1
|
Yaglom HD, Bhattarai R, Lemmer D, Rust L, Ridenour C, Chorbi K, Kim E, Centner H, Sheridan K, Jasso-Selles D, Erickson DE, French C, Bowers JR, Valentine M, Francis D, Hepp CM, Brady S, Komatsu KK, Engelthaler DM. Large Clusters of Invasive emm49 Group A Streptococcus Identified Within Arizona Health Care Facilities Through Statewide Genomic Surveillance System, 2019-2021. J Infect Dis 2024; 230:598-605. [PMID: 38373258 DOI: 10.1093/infdis/jiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
A statewide genomic surveillance system for invasive Group A Streptococcus was implemented in Arizona in June 2019, resulting in 1046 isolates being submitted for genomic analysis to characterize emm types and identify transmission clusters. Eleven of the 32 identified distinct emm types comprised >80% of samples, with 29.7% of all isolates being typed as emm49 (and its genetic derivative emm151). Phylogenetic analysis initially identified an emm49 genomic cluster of 4 isolates that rapidly expanded over subsequent months (June 2019 to February 2020). Public health investigations identified epidemiologic links with 3 different long-term care facilities, resulting in specific interventions. Unbiased genomic surveillance allowed for identification and response to clusters that would have otherwise remained undetected.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Rachana Bhattarai
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Darrin Lemmer
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Laura Rust
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Chase Ridenour
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Kaitlyn Chorbi
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Elizabeth Kim
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Heather Centner
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Krystal Sheridan
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Daniel Jasso-Selles
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Daryn E Erickson
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Chris French
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Jolene R Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Michael Valentine
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Drew Francis
- Arizona State Laboratory, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Crystal M Hepp
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Shane Brady
- Public Health Preparedness Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Kenneth K Komatsu
- Public Health Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - David M Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| |
Collapse
|
2
|
Armitage EP, Keeley AJ, de Crombrugghe G, Senghore E, Camara FE, Jammeh M, Bittaye A, Ceesay H, Ceesay I, Samateh B, Manneh M, Sesay AK, Kampmann B, Kucharski A, de Silva TI, Marks M, MRCG StrepA Study Group. Streptococcus pyogenes carriage acquisition, persistence and transmission dynamics within households in The Gambia (SpyCATS): protocol for a longitudinal household cohort study. Wellcome Open Res 2023; 8:41. [PMID: 37954923 PMCID: PMC10638483 DOI: 10.12688/wellcomeopenres.18716.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background Streptococcus pyogenes (StrepA) causes a significant burden of disease globally from superficial infections to invasive disease. It is responsible for over 500,000 deaths each year, predominantly in low- and middle-income countries (LMIC). Superficial StrepA infections of the skin and pharynx can lead to rheumatic heart disease, the largest cause of StrepA-related deaths in LMIC. StrepA can also asymptomatically colonise normal skin and the pharynx (carriage), potentially increasing infection risk. Streptococcus dysgalactiae subsp. equisimilis (SDSE) carriage is also common in LMIC and may interact with StrepA. This study aims to investigate StrepA and SDSE carriage and infection epidemiology, transmission dynamics and naturally acquired immunity within households in The Gambia. Methods A longitudinal household observational cohort study will be conducted over one year. 45 households will be recruited from the urban area of Sukuta, The Gambia, resulting in approximately 450 participants. Households will be visited monthly, and available participants will undergo oropharyngeal and normal skin swabbing. Incident cases of pharyngitis and pyoderma will be captured via active case reporting, with swabs taken from disease sites. Swabs will be cultured for the presence of group A, C and G beta-haemolytic streptococci. Isolates will undergo whole genome sequencing. At each visit, clinical, socio-demographic and social mixing data will be collected. Blood serum will be collected at baseline and final visit. Oral fluid and dried blood spot samples will be collected at each visit. Mucosal and serum anti-StrepA antibody responses will be measured. Outcome This study will report StrepA and SDSE clinical epidemiology, risk factors, transmission dynamics, and serological responses to carriage and infection. Detailed social mixing behaviour will be combined with phylogenetic relatedness to model the extent of transmission occurring withing and between households. The study will provide data to help meet global strategic StrepA research goals.
