1
|
Vasta GR, Rabinovich GA. An evolutionary perspective of the roles of galectins in pathogen recognition and immunity. Semin Immunol 2025; 79:101974. [PMID: 40527016 DOI: 10.1016/j.smim.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 06/08/2025] [Accepted: 06/08/2025] [Indexed: 06/19/2025]
Abstract
Protein-glycan interactions, mediated by lectins, are essential for diverse physiological processes, including glycoprotein processing, cell adhesion, communication, signaling, and immune recognition. Lectins, classified into families like C-type, I-type, F-type, and galectins, recognize specific glycans on macromolecules through their carbohydrate recognition domains (CRDs). Galectins, characterized by their β-galactoside binding and conserved CRD structure, exhibit remarkable functional diversification across evolution. Initially associated with developmental roles, they are now implicated in cancer, angiogenesis, and immune homeostasis. Furthermore, they interact with glycans on both beneficial and pathogenic microorganisms. While host galectins facilitate mutualistic interactions, pathogens can exploit this recognition for infection and manipulate host glycosylation to subvert galectin functions. The ability of galectins to recognize both self and non-self glycans, evident even in early metazoans, underscores their evolutionary versatility and raises questions about their primordial function and their evolutionary trajectory. This review explores the evolving roles of galectins, highlighting their adaptability and the complex interplay between host and pathogen interactions.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD 21202, USA.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires C1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires C1428, Argentina
| |
Collapse
|
2
|
Ma ZY, Wu XJ, Li C, Gao J, Kou YJ, Wang M, Zhu XQ, Zheng XN. Functional Characterization of 11 Tentative Microneme Proteins in Type I RH Strain of Toxoplasma gondii Using the CRISPR-Cas9 System. Animals (Basel) 2024; 14:2543. [PMID: 39272328 PMCID: PMC11394663 DOI: 10.3390/ani14172543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Toxoplasma gondii, a pathogenic apicomplexan parasite, infects approximately one third of the world's population and poses a serious threat to global public health. Microneme proteins (MICs) secreted by the microneme, an apical secretory organelle of T. gondii, play important roles in the invasion, motility, and intracellular survival of T. gondii. In this study, we selected 11 genes of interest (GOIs) of T. gondii, tentative MICs predicted to be localized in micronemes, and we used the CRISPR-Cas9 system to construct epitope tagging strains and gene knockout strains to explore the localization and function of these 11 tentative MICs. Immunofluorescence assay showed that nine tentative MICs (TGME49_243930, TGME49_200270, TGME49_273320, TGME49_287040, TGME49_261710, TGME49_205680, TGME49_304490, TGME49_245485, and TGME49_224620) were localized or partially localized in the microneme, consistent with the prediction. However, TGME49_272380 and TGME49_243790 showed different localizations from the prediction, being localized in the endoplasmic reticulum and the dense granule, respectively. Further functional characterization of the 11 RHΔGOI strains revealed that deletion of these 11 GOIs had no significant effect on plaque formation, intracellular replication, egress, invasion ability, and virulence of T. gondii. Although these 11 GOIs are not essential genes for the growth and virulence of tachyzoites of type I RH strain, they may have potential roles in other developmental stages or other genotypes of T. gondii. Thus, further research should be performed to explore the possible role of the nine mics and the other two GOIs in other life cycle stages and other genotypes of T. gondii.
