1
|
Ansah-Dico S, Heckler I, Premazzi Papa M, Sucerquia Hernández A, Mejía JF, Tritsch SR, Mendoza-Torres E, Encinales L, Bonfanti AC, Proctor AM, Wells JM, Hernández DD, Pretelt Gazabon JM, Pulido MG, Castiblanco-Arroyave SC, Simmens SJ, Lynch R, Chang AYH. The role of autoantibodies in post-chikungunya viral arthritis disease severity. Microbiol Spectr 2025; 13:e0265624. [PMID: 40042325 PMCID: PMC11960447 DOI: 10.1128/spectrum.02656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Post-chikungunya viral arthritis may persist for months to years after infection and is characterized by relapsing and remitting symptoms. This study investigates the relationship between autoantibodies and chikungunya arthritis severity, providing insights into arthritis pathogenesis. We assessed arthritis measures in a cohort of serologically confirmed chikungunya cases from Colombia between 2019 and 2021 (n = 144). We measured arthritis disease severity, flare intensity, pain, and disability, then plasma antibody levels of rheumatoid factor IgM, anti-cyclic citrullinated peptide (CCP), anti-citrullinated α-enolase peptide 1 (CEP-1), anti-nuclear antibody (ANA), anti-citrullinated vimentin (Sa), and immunoglobulins produced in response to chikungunya, Zika and Mayaro. Finally, we examined the correlation between the arthritis measures with the titers of antibodies hypothesized to play a potential role in arthritis pathogenesis. Cases were characterized by moderate disease severity (Disease Activity Score-28 mean, 3.66 ± 1.23) in current arthritis flare with moderate intensity (Flare Score, 25.42 ± 12.38), moderate pain (61.47 ± 27.23 on visual analog scale 0-100), and some disability (Health Assessment Questionnaire 0.77 ± 0.58). After Bonferroni adjustment, there were no statistically significant correlations between the levels of antibodies and arthritis measures. Weak correlations between rheumatoid factor IgM with arthritis severity and pain (P < 0.01) and anti-CEP1 with disability (P < 0.05) were observed when unadjusted for multiple comparisons. The data suggest that autoantibodies, such as RF, anti-CCP, and anti-CEP-1, do not correlate with post-chikungunya arthritis disease severity, thus unlikely to significantly contribute to pathogenesis. Exposure to other arboviral infections was not related to worse post-chikungunya arthritis. This suggests that other pathways for arthritis disease pathogenesis should be examined.IMPORTANCEThis cohort study describes the correlation between levels of autoantibodies, viral antibodies, and arthritis outcomes, suggesting that autoantibodies known to play an important role in other autoimmune diseases do not correlate with chikungunya arthritis relapse disease severity and are unlikely to contribute significantly to arthritis pathogenesis. This suggests that other pathways for arthritis disease pathogenesis should be examined to identify diagnostic and prognostic markers of alphaviral arthritis.
Collapse
Affiliation(s)
- Samantha Ansah-Dico
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Ilana Heckler
- Department of Scientific Affairs, EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | - Michelle Premazzi Papa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | | | - Jose Forero Mejía
- Department of Medicine, George Washington University, Washington, D.C., USA
| | - Sarah Renee Tritsch
- Global Health, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
| | - Evelyn Mendoza-Torres
- Advanced Biomedicine Research Group, Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Barranquilla, Atlantico, Colombia
| | - Liliana Encinales
- Department of Medicine, Allied Research Society, Barranquilla, Atlántico, Colombia
| | | | - Abigale Marie Proctor
- Global Health, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
| | - Jessica M. Wells
- Department of Quality Operations, EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | - Daniela Díaz Hernández
- Pediatrics Department, Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Juan Manuel Pretelt Gazabon
- Internal Medicine Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Mónica Gómez Pulido
- Microbiology Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Sara Camila Castiblanco-Arroyave
- Internal Medicine Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Sammuel Joseph Simmens
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| | - Rebecca Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Aileen Yu-hen Chang
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
- Department of Medicine, George Washington University, Washington, D.C., USA
| |
Collapse
|
2
|
Sann S, Kleinewietfeld M, Cantaert T. Balancing functions of regulatory T cells in mosquito-borne viral infections. Emerg Microbes Infect 2024; 13:2304061. [PMID: 38192073 PMCID: PMC10812859 DOI: 10.1080/22221751.2024.2304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
Mosquito-borne viral infections are on the rise worldwide and can lead to severe symptoms such as haemorrhage, encephalitis, arthritis or microcephaly. A protective immune response following mosquito-borne viral infections requires the generation of a controlled and balanced immune response leading to viral clearance without immunopathology. Here, regulatory T cells play a central role in restoring immune homeostasis. In current review, we aim to provide an overview and summary of the phenotypes of FOXP3+ Tregs in various mosquito-borne arboviral disease, their association with disease severity and their functional characteristics. Furthermore, we discuss the role of cytokines and Tregs in the immunopathogenesis of mosquito-borne infections. Lastly, we discuss possible novel lines of research which could provide additional insight into the role of Tregs in mosquito-borne viral infections in order to develop novel therapeutic approaches or vaccination strategies.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
3
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
4
|
Ng WH, Amaral K, Javelle E, Mahalingam S. Chronic chikungunya disease (CCD): clinical insights, immunopathogenesis and therapeutic perspectives. QJM 2024; 117:489-494. [PMID: 38377410 PMCID: PMC11290245 DOI: 10.1093/qjmed/hcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Chikungunya virus, an arthropod-borne pathogen is recognized by the World Health Organization as a top priority Emerging Infectious Disease and is ranked fourth in public health needs according to the Coalition for Epidemic Preparedness Innovations. Despite its substantial impact, as evidenced by an annual estimate of 120 274 disability-adjusted life years, our understanding of the chronic aspects of chikungunya disease remains limited. This review focuses on chronic chikungunya disease, emphasizing its clinical manifestations, immunopathogenesis, therapeutic options and disease burden.