Collapse
Affiliation(s)
- Edwin P. Armitage
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alex J. Keeley
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Gabrielle de Crombrugghe
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Fatoumatta E. Camara
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Musukoi Jammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amat Bittaye
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Haddy Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Isatou Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bunja Samateh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Muhammed Manneh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Abdul Karim Sesay
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thushan I. de Silva
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael Marks
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| | - MRCG StrepA Study Group
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
3
|
Armitage EP, Keeley AJ, de Crombrugghe G, Senghore E, Camara FE, Jammeh M, Bittaye A, Ceesay H, Ceesay I, Samateh B, Manneh M, Sesay AK, Kampmann B, Kucharski A, de Silva TI, Marks M, MRCG StrepA Study Group. Streptococcus pyogenes carriage acquisition, persistence and transmission dynamics within households in The Gambia (SpyCATS): protocol for a longitudinal household cohort study. Wellcome Open Res 2023; 8:41. [PMID: 37954923 PMCID: PMC10638483 DOI: 10.12688/wellcomeopenres.18716.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Streptococcus pyogenes (StrepA) causes a significant burden of disease globally from superficial infections to invasive disease. It is responsible for over 500,000 deaths each year, predominantly in low- and middle-income countries (LMIC). Superficial StrepA infections of the skin and pharynx can lead to rheumatic heart disease, the largest cause of StrepA-related deaths in LMIC. StrepA can also asymptomatically colonise normal skin and the pharynx (carriage), potentially increasing infection risk. Streptococcus dysgalactiae subsp. equisimilis (SDSE) carriage is also common in LMIC and may interact with StrepA. This study aims to investigate StrepA and SDSE carriage and infection epidemiology, transmission dynamics and naturally acquired immunity within households in The Gambia. METHODS A longitudinal household observational cohort study will be conducted over one year. 45 households will be recruited from the urban area of Sukuta, The Gambia, resulting in approximately 450 participants. Households will be visited monthly, and available participants will undergo oropharyngeal and normal skin swabbing. Incident cases of pharyngitis and pyoderma will be captured via active case reporting, with swabs taken from disease sites. Swabs will be cultured for the presence of group A, C and G beta-haemolytic streptococci. Isolates will undergo whole genome sequencing. At each visit, clinical, socio-demographic and social mixing data will be collected. Blood serum will be collected at baseline and final visit. Oral fluid and dried blood spot samples will be collected at each visit. Mucosal and serum anti-StrepA antibody responses will be measured. OUTCOME This study will report StrepA and SDSE clinical epidemiology, risk factors, transmission dynamics, and serological responses to carriage and infection. Detailed social mixing behaviour will be combined with phylogenetic relatedness to model the extent of transmission occurring withing and between households. The study will provide data to help meet global strategic StrepA research goals.