Collapse
Affiliation(s)
- Zhi-Ya Ma
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiao-Jing Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Chuan Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jin Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yong-Jie Kou
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
3
|
Guo XD, Zhou CX, Cui LL, Qiu HJ, Wang YL, Fu M, Liu DA, Han B, Zhou HY, Zhou DH. Evaluation of protective immunity induced by a DNA vaccine encoding SAG2 and SRS2 against Toxoplasma gondii infection in mice. Acta Trop 2024; 257:107302. [PMID: 38959992 DOI: 10.1016/j.actatropica.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Toxoplasma gondii is an important protozoan pathogen, which can cause severe diseases in the newborns and immunocompromised individuals. Developing an effective vaccine against Toxoplasma infection is a critically important global health priority. Immunofluorescence staining analysis revealed that TgSAG2 and TgSRS2 are membrane associated and displayed on the surface of the parasite. Immunizations with pBud-SAG2, pBud-SRS2 and pBud-SAG2-SRS2 DNA vaccines significantly increased the production of specific IgG antibodies. Immunization with pBud-SAG2-SRS2 elicited cellular immune response with higher concentrations of IFN-γ and IL-4 compared to the control group. Antigen-specific lymphocyte proliferations in the pBud-SRS2 and pBud-SAG2-SRS2 groups were significantly higher compared to that in the control group. Furthermore, 30 % of mice immunized with pBud-SAG2-SRS2 survived after the challenge infection with virulent T. gondii RH tachyzoites. This study revealed that immunization with pBud-SAG2-SRS2 induced potent immune responses, and has the potential as a promising vaccine candidate for the control of T. gondii infection.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Toxoplasma/immunology
- Toxoplasma/genetics
- Antibodies, Protozoan/blood
- Protozoan Vaccines/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Mice
- Immunoglobulin G/blood
- Female
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Disease Models, Animal
- Cell Proliferation
- Interleukin-4/immunology
- Survival Analysis
Collapse
Affiliation(s)
- Xu-Dong Guo
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China; Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China.
| | - Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Hui-Jie Qiu
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Yong-Liang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Ming Fu
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Dai-Ang Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China.
| |
Collapse
|
4
|
Biswas R, Swetha RG, Basu S, Roy A, Ramaiah S, Anbarasu A. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 2024; 87:101782. [PMID: 39003966 DOI: 10.1016/j.biologicals.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) is accountable for high morbidity in neonates and immunosuppressed individuals. Due to the high genetic variability of HCMV, current prophylactic measures are insufficient. In this study, we employed a pan-genome and reverse vaccinology approach to screen the target for efficient vaccine candidates. Four proteins, envelope glycoprotein M, UL41A, US23, and US28, were shortlisted based on cellular localization, high solubility, antigenicity, and immunogenicity. A total of 29 B-cell and 44 T-cell highly immunogenic and antigenic epitopes with high global population coverage were finalized using immunoinformatics tools and algorithms. Further, the epitopes that were overlapping among the finalized B-cell and T-cell epitopes were linked with suitable linkers to form various combinations of multi-epitopic vaccine constructs. Among 16 vaccine constructs, Vc12 was selected based on physicochemical and structural properties. The docking and molecular simulations of VC12 were performed, which showed its high binding affinity (-23.35 kcal/mol) towards TLR4 due to intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions, and there were only minimal fluctuations. Furthermore, Vc12 eliciting a good response was checked for its expression in Escherichia coli through in silico cloning and codon optimization, suggesting it to be a potent vaccine candidate.
Collapse
Affiliation(s)
- Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Rayapadi G Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, 761008, Odisha, India
| | - Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Ghaffari AD, Rahimi F. Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis. Clin Exp Vaccine Res 2024; 13:146-154. [PMID: 38752002 PMCID: PMC11091428 DOI: 10.7774/cevr.2024.13.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fardin Rahimi
- Department of Medical biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Wang Z, Li J, Yang Q, Sun X. Global Proteome-Wide Analysis of Cysteine S-Nitrosylation in Toxoplasma gondii. Molecules 2023; 28:7329. [PMID: 37959749 PMCID: PMC10649196 DOI: 10.3390/molecules28217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Toxoplasma gondii transmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. T. gondii can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of T. gondii remains mystery. In this study, we reported the first S-nitrosylated proteome of T. gondii using mass spectrometry in combination with resin-assisted enrichment. We found that 637 proteins were S-nitrosylated, more than half of which were localized in the nucleus or cytoplasm. Motif analysis identified seven motifs. Of these motifs, five and two contained lysine and isoleucine, respectively. Gene Ontology enrichment revealed that S-nitrosylated proteins were primarily located in the inner membrane of mitochondria and other organelles. These S-nitrosylated proteins participated in diverse biological and metabolic processes, including organic acid binding, carboxylic acid binding ribose and phosphate biosynthesis. T. gondii S-nitrosylated proteins significantly contributed to glycolysis/gluconeogenesis and aminoacyl-tRNA biosynthesis. Moreover, 27 ribosomal proteins and 11 microneme proteins were identified as S-nitrosylated proteins, suggesting that proteins in the ribosome and microneme were predominantly S-nitrosylated. Protein-protein interaction analysis identified three subnetworks with high-relevancy ribosome, RNA transport and chaperonin complex components. These results imply that S-nitrosylated proteins of T. gondii are associated with protein translation in the ribosome, gene transcription, invasion and proliferation of T. gondii. Our research is the first to identify the S-nitrosylated proteomic profile of T. gondii and will provide direction to the ongoing investigation of the functions of S-nitrosylated proteins in T. gondii.