Collapse
Affiliation(s)
- W H Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - K Amaral
- Department of Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - E Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France
- Unit of Infectious Diseases and Tropical Medicine, IHU Méditerranée Infection, Marseille, France
- Service de Pathologie Infectieuse et Tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - S Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Mayaro virus infection elicits a robust pro-inflammatory and antiviral response in human macrophages. Acta Trop 2024; 252:107146. [PMID: 38342287 DOI: 10.1016/j.actatropica.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Mayaro virus (MAYV), the etiological agent of Mayaro fever (MAYF), is an emergent arbovirus pathogen belonging to Togaviridae family. MAYF is characterized by high inflammatory component that can cause long-lasting arthralgia that persists for months. Macrophages are viral targets and reservoirs, key components of innate immunity and host response. Given the importance of this pathogen, our aim was to determine the inflammatory and antiviral response of human monocyte-derived macrophages (MDMs) infected with MAYV. First, we established the replication kinetics of the virus. Thereafter, we determined the expression of pattern recognition receptors, NF-ĸB complex, interferons (IFNs), two interleukin 27 (IL27) subunits, IFN-stimulated genes (ISGs), and the production of cytokines/chemokines. We found that human MDMs are susceptible to MAYV infection in vitro, with a peak of viral particles released between 24- and 48-hours post-infection (h.p.i) at MOI 0.5, and between 12 and 24 h.p.i at MOI 1. Interestingly, we observed a significant decline in the production of infectious viral particles at 72 h.p.i that was associated with the induction of antiviral response and high cytotoxic effect of MAYV infection in MDMs. We observed modulation of several genes after MAYV infection, as well, we noted the activation of antiviral detection and response pathways (Toll-like receptors, RIG-I/MDA5, and PKR) at 48 h.p.i but not at 6 h.p.i. Furthermore, MAYV-infected macrophages express high levels of the three types of IFNs and the two IL27 subunits at 48 h.p.i. Moreover, we found higher production of IL6, IL1β, CXCL8/IL8, CCL2, and CCL5 at 48 h.p.i as compared to 6 h.p.i. A robust antiviral response (ISG15, APOBEC3A, IFITM1, and MX2) was observed at 48 but not at 6 h.p.i. The innate and antiviral responses of MAYV-infected MDMs differ at 6 and 48 h.p.i. We conclude that MAYV infection induces robust pro-inflammatory and antiviral responses in human primary macrophages.