Collapse
Affiliation(s)
- Edwin P. Armitage
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alex J. Keeley
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Gabrielle de Crombrugghe
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Fatoumatta E. Camara
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Musukoi Jammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amat Bittaye
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Haddy Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Isatou Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bunja Samateh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Muhammed Manneh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Abdul Karim Sesay
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thushan I. de Silva
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael Marks
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| | - MRCG StrepA Study Group
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
4
|
Bartoszko JJ, Elias Z, Rudziak P, Lo CKL, Thabane L, Mertz D, Loeb M. Prognostic factors for streptococcal toxic shock syndrome: systematic review and meta-analysis. BMJ Open 2022; 12:e063023. [PMID: 36456018 PMCID: PMC9716873 DOI: 10.1136/bmjopen-2022-063023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES To quantify the prognostic effects of demographic and modifiable factors in streptococcal toxic shock syndrome (STSS). DESIGN Systematic review and meta-analysis. DATA SOURCES MEDLINE, EMBASE and CINAHL from inception to 19 September 2022, along with citations of included studies. ELIGIBILITY CRITERIA Pairs of reviewers independently screened potentially eligible studies of patients with Group A Streptococcus-induced STSS that quantified the association between at least one prognostic factor and outcome of interest. DATA EXTRACTION AND SYNTHESIS We performed random-effects meta-analysis after duplicate data extraction and risk of bias assessments. We rated the certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluation approach. RESULTS One randomised trial and 40 observational studies were eligible (n=1918 patients). We found a statistically significant association between clindamycin treatment and mortality (n=144; OR 0.14, 95% CI 0.06 to 0.37), but the certainty of evidence was low. Within clindamycin-treated STSS patients, we found a statistically significant association between intravenous Ig treatment and mortality (n=188; OR 0.34, 95% CI 0.15 to 0.75), but the certainty of evidence was also low. The odds of mortality may increase in patients ≥65 years when compared with patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84), but the certainty of evidence was low. We are uncertain whether non-steroidal anti-inflammatory drugs increase the odds of mortality (n=50; OR 4.14, 95% CI 1.13 to 15.14; very low certainty). Results failed to show a significant association between any other prognostic factor and outcome combination (very low to low certainty evidence) and no studies quantified the association between a prognostic factor and morbidity post-infection in STSS survivors. CONCLUSIONS Treatment with clindamycin and within clindamycin-treated patients, IVIG, was each significantly associated with mortality, but the certainty of evidence was low. Future research should focus on morbidity post-infection in STSS survivors. PROSPERO REGISTRATION NUMBER CRD42020166961.
Collapse
Affiliation(s)
- Jessica J Bartoszko
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Zeyad Elias
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paulina Rudziak
- Department of Biology, Western University, London, Ontario, Canada
| | - Carson K L Lo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Departments of Anesthesia and Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dominik Mertz
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021; 10:248. [PMID: 33671684 PMCID: PMC7926438 DOI: 10.3390/pathogens10020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.
Collapse
Affiliation(s)
| | | | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5001, Australia; (N.J.A.); (H.W.)
| |
Collapse
|
6
|