Collapse
Affiliation(s)
- Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.)
| | | | | | | |
Collapse
|
8
|
Ahmad S, Nazarian S, Alizadeh A, Pashapour Hajialilou M, Tahmasebian S, Alharbi M, Alasmari AF, Shojaeian A, Ghatrehsamani M, Irfan M, Pazoki-Toroudi H, Sanami S. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins. J Biomol Struct Dyn 2023; 42:10617-10634. [PMID: 37713338 DOI: 10.1080/07391102.2023.2258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
In July 2022, Langya henipavirus (LayV) was identified in febrile patients in China. There is currently no approved vaccine against this virus. Therefore, this research aimed to design a multi-epitope vaccine against LayV using reverse vaccinology. The best epitopes were selected from LayV's fusion protein (F) and glycoprotein (G), and a multi-epitope vaccine was designed using these epitopes, adjuvant, and appropriate linkers. The physicochemical properties, antigenicity, allergenicity, toxicity, and solubility of the vaccine were evaluated. The vaccine's secondary and 3D structures were predicted, and molecular docking and molecular dynamics (MD) simulations were used to assess the vaccine's interaction and stability with toll-like receptor 4 (TLR4). Immune simulation, codon optimization, and in silico cloning of the vaccine were also performed. The vaccine candidate showed good physicochemical properties, as well as being antigenic, non-allergenic, and non-toxic, with acceptable solubility. Molecular docking and MD simulation revealed that the vaccine and TLR4 have stable interactions. Furthermore, immunological simulation of the vaccine indicated its ability to elicit immune responses against LayV. The vaccine's increased expression was also ensured using codon optimization. This study's findings were encouraging, but in vitro and in vivo tests are needed to confirm the vaccine's protective effect.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Shahin Nazarian
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Pashapour Hajialilou
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
9
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Valadan R, Asgarian-Omran H, Ajami A, Khalilian A, Hosseininejad Z, Dodangeh S, Javidnia J, Daryani A. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol 2022; 244:108427. [PMID: 36379272 DOI: 10.1016/j.exppara.2022.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Valadan
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khalilian
- Department of Biostatistics and Community Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Hammed-Akanmu M, Mim M, Osman AY, Sheikh AM, Behmard E, Rabaan AA, Suppain R, Hajissa K. Designing a Multi-Epitope Vaccine against Toxoplasma gondii: An Immunoinformatics Approach. Vaccines (Basel) 2022; 10:vaccines10091389. [PMID: 36146470 PMCID: PMC9505382 DOI: 10.3390/vaccines10091389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/25/2022] Open
Abstract
Infection with the intracellular apicomplexan parasite Toxoplasma gondii causes serious clinical outcomes in both human and veterinary settings worldwide. Although approximately one-third of the world’s population is infected with T. gondii, an effective human vaccine for this disease remains unavailable. We aimed to design a potential T. gondii vaccine candidate that consisted of the B- and T-lymphocyte epitopes of three parasite immunogenic antigens. Firstly, the immunodominant epitopes expressed within the ROP2, MIC3, and GRA7 proteins of T. gondii were identified. Subsequently, six B-cell epitopes, five CTL epitopes, and five HTL epitopes were combined to generate a multi-epitope vaccine, and the 50S ribosomal protein L7/L12 was added as an adjuvant to boost the vaccine’s immunogenicity. All these epitopes were found to be antigenic, nonallergenic, nontoxic, and nonhuman homologs. The designed vaccine construct has a molecular weight of 51 kDa, an antigenicity score of 0.6182, and a solubility of 0.903461. Likewise, the candidate vaccine was immunogenic, nonallergenic, and stable. Molecular docking analysis revealed stable interactions between the vaccine construct and the TLR-4 immune receptor. Meanwhile, the stability of the developed vaccine was validated using molecular dynamics simulation. In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory-based assessments are needed to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Mutiat Hammed-Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Maria Mim
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Abdulrahman M. Sheikh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Rapeah Suppain
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (R.S.); (K.H.)
