom 2025; 11:001376. [PMID: 40100271 PMCID: PMC11986848 DOI: 10.1099/mgen.0.001376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Background and aims. Despite the introduction of pneumococcal conjugate vaccines (PCVs), Streptococcus pneumoniae still remains an important cause of morbidity and mortality, especially among children under 5 years in sub-Saharan Africa. We sought to determine the distribution of serotypes, lineages and antimicrobial resistance of S. pneumoniae from carriage and disease among children presenting to health facilities, 5-6 years after the introduction of PCV10 in Ethiopia.Methods. Whole-genome sequencing (WGS) was performed on 103 S. pneumoniae (86 from nasopharyngeal swabs, 4 from blood and 13 from middle ear discharge) isolated from children aged <15 years at 3 healthcare facilities in Addis Ababa, Ethiopia, from September 2016 to August 2017. Using the WGS data, serotypes were predicted, isolates were assigned to clonal complexes, global pneumococcal sequence clusters (GPSCs) were inferred and screening for alleles and mutations that confer resistance to antibiotics was performed using multiple bioinformatic pipelines.Results. The 103 S. pneumoniae isolates were assigned to 38 serotypes (including nontypeable) and 46 different GPSCs. The most common serotype was serotype 19A. Common GPSCs were GPSC1 [14.6% (15/103), sequence type (ST) 320, serotype 19A], GPSC268 [8.7% (9/103), ST 6882 and novel STs; serotypes 16F, 11A and 35A] and GPSC10 [8.7% (9/103), STs 2013, 230 and 8804; serotype 19A]. The four invasive isolates were serotype 19A (n=2) and serotype 33C (n=2). Resistance to penicillin (>0.06 µg ml-1, CLSI meningitis cutoff) was predicted in 57% (59/103) of the isolates, and 43% (25/58) penicillin-binding protein allele combinations were predicted to be associated with penicillin resistance. Resistance mutations in folA (I100L) and/or folP (indel between fifty-sixth and sixty-seventh aa) were identified among 66% (68/103) of the isolates, whilst tetracycline (tetM) and macrolide (ermB and mefA) resistance genes were found in 46.6% (48/103), 20.4% (21/103) and 20.4% (21/103) of the isolates, respectively. Multidrug resistance (MDR) (≥3 antibiotic classes) was observed in 31.1% (32/103) of the isolates. GPSC1 and GPSC10 accounted for 46.8% (15/32) and 18.7% (6/32) of the overall MDR.Conclusion. Five to 6 years after the introduction of PCV10 in Ethiopia, the S. pneumoniae obtained from carriage and disease among paediatric patients showed diverse serotype and pneumococcal lineages. The most common serotype identified was 19A, expressed by the MDR lineages GPSC1 and GPSC10, which is not covered by PCV10 but is included in PCV13. Continued assessment of the impact of PCV on the population structure of S. pneumoniae in Ethiopia is warranted during and after PCV13 introduction.