Collapse
Affiliation(s)
| | - Y S Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
6
|
Chang AY, Tritsch SR, Herrera Gomez CA, Encinales L, Cadena Bonfanti A, Rosales W, Mendoza-Torres E, Simmens S, Amdur RL, Mores CN, Fierbaugh P, Perez Hernandez CA, Avendaño G, Silvera PB, Crespo YG, Jimenez ADC, Martinez Zapata JC, Jimenez D, Osorio-Llanes E, Castellar-Lopez J, Suchowiecki K, Martins K, Gregory M, Zuluaga I, Proctor A, Hernández AS, Sierra-Carrero L, Colpas MV, Hernandez JCP, Quast AAF, De Barros JAC, Mejía JF, Ruiz JP, Boyle D, Firestein GS, Simon GL. Cytokine and T cell responses in post-chikungunya viral arthritis: A cross-sectional study. PLoS One 2024; 19:e0299521. [PMID: 38507338 PMCID: PMC10954186 DOI: 10.1371/journal.pone.0299521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE To define the relationship between chronic chikungunya post-viral arthritis disease severity, cytokine response and T cell subsets in order to identify potential targets for therapy. METHODS Participants with chikungunya arthritis were recruited from Colombia from 2019-2021. Arthritis disease severity was quantified using the Disease Activity Score-28 and an Arthritis-Flare Questionnaire adapted for chikungunya arthritis. Plasma cytokine concentrations (interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ and tumor necrosis factor (TNF)) were measured using a Meso Scale Diagnostics assay. Peripheral blood T cell subsets were measured using flow cytometry. RESULTS Among participants with chikungunya arthritis (N = 158), IL-2 levels and frequency of regulatory T cells (Tregs) were low. Increased arthritis disease activity was associated with higher levels of inflammatory cytokines (IL-6, TNF and CRP) and immunoregulatory cytokine IL-10 (p<0.05). Increased arthritis flare activity was associated with higher Treg frequencies (p<0.05) without affecting T effector (Teff) frequencies, Treg/Teff ratios and Treg subsets. Finally, elevated levels of IL-2 were correlated with increased Treg frequency, percent Tregs out of CD4+ T cells, and Treg subsets expressing immunosuppressive markers, while also correlating with an increased percent Teff out of live lymphocytes (p<0.05). CONCLUSION Chikungunya arthritis is characterized by increased inflammatory cytokines and deficient IL-2 and Treg responses. Greater levels of IL-2 were associated with improved Treg numbers and immunosuppressive markers. Future research may consider targeting these pathways for therapy.
Collapse
Affiliation(s)
- Aileen Y. Chang
- Department of Medicine, George Washington University, Washington, DC, United States of America
| | - Sarah R. Tritsch
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | | | - Liliana Encinales
- Department of Medicine, Allied Research Society, Barranquilla, Atlántico, Colombia
| | | | - Wendy Rosales
- Advanced Biomedicine Research Group, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Evelyn Mendoza-Torres
- Advanced Biomedicine Research Group, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Samuel Simmens
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Richard L. Amdur
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, United States of America
| | - Christopher N. Mores
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | - Paige Fierbaugh
- Department of Medicine, George Washington University, Washington, DC, United States of America
| | | | - Geraldine Avendaño
- Centro de Investigación, Clínica de la Costa SAS, Barranquilla, Atlántico, Colombia
| | - Paula Bruges Silvera
- Centro de Investigación, Clínica de la Costa SAS, Barranquilla, Atlántico, Colombia
| | | | | | | | - Dennys Jimenez
- Centro de Investigación, Clínica de la Costa SAS, Barranquilla, Atlántico, Colombia
| | - Estefanie Osorio-Llanes
- Advanced Biomedicine Research Group, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Jairo Castellar-Lopez
- Advanced Biomedicine Research Group, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Karol Suchowiecki
- Department of Medicine, George Washington University, Washington, DC, United States of America
| | - Karen Martins
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Melissa Gregory
- Henry M. Jackson Foundation, In Support of Austere Environments Consortium for Enhanced Sepsis Outcomes (ACESO), Bethesda, Maryland, United States of America
| | - Ivan Zuluaga
- Universidad Libre de Barranquilla, Clínica Iberoamérica, Barranquilla, Atlántico, Colombia
| | - Abigale Proctor
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
| | | | | | | | | | | | | | - José Forero Mejía
- Centro de Investigación, Clínica de la Costa SAS, Barranquilla, Atlántico, Colombia
| | - Johan Penagos Ruiz
- Centro de Investigación, Clínica de la Costa SAS, Barranquilla, Atlántico, Colombia
| | - David Boyle
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States of America
| | - Gary S. Firestein
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States of America
| | - Gary L. Simon
- Department of Medicine, George Washington University, Washington, DC, United States of America
| |
Collapse
|
7
|
Atella MO, Carvalho AS, Da Poian AT. Role of macrophages in the onset, maintenance, or control of arthritis caused by alphaviruses. Exp Biol Med (Maywood) 2023; 248:2039-2044. [PMID: 38058027 PMCID: PMC10800133 DOI: 10.1177/15353702231214261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Arthritogenic alphaviruses are mosquito-borne viruses that cause a debilitating rheumatic disease characterized by fever, headache, rash, myalgia, and polyarthralgia with the potential to evolve into a severe and very prolonged illness. Although these viruses have been geographically restricted by vector hosts and reservoirs, recent epidemics have revealed the risks of their spread worldwide. In this review, we aim to discuss the protective and pathological roles of macrophages during the development of arthritis caused by alphaviruses. The progression to the chronic phase of the disease is related to the extension of viral replication and the maintenance of articular inflammation, in which the cellular infiltrate is predominantly composed of macrophages. We explore the possible implications of macrophage polarization to M1/M2 activation phenotypes, drawing a parallel between alphavirus arthritis and rheumatoid arthritis (RA), a chronic inflammatory disease that also affects articular tissues. In RA, it is well established that M1 macrophages contribute to tissue damage and inflammation, while M2 macrophages have a role in cartilage repair, so modulating the M1/M2 macrophage ratio is being considered as a strategy in the treatment of this disease. In the case of alphavirus-induced arthritis, the picture is more complex, as proinflammatory factors derived from M1 macrophages contribute to the antiviral response but cause tissue damage, while M2 macrophages may contribute to tissue repair but impair viral clearance.