| | - Khalid Hajissa
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
- Correspondence: (R.S.); (K.H.)
| |
Collapse
|
11
|
Daher D, Shaghlil A, Sobh E, Hamie M, Hassan ME, Moumneh MB, Itani S, El Hajj R, Tawk L, El Sabban M, El Hajj H. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens 2021; 10:pathogens10111351. [PMID: 34832507 PMCID: PMC8625914 DOI: 10.3390/pathogens10111351] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a prevalent protozoan parasite of medical and veterinary significance. It is the etiologic agent of toxoplasmosis, a neglected disease in which incidence and symptoms differ between patients and regions. In immunocompetent patients, toxoplasmosis manifests as acute and chronic forms. Acute toxoplasmosis presents as mild or asymptomatic disease that evolves, under the host immune response, into a persistent chronic disease in healthy individuals. Chronic toxoplasmosis establishes as latent tissue cysts in the brain and skeletal muscles. In immunocompromised patients, chronic toxoplasmosis may reactivate, leading to a potentially life-threatening condition. Recently, the association between toxoplasmosis and various diseases has been shown. These span primary neuropathies, behavioral and psychiatric disorders, and different types of cancer. Currently, a direct pre-clinical or clinical molecular connotation between toxoplasmosis and most of its associated diseases remains poorly understood. In this review, we provide a comprehensive overview on Toxoplasma-induced and associated diseases with a focus on available knowledge of the molecular players dictating these associations. We will also abridge the existing therapeutic options of toxoplasmosis and highlight the current gaps to explore the implications of toxoplasmosis on its associated diseases to advance treatment modalities.
Collapse
Affiliation(s)
- Darine Daher
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Ahmad Shaghlil
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Eyad Sobh
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Malika Elhage Hassan
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Mohamad Bahij Moumneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon;
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
12
|
Zhu YC, Ma LJ, Zhang JL, Liu JF, He Y, Feng JY, Chen J. Protective Immunity Induced by TgMIC5 and TgMIC16 DNA Vaccines Against Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:686004. [PMID: 34595126 PMCID: PMC8476850 DOI: 10.3389/fcimb.2021.686004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite, which is responsible for a widely distributed zoonosis. Effective vaccines against toxoplasmosis are necessary to protect the public health. The aim of this study is to evaluate the immune efficacy of DNA vaccines encoding TgMIC5 and TgMIC16 genes against T. gondii infection. The recombinant plasmid pVAX-MIC5 and pVAX-MIC16 were constructed and injected intramuscularly in mice. The specific immune responses and protection against challenge with T. gondii RH tachyzoites were evaluated by measuring the cytokine levels, serum antibody concentrations, lymphocyte proliferation, lymphocyte populations, and the survival time. The protection against challenge with the T. gondii RH tchyzoites and PRU cysts was examined by evaluation of the reduction in the brain cyst burden. The results indicated that immunized mice showed significantly increased levels of IgG, IFN-γ, IL-2, IL-12p70, and IL-12p40 and percentages of CD4+ and CD8+ T cells. Additionally, vaccination prolonged the mouse survival time and reduced brain cysts compared with controls. Mouse groups immunized with a two-gene cocktail of pVAX-MIC5 + pVAX-MIC16 were more protected than mouse groups immunized with a single gene of pVAX-MIC5 or pVAX-MIC16. These results demonstrate that TgMIC5 and TgMIC16 induce effective immunity against toxoplasmosis and may serve as a good vaccine candidate against T. gondii infection.