Gajdács M, Ábrók M, Lázár A, Burián K. Beta-Haemolytic Group A, C and G Streptococcal Infections in Southern Hungary: A 10-Year Population-Based Retrospective Survey (2008-2017) and a Review of the Literature. Infect Drug Resist 2021; 13:4739-4749. [PMID: 33408489 PMCID: PMC7781025 DOI: 10.2147/idr.s279157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Pyogenic β-hemolytic streptococci (including Group A, C and G Streptococcus) are some of the most important Gram-positive bacterial pathogens in human medicine. Although effective therapy is available, invasive streptococcal infections are associated with a significant disease burden. Methods In this retrospective study, the epidemiological characteristics of invasive Group A (iGAS) and Group C and G (iGCGS) streptococci, along with tonsillo-pharyngitis-causing pGAS and pGCGS infections, were assessed in Southern Hungary. A total of 1554 cases of streptococcal tonsillo-pharyngitis infections (26.5–44.1/100,000 persons, pGAS: 95.5%; n=1484) and 1104 cases of invasive streptococcal infections were detected (12.5–31.4/100,000 persons, iGAS: 77.9%; n=861). Results The average age of the affected patients in the various groups were the following: pGAS: 13.2±13.1 years, pGCGS: 21.0±15.0 years (p=0.039), iGAS: 49.1±12.8 years, iGCGS: 58.7±18.5 years (p>0.05). iGAS isolates originated from abscesses (47.1%), blood culture samples (24.1%), surgical samples (16.7%), biopsies (4.6%), pleural fluid (3.5%), pus (2.0%), synovial fluid (1.3%) and cerebrospinal fluid samples (0.7%). In contrast, iGCGS isolates mainly originated from blood culture samples (53.8%), abscesses (22.9%), surgical samples (12.3%), synovial fluid (5.1%), pleural fluid (3.7%), pus (1.8%) and cerebrospinal fluid samples (0.4%). All respective isolates were susceptible to benzyl-penicillin; overall resistance levels for erythromycin (10.5% for GAS, 21.4% for GCGS) and clindamycin (9.2% for GAS, 17.2% for GCGS) were significantly higher in GCGS isolates, while resistance levels for norfloxacin were higher in GAS isolates (13.5% for GAS, 6.9% for GCGS). Conclusion The rates of resistance to macrolides and clindamycin are a cause for concern (especially among GCGS isolates); however, resistance levels are still relatively low, compared to Southern European countries.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary
| | - Marianna Ábrók
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Andrea Lázár
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| |
Collapse
|
7
|
Turner CE, Holden MTG, Blane B, Horner C, Peacock SJ, Sriskandan S. The Emergence of Successful Streptococcus pyogenes Lineages through Convergent Pathways of Capsule Loss and Recombination Directing High Toxin Expression. mBio 2019; 10:e02521-19. [PMID: 31822586 PMCID: PMC6904876 DOI: 10.1128/mbio.02521-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Gene transfer and homologous recombination in Streptococcus pyogenes has the potential to trigger the emergence of pandemic lineages, as exemplified by lineages of emm1 and emm89 that emerged in the 1980s and 2000s, respectively. Although near-identical replacement gene transfer events in the nga (NADase) and slo (streptolysin O) loci conferring high expression of these toxins underpinned the success of these lineages, extension to other emm genotype lineages is unreported. The emergent emm89 lineage was characterized by five regions of homologous recombination additional to nga-slo, including complete loss of the hyaluronic acid capsule synthesis locus hasABC, a genetic trait replicated in two other leading emm types and recapitulated by other emm types by inactivating mutations. We hypothesized that other leading genotypes may have undergone similar recombination events. We analyzed a longitudinal data set of genomes from 344 clinical invasive disease isolates representative of locations across England, dating from 2001 to 2011, and an international collection of S. pyogenes genomes representing 54 different genotypes and found frequent evidence of recombination events at the nga-slo locus predicted to confer higher toxin genotype. We identified multiple associations between recombination at this locus and inactivating mutations within hasAB, suggesting convergent evolutionary pathways in successful genotypes. This included common genotypes emm28 and emm87. The combination of no or low capsule and high expression of nga and slo may underpin the success of many emergent S. pyogenes lineages of different genotypes, triggering new pandemics, and could change the way S. pyogenes causes disease.IMPORTANCEStreptococcus pyogenes is a genetically diverse pathogen, with over 200 different genotypes defined by emm typing, but only a minority of these genotypes are responsible for the majority of human infection in high-income countries. Two prevalent genotypes associated with disease rose to international dominance following recombination of a toxin locus that conferred increased expression. Here, we found that recombination of this locus and promoter has occurred in other diverse genotypes, events that may allow these genotypes to expand in the population. We identified an association between the loss of hyaluronic acid capsule synthesis and high toxin expression, which we propose may be associated with an adaptive advantage. As S. pyogenes pathogenesis depends both on capsule and toxin production, new variants with altered expression may result in abrupt changes in the molecular epidemiology of this pathogen in the human population over time.