Collapse
Affiliation(s)
| | | | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
8
|
Schmitz KS, Comvalius AD, Nieuwkoop NJ, Geers D, Weiskopf D, Ramsauer K, Sette A, Tschismarov R, de Vries RD, de Swart RL. A measles virus-based vaccine induces robust chikungunya virus-specific CD4 + T-cell responses in a phase II clinical trial. Vaccine 2023; 41:6495-6504. [PMID: 37726181 DOI: 10.1016/j.vaccine.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.
Collapse
Affiliation(s)
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Ravindran S, Lahon A. Tropism and immune response of chikungunya and zika viruses: An overview. Cytokine 2023; 170:156327. [PMID: 37579710 DOI: 10.1016/j.cyto.2023.156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are two medically important vector-borne viruses responsible for causing significant disease burden in humans, including neurological sequelae/complications. Besides sharing some common clinical features, ZIKV has major shares in causing microcephaly and brain malformations in developing foetus, whereas CHIKV causes chronic joint pain/swelling in infected individuals. Both viruses have a common route of entry to the host body. i.e., dermal site of inoculation through the bite of an infected mosquito and later taken up by different immune cells for further dissemination to other areas of the host body that lead to a range of immune responses via different pathways. The immune responses generated by both viruses have similar characteristics with varying degrees of inflammation and activation of immune cells. However, the overall response of immune cells is not fully explored in the context of ZIKV and CHIKV infection. The knowledge of cellular tropism and the immune response is the key to understanding the mechanisms of viral immunity and pathogenesis, which may allow to develop novel therapeutic strategies for these viral infections. This review aims to discuss recent advancements and identify the knowledge gaps in understanding the mechanism of cellular tropism and immune response of CHIKV and ZIKV.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India
| | - Anismrita Lahon
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India.
| |
Collapse
|
10
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
11
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
12
|
Dobbs JE, Tritsch SR, Encinales L, Cadena A, Suchowiecki K, Simon G, Mores C, Insignares S, Orozco VPV, Ospino M, Echavez LA, Gomez CAH, Crespo YG, Amdur R, Jimenez ADC, Hernandez CAP, Zapata JCM, Hernandez AS, Silvera PB, Rosales W, Mendoza E, Osorio-Llanes E, Castellar J, Jimenez D, Cooper DM, Firestein GS, Martins K, Chang AY. Regulatory T-cells and GARP expression are decreased in exercise-associated chikungunya viral arthritis flares. Front Immunol 2022; 13:1007106. [PMID: 36275717 PMCID: PMC9585177 DOI: 10.3389/fimmu.2022.1007106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Chikungunya virus (CHIKV) causes persistent arthritis, and our prior study showed that approximately one third of CHIKV arthritis patients had exacerbated arthritis associated with exercise. The underlying mechanism of exercise-associated chikungunya arthritis flare (EACAF) is unknown, and this analysis aimed to examine the regulatory T-cell immune response related to CHIKV arthritis flares. Methods In our study, 124 Colombian patients with a history of CHIKV infection four years prior were enrolled and 113 cases with serologically confirmed CHIKV IgG were used in this analysis. Patient information was gathered via questionnaires, and blood samples were taken to identify total live peripheral blood mononuclear cells, CD4+ cells, T regulatory cells, and their immune markers. We compared outcomes in CHIKV patients with (n = 38) vs. without (n = 75) EACAF using t-tests to assess means and the Fisher’s exact test, chi-squared to evaluate categorical variables, and Kruskal-Wallis tests in the setting of skewed distributions (SAS 9.3). Results 33.6% of CHIKV cases reported worsening arthritis with exercise. EACAF patients reported higher global assessments of arthritis disease ranging from 0-100 (71.2 ± 19.7 vs. 59.9 ± 28.0, p=0.03). EACAF patients had lower ratios of T regulatory (Treg)/CD4+ T-cells (1.95 ± 0.73 vs. 2.4 ± 1.29, p = 0.04) and lower percentage of GARP (glycoprotein-A repetitions predominant) expression per Treg (0.13 ± 0.0.33 vs. 0.16 ± 0.24 p= 0.020). Conclusion These findings suggest relative decreases in GARP expression may indicate a decreased level of immune suppression. Treg populations in patients with CHIKV arthritis may contribute to arthritis flares during exercise, though current research is conflicting.