Collapse
Affiliation(s)
- Yu-Chao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Li-Juan Ma
- Department of Integrated Chinese and Western Medicine Oncology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jian-Fa Liu
- Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| | - Yong He
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Ji-Ye Feng
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
13
|
Yektaeian N, Malekpour A, Atapour A, Davoodi T, Hatam G. Genetic immunization against toxoplasmosis: A review article. Microb Pathog 2021; 155:104888. [PMID: 33930415 DOI: 10.1016/j.micpath.2021.104888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is a protozoan coccidian parasite belonging to Phylum Apicomplexa and is the causative agent of toxoplasmosis as a zoonotic disease around the world. It is one of the most important protozoa which is transmitted via various routes and infects several warm-blooded animals. The seroprevalence of T. gondii infection is high worldwide and leads to clinical, psychological, and economic problems. At present, available drug therapy for toxoplasmosis has severe side effects, so the development of new anti-toxoplasma drugs or effective vaccines is mandatory. Therefore, different measures have been taken for the development of anti-toxoplasmosis vaccines, and various studies have shown that DNA vaccines could be one of the most successful approaches against the intracellular parasite, T. gondii. Many of these studies have evaluated the efficacy of immunogenicity and different aspects of the DNA vaccines for toxoplasmosis including single genes or multi-gene plasmids with or without adjuvants. Most of the literature confirms that DNA vaccines containing different antigens of the toxoplasma parasite can induce suitable immune response and protection in acute or chronic toxoplasmosis. Therefore, in this review article, we aimed to discuss the current status of DNA vaccines as a new immunization method against toxoplasmosis.
Collapse
Affiliation(s)
- Narjes Yektaeian
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Atapour
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Tahereh Davoodi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Santana SS, Paiva VF, Carvalho FR, Barros HLS, Silva TL, Barros PSC, Pajuaba ACAM, Barros GB, Dietze R, Mineo TWP, Mineo JR. A peptide originated from Toxoplasma gondii microneme 8 displaying serological evidence to differentiate recent from chronic human infection. Parasitol Int 2021; 84:102394. [PMID: 34044107 DOI: 10.1016/j.parint.2021.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Toxoplasmosis is able to cause death and/or sequelae in foetuses from pregnant women and immunocompromised individuals. The early diagnosis, able to differentiate acute from chronic phases, is essential to define the treatment against this disease and minimize the risk of complications. Here we describe a peptide derived from microneme 8 (pMIC8) protein of Toxoplasma gondii, able to distinguish the phase of infection. By using human and mice serum samples with different infection times, we assessed the ability of pMIC8 to interact with antibodies present in early of infection, and compared the results obtained with soluble antigen of T. gondii (STAg). The results showed that pMIC8 was recognized more precisely with antibodies present in serum samples from individuals with time of infection below 3 months, followed by those between 4 and 6 months of infection. Based on these results, it is possible to conclude that the association of immunoassays using STAg and pMIC8 as antigen preparations can be used to distinguish acute from chronic infections.