Collapse
Affiliation(s)
- Claire E Turner
- Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Matthew T G Holden
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Molecular Characterization of Streptococcus pyogenes Causing Invasive Disease in Pediatric Population in Spain A 12-year Study. Pediatr Infect Dis J 2019; 38:1168-1172. [PMID: 31738331 DOI: 10.1097/inf.0000000000002471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To perform a comprehensive description of the epidemiology of Streptococcus pyogenes invasive disease in the pediatric population in 2 regions of Spain (Catalonia and Gipuzkoa) through 12 years. METHODS All S. pyogenes isolates causing invasive disease in pediatric patients between 2005 and 2016 were included. The emm-type and the presence of 13 exotoxin genes (speA, speB, speC, speF, speG, speH, speI, speJ, speK, speL, speM, smeZ, ssa and slo) were determined in all 93 available isolates and the Multi Locus Sequece Typing in 10% of isolates of each different emm-type. RESULTS Overall, 103 cases of S. pyogenes invasive infections were detected: 77 in Catalonia and 26 in Gipuzkoa, being 50.5% females. The incidence rate per 100,000 children was 2.5 for Gipuzkoa and 2.6 for Catalonia, with no significant temporal trends. The median age was 30 months. The most frequent clinical presentations were: pneumonia (26.2%), bacteremia/sepsis (23.3%), septic arthritis/osteomyelitis (22.3%), cellulitis/mastoiditis (12.6%) and meningitis (6.8%). Eight children developed streptococcal toxic shock syndrome. Nine cases were preceded by varicella infection. The associated mortality rate was 3.9%. Three isolates were resistant to erythromycin, being one of them also resistant to clindamycin and 4 isolates were resistant to levofloxacine. Forteen different emm-types were detected being emm1/ST28 (40.9%) the most frequent clone in both regions followed by emm12/ST36-ST242, emm6/ST382, emm3/ST15, emm75/ST150 and emm4/ST38-39. speA gene was only detected in emm1 and emm3 isolates. Eight exotoxins were enough to assign an emm-type with a very high degree of accuracy (95%). The 30-valent vaccine would include 96.8% of isolates.
Collapse
|
9
|
Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, Robert A. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci 2019; 14:79. [PMID: 31409417 PMCID: PMC6692930 DOI: 10.1186/s13012-019-0930-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist's perspective. METHODS In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. RESULTS Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. CONCLUSIONS For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist's perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance.
Collapse
Affiliation(s)
- Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tine Descamps
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nele A. M. Boon
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
10
|
Saito M, Hirose M, Ichinose H, Villanueva SYAM, Yoshida SI. Molecular analysis of Streptococcus pyogenes strains isolated from patients with recurrent pharyngitis after oral amoxicillin treatment. J Med Microbiol 2018; 67:1544-1550. [DOI: 10.1099/jmm.0.000833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mitsumasa Saito
- 1Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kita-Kyushu, Japan
- 2Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Mizuo Hirose
- 3Hirose Children's Clinic, 8-12 Nakanokouji, Saga, Saga 840-0833, Japan
| | - Hirofumi Ichinose
- 4Section of Clinical Laboratories, Preventive Center for Adult-Disease of Saga Medical Association, 2-15 Shinnaka-machi, Saga, Saga 849-0924, Japan
| | - Sharon Y. A. M. Villanueva
- 2Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
- 5Department of Medical Microbiology, College of Public Health, University of the Philippines-Manila, Manila, Philippines
| | - Shin-ichi Yoshida
- 2Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
- †Present address: Professor Emeritus, Kyushu University
| |
Collapse
|
11
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
12
|
How to: molecular investigation of a hospital outbreak. Clin Microbiol Infect 2018; 25:688-695. [PMID: 30287413 DOI: 10.1016/j.cmi.2018.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Studying hospital outbreaks by using molecular tools, i.e. synthesizing the molecular epidemiology data to its appropriate clinical-epidemiologic context, is crucial in order to identify infection source, infer transmission dynamics, appropriately allocate prevention resources and implement control measures. Whole-genome sequencing (WGS) of pathogens has become the reference standard, as it is becoming more accessible and affordable. Consequently, sequencing of the full pathogen genome via WGS and major progress in fit-for-purpose genomic data analysis tools and interpretation is revolutionizing the field of outbreak investigations in hospitals. Metagenomics is an additional evolving field that might become commonly used in the future for outbreak investigations. Nevertheless, practitioners are frequently limited in terms of WGS or metagenomics, especially for local outbreak analyses, as a result of costs or logistical considerations, reduced or lack of locally available resources and/or expertise. As a result, traditional approaches, including pulsed-field gel electrophoresis, repetitive-element palindromic PCR and multilocus sequence typing, along with other typing methods, are still widely used. AIMS To provide practitioners with evidenced-based action plans for usage of the various typing techniques in order to investigate the molecular epidemiology of nosocomial outbreaks, of clinically significant pathogens in acute-care hospitals. SOURCES PubMed search with relevant keywords along with personal collection of relevant publications. CONTENT Representative case scenarios and critical review of the relevant scientific literature. IMPLICATIONS The review provides practical action plans to manage molecular epidemiologic investigations of outbreaks caused by clinically significant nosocomial pathogens, while prioritizing the use and timely integration of the various methodologies.