Collapse
Affiliation(s)
- John E. Dobbs
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: John E. Dobbs,
| | - Sarah R. Tritsch
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | - Karol Suchowiecki
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Gary Simon
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Christopher Mores
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Richard Amdur
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Evelyn Mendoza
- Allied Research Society, Barranquilla, Colombia
- Universidad Libre, Barranquilla, Colombia
| | | | | | - Dennys Jimenez
- University of Texas Health Science Center San Antonio, TX, United States
| | - Dan M. Cooper
- University of California Irvine, Irvine, CA, United States
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Bethesda, MD, United States
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
14
|
de Sousa Palmeira PH, Gois BM, Guerra-Gomes IC, Peixoto RF, de Sousa Dias CN, Araújo JMG, Amaral IP, Keesen TSL. Downregulation of CD73 on CD4+ T cells from patients with chronic Chikungunya infection. Hum Immunol 2022; 83:306-318. [DOI: 10.1016/j.humimm.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
|
15
|
Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, Datey A, Sahu RP, Goswami C, Chattopadhyay S, Chattopadhyay S. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol 2020; 166:139-155. [PMID: 33125586 DOI: 10.1007/s00705-020-04852-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5'-iodoresiniferatoxin (5'-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.,Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ankita Datey
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ram P Sahu
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
16
|
Chirathaworn C, Chansaenroj J, Poovorawan Y. Cytokines and Chemokines in Chikungunya Virus Infection: Protection or Induction of Pathology. Pathogens 2020; 9:415. [PMID: 32471152 PMCID: PMC7350363 DOI: 10.3390/pathogens9060415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV) infection has been commonly detected in tropical countries. The clinical manifestations of CHIKV infection are similar to those of rheumatoid arthritis. Outbreaks of CHIKV infection in Thailand have been reported, and the inductions of various cytokines and chemokines in CHIKV patients during those outbreaks have been shown. Although immune responses in CHIKV infection have been increasingly reported, the mechanisms associated with pathology induction are still not clearly understood. This review focuses on cytokine and chemokine production in CHIKV infection, in association with the severity of joint inflammation. Several cytokines and chemokines involved in the induction or regulation of inflammatory responses were shown to associate with the severe and persistent symptoms in CHIKV infection. Further studies on the difference in immune responses observed in an autoimmune disease, rheumatoid arthritis, infectious disease, and CHIKV infection, would provide additional insights useful for proper CHIKV therapy, especially in patients with severe joint pains.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
17
|
Foresto RD, Santos DWDCL, Hazin MAA, Leyton ATZ, Tenório NC, Viana LA, Cristelli MP, Silva Júnior HT, Pestana JOM. Chikungunya in a kidney transplant recipient: a case report. ACTA ACUST UNITED AC 2020; 41:575-579. [PMID: 31419273 PMCID: PMC6979562 DOI: 10.1590/2175-8239-jbn-2018-0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
In 2004, a global spread of Chikungunya fever affected most tropical and subtropical regions of the world. In 2016, an outbreak occurred in Northeast Brazil with hundreds of cases documented. Solid organ transplant recipients have a modified immune response to infection and the clinical course is usually different from immunocompetent patients. The diagnosis can be challenging in this population. Most reports describe patients residing in endemic areas, although we must emphasize the importance of differential diagnosis in kidney transplanted travelers who visit endemic regions, such as Northeast Brazil. Here, we reported a case of a kidney transplant recipient that acquired Chikungunya fever after a trip to an endemic region at Northeast Brazil during the outbreak in 2016, with a good clinical evolution. We also present warning recommendations for travelers to endemic areas as additional measures to prevent disease outbreaks.