Collapse
Affiliation(s)
- Silas Silva Santana
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil; Laboratory of Biology, Federal University of Vales do Jequitinhonha e Mucuri, Campus Janaúba, Janaúba, Minas Gerais, Brazil
| | - Vinícius Fernandes Paiva
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Fernando Reis Carvalho
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil; Federal Institute of Education, Science and Technology of Goiás, Campus Itumbiara, Itumbiara, Goiás, 75524-010, Brazil
| | - Heber Leão Silva Barros
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Tamires Lopes Silva
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Patrício Silva Cardoso Barros
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Ana Cláudia Arantes Marquez Pajuaba
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Geisa Baptista Barros
- Infectious Disease Center, Federal University of Espirito Santo, 29040-091 Vitória, Espírito Santo, Brazil
| | - Reynaldo Dietze
- Infectious Disease Center, Federal University of Espirito Santo, 29040-091 Vitória, Espírito Santo, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Protection and Immune Responses Elicited by rSAG1-PLGA Nanoparticles in C57BL/6 Against Toxoplasma gondii. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
16
|
Dodangeh S, Fasihi-Ramandi M, Daryani A, Valadan R, Asgarian-Omran H, Hosseininejad Z, Nayeri Chegeni T, Pagheh AS, Javidnia J, Sarvi S. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice. Microb Pathog 2021; 153:104764. [PMID: 33548480 DOI: 10.1016/j.micpath.2021.104764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii is an intracellular apicomplexan parasite, which can cause a serious infectious disease in pregnant women and immunocompromised individuals. Therefore, the development of a polyvalent vaccine consisting of all stages of the parasite life cycle using the epitopes from tachyzoites, bradyzoites, and sporozoites is likely to be required for complete protective immunity. In this study, we designed protein vaccine candidate based on the prediction of specific epitopes (i.e., B cell and T cell) from three Toxoplasma gondii antigens. The MRS protein (MIC3: 30-180, ROP8: 85-185, and SAG1: 85-235) was expressed in Escherichia coli, and purification was performed using a HisTrap HP column and then we evaluated immunogenicity and protective property in BALB/c mice. Seventy-two mice were randomly divided into six groups, including three vaccinations (i.e., MRS, MRS-Freund, and MRS-Calcium Phosphate Nanoparticles (MRS-CaPNs)) and three control (i.e., Phosphate-buffered saline, Freund, and CaPNs) groups. All groups were immunized three times via subcutaneous injection within three-week intervals. In the vaccination groups, the BALB/c mice were injected with 20 μg of MRS protein for the first time and 10 μg of MRS for the next two times. Antibodies, cytokines, and splenocytes proliferation in the immunized mice were assayed using the enzyme-linked immunosorbent assay. Protective efficacy was analyzed by challenging the immunized mice with T. gondii of RH strain. Antibody, cytokine, and lymphocyte proliferation assays showed that the mice immunized with MRS induced stronger humoral and T helper type 1 cell-mediated immune responses, compared to the control mice. However, co-immunization with adjuvants (i.e., Freund and CaNPs) resulted in impaired immune responses. Effective protection against the parasite achieved an increase in survival time in the immunized mice, especially in the MRS-CaNPs group. The obtained results of the present study demonstrated that multi-epitope protein vaccination, MRS, is a potential strategy against toxoplasmosis infection. In addition, the vaccine co-delivered with CaPNs could provide an important key for vaccine candidate to control T. gondii infection.
Collapse
Affiliation(s)
- Samira Dodangeh
- Department of Medical Parasitology and Mycology, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tooran Nayeri Chegeni
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Javad Javidnia
- Department of Medical Mycology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021; 10:59-77. [PMID: 33628756 PMCID: PMC7892946 DOI: 10.7774/cevr.2021.10.1.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Toxoplasmosis, transmitted by Toxoplasma gondii, is a worldwide parasitic disease that affects approximately one-third of the world's inhabitants. Today, there are no appropriate drugs to deter tissue cysts from developing in infected hosts. So, developing an effective vaccine would be valuable to avoid from toxoplasmosis. Considering the role of microneme antigens such as microneme protein 4 (MIC4) in T. gondii pathogenesis, it can be used as potential candidates for vaccine against T. gondii. Materials and Methods In this study several bioinformatics methods were used to assess the different aspects of MIC4 protein such as secondary and tertiary structure, physicochemical characteristics, the transmembrane domains, subcellular localization, B-cell, helper-T lymphocyte, cytotoxic-T lymphocyte epitopes, and other notable characteristic of this protein design a