Collapse
Affiliation(s)
- Abel Abera Negash
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ana Ferreira
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Van Simaey
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- The Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Lo SW, Mellor K, Cohen R, Alonso AR, Belman S, Kumar N, Hawkins PA, Gladstone RA, von Gottberg A, Veeraraghavan B, Ravikumar KL, Kandasamy R, Pollard SAJ, Saha SK, Bigogo G, Antonio M, Kwambana-Adams B, Mirza S, Shakoor S, Nisar I, Cornick JE, Lehmann D, Ford RL, Sigauque B, Turner P, Moïsi J, Obaro SK, Dagan R, Diawara I, Skoczyńska A, Wang H, Carter PE, Klugman KP, Rodgers G, Breiman RF, McGee L, Bentley SD, Almagro CM, Varon E, Corso A, Davydov A, Maguire A, Kiran A, Moiane B, Beall B, Zhao C, Aanensen D, Everett D, Faccone D, Foster-Nyarko E, Bojang E, Egorova E, Voropaeva E, Sampane-Donkor E, Sadowy E, Nagaraj G, Mucavele H, Belabbès H, Elmdaghri N, Verani J, Keenan J, Lees J, N Nair Thulasee Bhai J, Ndlangisa K, Zerouali K, Bentley L, Titov L, De Gouveia L, Alaerts M, Ip M, de Cunto Brandileone MC, Hasanuzzaman M, Paragi M, Nurse-Lucas M, du Plessis M, Ali M, Croucher N, Wolter N, Givon-Lavi N, Porat N, Köseoglu Eser Ö, Ho PL, Eberechi Akpaka P, Gagetti P, Tientcheu PE, Law P, Benisty R, Mostowy R, Malaker R, Grassi Almeida SC, Doiphode S, Madhi S, Devi Sekaran S, Clarke S, Srifuengfung S, Nzenze S, Kastrin T, Ochoa T, Hryniewicz W, Urban Y. Emergence of a multidrug-resistant and virulent Streptococcus pneumoniae lineage mediates serotype replacement after PCV13: an international whole-genome sequencing study. THE LANCET. MICROBE 2022; 3:e735-e743. [PMID: 35985351 PMCID: PMC9519462 DOI: 10.1016/s2666-5247(22)00158-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Serotype 24F is one of the emerging pneumococcal serotypes after the introduction of pneumococcal conjugate vaccine (PCV). We aimed to identify lineages driving the increase of serotype 24F in France and place these findings into a global context. METHODS Whole-genome sequencing was performed on a collection of serotype 24F pneumococci from asymptomatic colonisation (n=229) and invasive disease (n=190) isolates among individuals younger than 18 years in France, from 2003 to 2018. To provide a global context, we included an additional collection of 24F isolates in the Global Pneumococcal Sequencing (GPS) project database for analysis. A Global Pneumococcal Sequence Cluster (GPSC) and a clonal complex (CC) were assigned to each genome. Phylogenetic, evolutionary, and spatiotemporal analysis were conducted using the same 24F collection and supplemented with a global collection of genomes belonging to the lineage of interest from the GPS project database (n=25 590). FINDINGS Serotype 24F was identified in numerous countries mainly due to the clonal spread of three lineages: GPSC10 (CC230), GPSC16 (CC156), and GPSC206 (CC7701). GPSC10 was the only multidrug-resistant lineage. GPSC10 drove the increase in 24F in France and had high invasive disease potential. The international dataset of GPSC10 (n=888) revealed that this lineage expressed 16 other serotypes, with only six included in 13-valent PCV (PCV13). All serotype 24F isolates were clustered in a single clade within the GPSC10 phylogeny and long-range transmissions were detected from Europe to other continents. Spatiotemporal analysis showed GPSC10-24F took 3-5 years to spread across France and a rapid change of serotype composition from PCV13 serotype 19A to 24F during the introduction of PCV13 was observed in neighbouring country Spain. INTERPRETATION Our work reveals that GPSC10 alone is a challenge for serotype-based vaccine strategy. More systematic investigation to identify lineages like GPSC10 will better inform and improve next-generation preventive strategies against pneumococcal diseases. FUNDING Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK,Correspondence to: Dr Stephanie W Lo, Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Kate Mellor
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Robert Cohen
- ACTIV, Association Clinique et Thérapeutique Infantile du Val-de-Marne, Saint Maur-des-Fossés, France,GPIP, Groupe de Pathologie Infectieuse Pédiatrique, Paris, France,AFPA, Association Française de Pédiatrie Ambulatoire, Saint-Germain-en-Laye, France,Université Paris Est, IMRB-GRC GEMINI, Créteil, France,Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, Créteil, France,Unité Court Séjour, Petits nourrissons, Service de Néonatalogie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alba Redin Alonso
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain,Spanish Network of Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Sophie Belman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Narender Kumar
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rebecca A Gladstone
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - K L Ravikumar
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bangalore, India