Collapse
Affiliation(s)
- Renato Demarchi Foresto
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | - Maria Amélia Aguiar Hazin
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | - Alejandro Túlio Zapata Leyton
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | | | | | - Hélio Tedesco Silva Júnior
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | - José Osmar Medina Pestana
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Chan YH, Teo TH, Utt A, Tan JJ, Amrun SN, Abu Bakar F, Yee WX, Becht E, Lee CYP, Lee B, Rajarethinam R, Newell E, Merits A, Carissimo G, Lum FM, Ng LF. Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol Med 2020; 11:emmm.201810092. [PMID: 31015278 PMCID: PMC6554673 DOI: 10.15252/emmm.201810092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Currently, there are no commercially available live-attenuated vaccines against chikungunya virus (CHIKV). Here, CHIKVs with mutations in non-structural proteins (nsPs) were investigated for their suitability as attenuated CHIKV vaccines. R532H mutation in nsP1 caused reduced infectivity in mouse tail fibroblasts but an enhanced type-I IFN response compared to WT-CHIKV Adult mice infected with this nsP-mutant exhibited a mild joint phenotype with low-level viremia that rapidly cleared. Mechanistically, ingenuity pathway analyses revealed a tilt in the anti-inflammatory IL-10 versus pro-inflammatory IL-1β and IL-18 balance during CHIKV nsP-mutant infection that modified acute antiviral and cell signaling canonical pathways. Challenging CHIKV nsP-mutant-infected mice with WT-CHIKV or the closely related O'nyong-nyong virus resulted in no detectable viremia, observable joint inflammation, or damage. Challenged mice showed high antibody titers with efficient neutralizing capacity, indicative of immunological memory. Manipulating molecular processes that govern CHIKV replication could lead to plausible vaccine candidates against alphavirus infection.
Collapse
Affiliation(s)
- Yi-Hao Chan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Molecular Microbial Pathogenesis Unit, Department of Cell Biology and Infection, Institute Pasteur, Paris, France
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jeslin Jl Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Etienne Becht
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cheryl Yi-Pin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | | | - Evan Newell
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Guillaume Carissimo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Hayd RLN, Moreno MR, Naveca F, Amdur R, Suchowiecki K, Watson H, Firestein GS, Simon G, Chang AY. Persistent chikungunya arthritis in Roraima, Brazil. Clin Rheumatol 2020; 39:2781-2787. [PMID: 32170487 DOI: 10.1007/s10067-020-05011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Amazon region of Brazil experienced a large epidemic of East Central South African (ECSA) chikungunya virus (CHIKV) in 2017 and continuous transmission of CHIKV persists. The impact of chronic arthritis caused by ECSA CHIKV is unknown. OBJECTIVE The study aim was to describe the duration, severity, and characteristics of CHIKV arthritis in Roraima, Brazil, in comparison with local controls to further understand the long-term rheumatologic impact of ECSA CHIKV infection. METHODS We performed a cross-sectional analysis comparing clinical arthritis outcomes among 40 cases with chronic (> 3 months) arthritis attributed to their CHIKV disease (n = 40) with control participants who were exposed to CHIKV but did not develop chronic arthritis (n = 40), rheumatoid arthritis controls (n = 40), and healthy controls lacking CHIKV exposure and arthritis (n = 40). FINDINGS Our primary finding is that over 2 years post-infection, patients report moderate arthritis disease severity comparable with rheumatoid arthritis with the most significant impact on decreased quality of life from pain. MAIN CONCLUSIONS These findings suggest that chronic arthritis caused by ECSA CHIKV infection has had a moderate impact in the Americas. Key Points • Chikungunya infection is responsible for moderate arthritis disease severity. • The East Central South African (ECSA) strain of CHIKV is a cause of persistent arthritis in Roraima, Brazil.
Collapse
Affiliation(s)
- Ramão Luciano Nogueira Hayd
- Laboratorio de Parasitologia e Vetores da Amazonia, Curso de Enfermagem, Centro de Ciencias da Saude, Universidade Federal de Roraima, Boa Vista, RR, Brazil
| | - Maony Rodrigues Moreno
- Laboratorio de Parasitologia e Vetores da Amazonia, Curso de Enfermagem, Centro de Ciencias da Saude, Universidade Federal de Roraima, Boa Vista, RR, Brazil
| | - Felipe Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Richard Amdur
- Department of Surgery, George Washington University, Washington, DC, USA
| | - Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC, 20037, USA
| | | | - Gary S Firestein
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Gary Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC, 20037, USA
| | - Aileen Y Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC, 20037, USA.
| |
Collapse
|
20
|
Poh CM, Chan YH, Ng LFP. Role of T Cells in Chikungunya Virus Infection and Utilizing Their Potential in Anti-Viral Immunity. Front Immunol 2020; 11:287. [PMID: 32153590 PMCID: PMC7046835 DOI: 10.3389/fimmu.2020.00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes hallmark debilitating polyarthralgia, fever, and rash in patients. T cell-mediated immunity, especially CD4+ T cells, are known to participate in the pathogenic role of CHIKV immunopathology. The other T cell subsets, notably CD8+, NKT, and gamma-delta (γδ) T cells, can also contribute to protective immunity, but their effect is not actuated during the natural course of infection. This review serves to consolidate and discuss the multifaceted roles of these T cell subsets during acute and chronic phases of CHIKV infection, and highlight gaps in the current literature. Importantly, the unique characteristics of skin-resident memory T cells are outlined to propose novel prophylactic strategies that utilize their properties to provide adequate, lasting protection.