suitable vaccine against T. gondii. Results The studies revealed that MIC4 protein includes 59 potential post-translational modification sites without any transmembrane domains. Moreover, several probable epitopes of B- and T-cells were detected for MIC4. The secondary structure comprised 55.69% random coil, 5.86% beta-turn, 19.31% extended strand, and 19.14% alpha helix. According to the Ramachandran plot results, 87.42% of the amino acid residues were located in the favored, 9.44% in allowed, and 3.14% in outlier regions. The protein allergenicity and antigenicity revealed that it was non-allergenic and antigenic. Conclusion This study gives vital basic on MIC4 protein for further research and also established an effective vaccine with different techniques against acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
19
|
Toxoplasma gondii ROP38 protein: Bioinformatics analysis for vaccine design improvement against toxoplasmosis. Microb Pathog 2020; 149:104488. [PMID: 32916240 DOI: 10.1016/j.micpath.2020.104488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Rhoptry proteins (ROPs) play a significant role in various stages of Toxoplasma gondii (T. gondii) life cycle, being critical for both invasion and intracellular survival. ROP38 is a key manipulator of host gene expression and has a function in tachyzoite to bradyzoite conversion. In this study, we've employed various bioinformatics online tools for immunogenicity prediction of ROP38 protein, comprising physico-chemical, antigenic and allergenic profiles, transmembrane domain, subcellular localization, post-translational modification (PTM) sites, secondary and 3D structure, B-cell, MHC-binding and cytotoxic T-lymphocyte (CTL) epitopes. The findings showed 54 PTM sites without a transmembrane domain. Also, ROP38 was proved a non-allergenic and antigenic protein. The protein had Sec signal peptide (Sec/SPI) with 0.8762 likelihood. The secondary structure included 52.68% random coil, 29.57% alpha helix and 17.74% extended strand. Based on Ramachandran plot output for refined model, 95.3%, 3.4%, and 1.4% of amino acid residues were incorporated in the favored, allowed, and outlier regions, respectively. B-cell epitopes TFPGDDIQTSS (67-72) and KAKNKWGRTRYTLQG (207-221) as well as T-cell epitope LSPVGFFTAL (6-15) possessed the highest antigenic index in the protein sequence. This paper is a premise for further researches, and provides insights for the development of a suitable vaccine against toxoplasmosis. More empirical studies are required using the ROP38 alone or in combination with other antigens/epitopes in the future.
Collapse
|
20
|
Onile OS, Ojo GJ, Oyeyemi BF, Agbowuro GO, Fadahunsi AI. Development of multiepitope subunit protein vaccines against Toxoplasma gondii using an immunoinformatics approach. NAR Genom Bioinform 2020; 2:lqaa048. [PMID: 33575600 PMCID: PMC7671309 DOI: 10.1093/nargab/lqaa048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately one-third of the world’s human population is estimated to have been exposed to the parasite Toxoplasma gondii. Its prevalence is reportedly high in Ethiopia (74.80%) and Zimbabwe (68.58%), and is 40.40% in Nigeria. The adverse effect of this parasite includes a serious congenital disease in the developing fetus of pregnant women. After several efforts to eliminate the disease, only one licensed vaccine ‘Toxovax’ has been used to avoid congenital infections in sheep. The vaccine has been adjudged expensive coupled with adverse effects and short shelf life. The potential of vaccine to likely revert to virulent strain is a major reason why it has not been found suitable for human use, hence the need for a vaccine that will induce T and B memory cells capable of eliciting longtime immunity against the infection. This study presents immunoinformatics approaches to design a T. gondii-oriented multiepitope subunit vaccine with focus on micronemal proteins for the vaccine construct. The designed vaccine was subjected to antigenicity, immunogenicity, allergenicity and physicochemical parameter analyses. A 657-amino acid multiepitope vaccine was designed with the antigenicity probability of 0.803. The vaccine construct was classified as stable, non-allergenic, and highly immunogenic, thereby indicating the safety of the vaccine construct for human use.
Collapse
Affiliation(s)
- Olugbenga S Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Glory J Ojo
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Bolaji Fatai Oyeyemi
- Molecular Biology Group, Department of Science Technology, The Federal Polytechnic, 360231, Ado-Ekiti, Ekiti State, Nigeria
| | - Gbenga O Agbowuro
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Adeyinka I Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| |
Collapse
|
21
|
Maraghi S, Ghadiri AA, Tavalla M, Shojaee S, Abdizadeh R. Evaluation of immunogenicity and protective effect of DNA vaccine encoding surface antigen1 (SAG1) of Toxoplasma gondii and TLR-5 ligand as a genetic adjuvant against acute toxoplasmosis in BALB/c mice. Biologicals 2019; 62:39-49. [DOI: 10.1016/j.biologicals.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
|