Collapse
|
13
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
14
|
Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci Rep 2018; 8:5660. [PMID: 29618824 PMCID: PMC5884828 DOI: 10.1038/s41598-018-23897-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Chlamydia species have recently been recognized as emerging pathogens in snakes. However, isolation of novel snake chlamydiae is critical and their growth characteristics are largely unknown. In this study, two novel chlamydial species are described: Chlamydia serpentis and Chlamydia poikilothermis, isolated after attempts on 23 cloacal and choanal swabs from 18 PCR-positive captive snakes originating from different Swiss snake collections. Isolation success, growth curve and infectivity rates over a 48-hour time period were dependent on temperature (37 °C for C. serpentis, 28 °C for C. poikilothermis). C. serpentis and C. poikilothermis were sensitive to tetracycline and moxifloxacin during evaluation by in vitro antibiotic susceptibility assay but intermediate to resistant (2–4 μg/ml) to azithromycin. Whole genome sequencing of the isolates provided proof of the novel species status, and gives insights into the evolution of these branches of genus Chlamydia.
Collapse
|
15
|
Gherardi G, Vitali LA, Creti R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018; 6:59. [PMID: 29662874 PMCID: PMC5890186 DOI: 10.3389/fpubh.2018.00059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes or group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high mortality and morbidity. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern; for this purpose the M protein gene (emm) gene typing is the most widely used genotyping method, with more than 200 emm types recognized. Molecular epidemiological data have been also used for the development of GAS M protein-based vaccines. METHODS The aim of this paper was to provide an updated scenario of the most prevalent GAS emm types responsible for invasive infections in developed countries as Europe and North America (US and Canada), from 1st January 2000 to 31st May 2017. The search, performed in PubMed by the combined use of the terms ("emm") and ("invasive") retrieved 264 articles, of which 38 articles (31 from Europe and 7 from North America) met the inclusion criteria and were selected for this study. Additional five papers cited in the European articles but not retrieved by the search were included. RESULTS emm1 represented the dominant type in both Europe and North America, replaced by other emm types in only few occasions. The seven major emm types identified (emm1, emm28, emm89, emm3, emm12, emm4, and emm6) accounted for approximately 50-70% of the total isolates; less common emm types accounted for the remaining 30-50% of the cases. Most of the common emm types are included in either one or both the 26-valent and 30-valent vaccines, though some well-represented emm types found in Europe are not. CONCLUSION This study provided a picture of the prevalent emm types among invasive GAS (iGAS) in Europe and North America since the year 2000 onward. Continuous surveillance on the emm-type distribution among iGAS infections is strongly encouraged also to determine the potential coverage of the developing multivalent vaccines.