Collapse
Affiliation(s)
- Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Prow NA, Hirata TDC, Tang B, Larcher T, Mukhopadhyay P, Alves TL, Le TT, Gardner J, Poo YS, Nakayama E, Lutzky VP, Nakaya HI, Suhrbier A. Exacerbation of Chikungunya Virus Rheumatic Immunopathology by a High Fiber Diet and Butyrate. Front Immunol 2019; 10:2736. [PMID: 31849947 PMCID: PMC6888101 DOI: 10.3389/fimmu.2019.02736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus associated with a robust systemic infection and an acute inflammatory rheumatic disease. A high fiber diet has been widely promoted for its ability to ameliorate inflammatory diseases. Fiber is fermented in the gut into short chain fatty acids such as acetate, propionate, and butyrate, which enter the circulation providing systemic anti-inflammatory activities. Herein we show that mice fed a high fiber diet show a clear exacerbation of CHIKV arthropathy, with increased edema and neutrophil infiltrates. RNA-Seq analyses illustrated that a high fiber diet, in this setting, promoted a range of pro-neutrophil responses including Th17/IL-17. Gene Set Enrichment Analyses demonstrated significant similarities with mouse models of inflammatory psoriasis and significant depression of macrophage resolution phase signatures in the CHIKV arthritic lesions from mice fed a high fiber diet. Supplementation of the drinking water with butyrate also increased edema after CHIKV infection. However, the mechanisms involved were different, with modulation of AP-1 and NF-κB responses identified, potentially implicating deoptimization of endothelial barrier repair. Thus, neither fiber nor short chain fatty acids provided benefits in this acute infectious disease setting, which is characterized by widespread viral cytopathic effects and a need for tissue repair.
Collapse
Affiliation(s)
- Natalie A Prow
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Thiago D C Hirata
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Pamela Mukhopadhyay
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tiago Lubiana Alves
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joy Gardner
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yee Suan Poo
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Eri Nakayama
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Viviana P Lutzky
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
23
|
Gualberto Cavalcanti N, MeloVilar K, Branco Pinto Duarte AL, Jesus Barreto de Melo Rêgo M, Cristiny Pereira M, da Rocha Pitta I, Diniz Lopes Marques C, Galdino da Rocha Pitta M. IL-27 in patients with Chikungunya fever: A possible chronicity biomarker? Acta Trop 2019; 196:48-51. [PMID: 31075222 DOI: 10.1016/j.actatropica.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND/PURPOSE Although many patients with chikungunya virus disease (CHIKVD), an arboviral disease characterized by sudden fever and incapacitating poliartralgia, develop chronic articular symptoms, the mechanisms involved in CHIKVD's chronification and its possible biomarkers remain poorly understood. Interleukin (IL)-17A, IL-21, IL-22, IL-29, and transforming growth factor (TGF)-β have been implicated in the pathogenesis of other inflammatory joint diseases, including rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. Since chronic manifestations of CHIKVD share many clinical and immunological characteristics with those diseases, we assessed the serum levels of those cytokines and analyzed their associations with clinical manifestations in patients with CHIKVD. METHODS We evaluated 45 patients (36 female, mean age: 55.2 ± 13.8 years) with CHIKVD serologically confirmed by enzyme-linked immunosorbent assay (ELISA), articular manifestations upon evaluation, and no previous history of inflammatory rheumatologic diseases, along with 49 healthy age- and sex-matched controls. We tested anti-Chikungunya IgM and IgG antibodies and measured IL-17A, IL-21, IL-22, IL-27, IL-29, and TGF-β serum levels with specific ELISA kits. RESULTS IL-27, IL-17A, and IL-29 appeared in most patients but not in controls. IL-27 serum levels were higher in patients with chronic symptoms (median: 523.0 pg/mL [62.5-1,048]) than in ones in the acute or subacute stage (median: 62.5 pg/mL [62.5-483.8], p = .008). In patients with CHIKVD, we found significant correlations between IL-27 levels and tender joint counts (r = .32, p = .006), along with associations between IL-17A levels and swollen joint counts (r = .315, p = .0352). Furthermore, patients with arthritis had higher IL-17A levels (median: 23.14 pg/mL [20.6-25.86]) than ones without (median: 20.29 pg/mL [3.91-22.43], p = .0352). We did not detect IL-22 in either group or IL-21 in patients with CHIKVD. CONCLUSION Serum levels of IL-17A, IL-27, and IL-29 were high in patients with CHIKVD and had important associations with articular manifestations, which might indicate the inflammatory nature of Chikungunya infection in patients with joint symptoms and the roles of those cytokines in the disease's pathophysiology.