| | - Rama Kandasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Churchill Hospital, Oxford, UK,NIHR Oxford Biomedical Research Centre, Oxford, UK,School of Women and Children's Health, University of New South Wales, Sydney, NSW, Australia,Discipline of Paediatrics and Child Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sir Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Churchill Hospital, Oxford, UK,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | | | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Brenda Kwambana-Adams
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Fajara, The Gambia,NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Shaper Mirza
- Microbiology and Immunology Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sadia Shakoor
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Imran Nisar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jennifer E Cornick
- Malawi-Liverpool-Wellcome-Trust, Blantyre, Malawi,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Rebecca L Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Betuel Sigauque
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stephen K Obaro
- Division of Pediatric Infectious Disease, University of Nebraska Medical Center Omaha, Omaha, NE, USA,International Foundation against Infectious Diseases in Nigeria, Abuja, Nigeria
| | - Ron Dagan
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idrissa Diawara
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco,National Reference Laboratory, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Hui Wang
- Peking University People ‘s Hospital, Beijing, China
| | - Philip E Carter
- Institute of Environmental Science and Research Limited, Kenepuru Science Centre, Porirua, New Zealand
| | - Keith P Klugman
- Rollins School Public Health, Emory University, Atlanta, GA, USA
| | - Gail Rodgers
- Pneumonia Program, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Robert F Breiman
- Rollins School Public Health, Emory University, Atlanta, GA, USA,Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Carmen Muñoz Almagro
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain,Spanish Network of Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Emmanuelle Varon
- National Reference Center for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kashiwaya K, Saga T, Ishii Y, Sakata R, Iwata M, Yoshizawa S, Chang B, Ohnishi M, Tateda K. Worldwide Lineages of Clinical Pneumococci in a Japanese Teaching Hospital Identified by DiversiLab System. J Infect Chemother 2016; 22:407-13. [PMID: 27107736 DOI: 10.1016/j.jiac.2016.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
Abstract
Pneumococcal Molecular Epidemiology Network (PMEN) clones are representatives of worldwide-spreading pathogens. DiversiLab system, a repetitive PCR system, has been proposed as a less labor-and time-intensive genotyping platform alternative to conventional methods. However, the utility and analysis parameters of DiversiLab for identifying worldwide lineages was not established. To evaluate and optimize the performance of DiversiLab for identifying worldwide pneumococcal lineages, we examined 245 consecutive isolates of clinical Streptococcus pneumoniae from all age-group patients at a teaching hospital in Japan. The capsular swelling reaction of all isolates yielded 24 different serotypes. Intensive visual observation (VO) of DiversiLab band pattern difference divided all isolates into 73 clusters. Multilocus sequence typing (MLST) of representative 73 isolates from each VO cluster yielded 51 different STs. Among them, PMEN-related lineages accounted for 63% (46/73). Although the serotype of PMEN-related isolates was identical to that of the original PMEN clone in 70% (32/46), CC156-related PMEN lineages, namely Greece(6B)-22 and Colombia(23F)-26, harbored various capsular types discordant to the original PMEN clones. Regarding automated analysis, genotyping by extended Jaccard (XJ) with a 75% similarity index cutoff (SIC) showed the highest correlation with serotyping (adjusted Rand's coefficient, 0.528). Elevating the SIC for XJ to 85% increased the discriminatory power sufficient for distinguishing two major PMEN-related isolates of Taiwan(19F)-14 and Netherlands(3)-31. These results demonstrated a potential utility of DiversiLab for identifying worldwide lineage of pneumococcus. An optimized parameters of automated analysis should be useful especially for comparison for reference strains by "identification" function of DiversiLab.
Collapse
Affiliation(s)
- Kiyoshi Kashiwaya
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan; Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tomoo Saga
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan; Central Laboratory Division, Akita University Hospital, Akita, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Ryuji Sakata
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Morihiro Iwata
- Clinical Laboratory Department, Toho University Omori Medical Center, Tokyo, Japan
| | - Sadako Yoshizawa
- Division of Infection Control, Toho University Omori Medical Center, Tokyo, Japan
| | - Bin Chang
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan; Clinical Laboratory Department, Toho University Omori Medical Center, Tokyo, Japan; Division of Infection Control, Toho University Omori Medical Center, Tokyo, Japan
| |
Collapse
|