Collapse
Affiliation(s)
- Giovanni Gherardi
- Microbiology Unit, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Roberta Creti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis 2017; 36:2007-2020. [PMID: 28639162 PMCID: PMC5653721 DOI: 10.1007/s10096-017-3024-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
In recent years, whole-genome sequencing (WGS) has been perceived as a technology with the potential to revolutionise clinical microbiology. Herein, we reviewed the literature on the use of WGS for the most commonly encountered pathogens in clinical microbiology laboratories: Escherichia coli and other Enterobacteriaceae, Staphylococcus aureus and coagulase-negative staphylococci, streptococci and enterococci, mycobacteria and Chlamydia trachomatis. For each pathogen group, we focused on five different aspects: the genome characteristics, the most common genomic approaches and the clinical uses of WGS for (i) typing and outbreak analysis, (ii) virulence investigation and (iii) in silico antimicrobial susceptibility testing. Of all the clinical usages, the most frequent and straightforward usage was to type bacteria and to trace outbreaks back. A next step toward standardisation was made thanks to the development of several new genome-wide multi-locus sequence typing systems based on WGS data. Although virulence characterisation could help in various particular clinical settings, it was done mainly to describe outbreak strains. An increasing number of studies compared genotypic to phenotypic antibiotic susceptibility testing, with mostly promising results. However, routine implementation will preferentially be done in the workflow of particular pathogens, such as mycobacteria, rather than as a broadly applicable generic tool. Overall, concrete uses of WGS in routine clinical microbiology or infection control laboratories were done, but the next big challenges will be the standardisation and validation of the procedures and bioinformatics pipelines in order to reach clinical standards.
Collapse
Affiliation(s)
- F Tagini
- Institute of Microbiology, Department of Laboratory, University of Lausanne & University Hospital, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, Department of Laboratory, University of Lausanne & University Hospital, Lausanne, Switzerland.
| |
Collapse
|
17
|
Griffiths E, Dooley D, Graham M, Van Domselaar G, Brinkman FSL, Hsiao WWL. Context Is Everything: Harmonization of Critical Food Microbiology Descriptors and Metadata for Improved Food Safety and Surveillance. Front Microbiol 2017; 8:1068. [PMID: 28694792 PMCID: PMC5483436 DOI: 10.3389/fmicb.2017.01068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Globalization of food networks increases opportunities for the spread of foodborne pathogens beyond borders and jurisdictions. High resolution whole-genome sequencing (WGS) subtyping of pathogens promises to vastly improve our ability to track and control foodborne disease, but to do so it must be combined with epidemiological, clinical, laboratory and other health care data (called “contextual data”) to be meaningfully interpreted for regulatory and health interventions, outbreak investigation, and risk assessment. However, current multi-jurisdictional pathogen surveillance and investigation efforts are complicated by time-consuming data re-entry, curation and integration of contextual information owing to a lack of interoperable standards and inconsistent reporting. A solution to these challenges is the use of ‘ontologies’ - hierarchies of well-defined and standardized vocabularies interconnected by logical relationships. Terms are specified by universal IDs enabling integration into highly regulated areas and multi-sector sharing (e.g., food and water microbiology with the veterinary sector). Institution-specific terms can be mapped to a given standard at different levels of granularity, maximizing comparability of contextual information according to jurisdictional policies. Fit-for-purpose ontologies provide contextual information with the auditability required for food safety laboratory accreditation. Our research efforts include the development of a Genomic Epidemiology Ontology (GenEpiO), and Food Ontology (FoodOn) that harmonize important laboratory, clinical and epidemiological data fields, as well as existing food resources. These efforts are supported by a global consortium of researchers and stakeholders worldwide. Since foodborne diseases do not respect international borders, uptake of such vocabularies will be crucial for multi-jurisdictional interpretation of WGS results and data sharing.
Collapse
Affiliation(s)
- Emma Griffiths
- Department of Molecular Biology and Biochemistry, Simon Fraser University, VancouverBC, Canada
| | - Damion Dooley
- Department of Pathology and Laboratory Medicine, University of British Columbia, VancouverBC, Canada
| | - Morag Graham
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, WinnipegMB, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, WinnipegMB, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, VancouverBC, Canada
| | - William W L Hsiao
- Department of Pathology and Laboratory Medicine, University of British Columbia, VancouverBC, Canada.,British Columbia Centre for Disease Control Public Health Laboratory, VancouverBC, Canada
| |
Collapse
|