Collapse
Affiliation(s)
- Nara Gualberto Cavalcanti
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| | - Kamila MeloVilar
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Angela Luzia Branco Pinto Duarte
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Michelly Cristiny Pereira
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ivan da Rocha Pitta
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Claudia Diniz Lopes Marques
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Maíra Galdino da Rocha Pitta
- Serviço de Reumatologia - Hospital das Clínicas da Universidade Federal de Pernambuco, Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (Nupit-SG)/ UFPE, Endereço: Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| |
Collapse
|
24
|
Tripathy AS, Ganu MA, Sonam L, Alagarasu K, Walimbe AM, Thanapati S, Gupta P, Puranik S. Association of IL1RN VNTR polymorphism with chikungunya infection: A study from Western India. J Med Virol 2019; 91:1901-1908. [PMID: 31294845 DOI: 10.1002/jmv.25546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
Abstract
Chikungunya, caused by the chikungunya virus (CHIKV) mostly presents as acute and chronic articular inflammatory manifestations. Interleukin 1 receptor antagonist (IL-1RN) is a potent endogenous competitive inhibitor of IL-1α and 1β and has an anti-inflammatory role. The present study evaluated the possible association of IL1RN variable number tandem-repeat (VNTR) alleles and genotypes, and CHIKV stimulated IL-1RN cytokine production with resistance and/or susceptibility to chikungunya infection and disease state in 224 patients with chikungunya (61 patients with acute chikungunya and 163 patients with chronic chikungunya) and 355 healthy controls. Polymerase chain reaction, CHIKV stimulated cytokine assay and luminex platform were used for assessing polymorphism and protein levels respectively. The study revealed a significant association of IL1RN*1/*1 genotype under recessive genetic model with the risk of developing chikungunya infection. Our findings also indicated that IL1RN *2 allele under dominant mode was associated with protection to chronic chikungunya. The results also revealed a higher production of IL-1 RN protein in patients with chronic chikungunya. To conclude, the results suggest the association of ILRN VNTR polymorphism and IL-RN protein levels with chronic chikungunya.
Collapse
Affiliation(s)
- Anuradha S Tripathy
- Hepatitis Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Lata Sonam
- Hepatitis Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - K Alagarasu
- Degue/Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Atul M Walimbe
- Bioinformatics & Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Subrat Thanapati
- Hepatitis Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Pooja Gupta
- Hepatitis Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Shaila Puranik
- Department of Pathology, B.J. Medical College and Sassoon General Hospitals, Pune, Maharashtra, India
| |
Collapse
|
25
|
Banerjee N, Mukhopadhyay S. Oxidative damage markers and inflammatory cytokines are altered in patients suffering with post-chikungunya persisting polyarthralgia. Free Radic Res 2018; 52:887-895. [PMID: 29898618 DOI: 10.1080/10715762.2018.1489131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Redox homoeostasis is necessary for the maintenance of living systems. Chikungunya viral infection manifests into joint inflammation and debilitating polyarthralgia affecting the life style of the patient badly. The disease pathophysiology is poorly understood and there is a lack of targeted therapeutics. The pathogenic role of free radicals in arthritis is well established. This study aims for the first time to evaluate the status of several standard oxidative stress markers and their correlation in chikungunya patients suffering with polyarthralgia. Expression of Siglec-9 on monocytes; which can modulate oxidative stress is studied along with intracellular reactive oxygen species (ROS), cellular lipid and protein damage markers in chikungunya patients with/without persisting polyarthralgia along with healthy controls. Furthermore, plasma NO level, antioxidant status was investigated along with some inflammatory cytokines namely IL-6, IFN-γ, CXCL-9, IL-10 and TGFβ1. Interestingly, all oxidative damage markers are altered significantly in groups but their alteration levels vary in patients with/without persisting polyarthralgia. Siglec-9 expression level is increased in patients revealing cellular response to manage oxidative stress with respect to controls. Correlation studies reveal that intracellular ROS correlates well with most of the studied parameters but the correlation coefficient (Pearson r) differs with disease manifestation demonstrating strong role of these factors in a pro-oxidant milieu. The presence of free radicals increases the availability of neoantigens continuously, which possibly further cascades oxidative damage and development of persisting polyarthralgia.
Collapse
Affiliation(s)
- Nilotpal Banerjee
- a Department of Laboratory Medicine , School of Tropical Medicine , Kolkata , India
| | - Sumi Mukhopadhyay
- a Department of Laboratory Medicine , School of Tropical Medicine , Kolkata , India
| |
Collapse
|
26
|
McCarthy MK, Davenport BJJ, Morrison TE. Chronic Chikungunya Virus Disease. Curr Top Microbiol Immunol 2018; 435:55-80. [DOI: 10.1007/82_2018_147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|