1
|
Martínez-Ayala P, Perales-Guerrero L, Gómez-Quiroz A, Avila-Cardenas BB, Gómez-Portilla K, Rea-Márquez EA, Vera-Cuevas VC, Gómez-Quiroz CA, Briseno-Ramírez J, De Arcos-Jiménez JC. Whole-Genome Sequencing of Linezolid-Resistant and Linezolid-Intermediate-Susceptibility Enterococcus faecalis Clinical Isolates in a Mexican Tertiary Care University Hospital. Microorganisms 2025; 13:684. [PMID: 40142576 PMCID: PMC11944505 DOI: 10.3390/microorganisms13030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Linezolid-non-susceptible Enterococcus faecalis (LNSEf) has emerged as a critical clinical concern worldwide, yet data from Latin American settings remain scarce. This study aimed to investigate the molecular epidemiology and mechanisms underlying LNSEf in a Mexican tertiary care university hospital, focusing on clinical correlates and clonal relationships. A total of 392 non-duplicated E. faecalis isolates were collected over 12 months, of which 24 with minimum inhibitory concentrations ≥4 µg/mL underwent whole-genome sequencing to identify specific resistance determinants (optrA, cfrA, 23S rRNA mutations) and to perform multilocus sequence typing (MLST) and phylogenetic analyses. Of the 392 isolates, 6.12% showed linezolid non-susceptibility, predominantly linked to plasmid- or chromosomally encoded optrA; only two isolates carried cfrA. No mutations were detected in 23S rRNA domain V or ribosomal proteins L3/L4. Clinically, LNSEf strains were associated with immunosuppression, previous surgical interventions, and prolonged hospital stays. Although most LNSEf isolates retained susceptibility to ampicillin, vancomycin, and daptomycin, they exhibited high rates of resistance to other antibiotic classes, particularly aminoglycosides and fluoroquinolones. These findings underscore the emergence of LNSEf in this region, highlighting the need for robust genomic surveillance, strict infection control, and judicious antimicrobial stewardship to curb further dissemination.
Collapse
Affiliation(s)
- Pedro Martínez-Ayala
- HIV Unit, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico;
- Health Division, Tlajomulco University Center, University of Guadalajara, Tlajomulco de Zuñiga 45641, Mexico
| | - Leonardo Perales-Guerrero
- Department of Internal Medicine, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (L.P.-G.); (K.G.-P.); (E.A.R.-M.)
| | - Adolfo Gómez-Quiroz
- Microbiology Laboratory, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.G.-Q.); (B.B.A.-C.); (C.A.G.-Q.)
| | - Brenda Berenice Avila-Cardenas
- Microbiology Laboratory, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.G.-Q.); (B.B.A.-C.); (C.A.G.-Q.)
| | - Karen Gómez-Portilla
- Department of Internal Medicine, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (L.P.-G.); (K.G.-P.); (E.A.R.-M.)
| | - Edson Alberto Rea-Márquez
- Department of Internal Medicine, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (L.P.-G.); (K.G.-P.); (E.A.R.-M.)
| | | | - Crisoforo Alejandro Gómez-Quiroz
- Microbiology Laboratory, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.G.-Q.); (B.B.A.-C.); (C.A.G.-Q.)
| | - Jaime Briseno-Ramírez
- Health Division, Tlajomulco University Center, University of Guadalajara, Tlajomulco de Zuñiga 45641, Mexico
- Department of Internal Medicine, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (L.P.-G.); (K.G.-P.); (E.A.R.-M.)
| | - Judith Carolina De Arcos-Jiménez
- Health Division, Tlajomulco University Center, University of Guadalajara, Tlajomulco de Zuñiga 45641, Mexico
- Laboratory of Microbiological, Molecular and Biochemical Diagnostics (LaDiMMB), Tlajomulco University Center, University of Guadalajara, Tlajomulco de Zuñiga 45641, Mexico
| |
Collapse
|
2
|
Nasir SAR, Zeeshan M, Ghanchi N, Saeed N, Ghayas H, Zaka S, Ashraf J, Jabeen K, Farooqi J, Hasan Z, Fatima T, Rezwan F, Mahmood SF, Arshad M, Khan E, Ozer EA, Hasan R. Linezolid-resistant Enterococcus faecium clinical isolates from Pakistan: a genomic analysis. BMC Microbiol 2024; 24:347. [PMID: 39277715 PMCID: PMC11401331 DOI: 10.1186/s12866-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Linezolid-resistant Enterococcus faecium (LRE) is a global priority pathogen. Thirteen LRE were reported from clinical specimens between November 2021 and April 2023 at two laboratories in Karachi, Pakistan. We aimed to investigate the strain types and genes associated with linezolid resistance among these isolates. Whole genome sequencing (WGS) was performed and analyzed by multilocus sequence typing (MLST). The presence of linezolid resistance genes was identified using ResFinder v4.1.11 and the LRE-finder tool. RESULTS Twelve isolates belonged to clonal complex 17 (CC17); ST80 (n = 10), ST612 (n = 1) and ST1380 (n = 1). Six isolates showed the presence of optrA gene and G2576T mutations in the 23S rRNA gene, while six showed poxtA and cfr(D) genes. One isolate showed the combination of optrA, cfr(D) and poxtA genes. CONCLUSION Our findings show the circulation of CC17 sequence types with a known outbreak potential and we identified molecular mechanisms of resistance that were not previously reported from Pakistan.
Collapse
Affiliation(s)
| | | | - Najia Ghanchi
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | - Noureen Saeed
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Hassan Ghayas
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Sadaf Zaka
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | | | - Kauser Jabeen
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | | | - Zahra Hasan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Tazeen Fatima
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | - Faiza Rezwan
- National Institute of Cardiovascular Diseases, Karachi, Sindh, Pakistan
| | | | | | - Erum Khan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rumina Hasan
- Aga Khan University Hospital, Karachi, Sindh, Pakistan.
- Microbiology lab, Sopariwala building, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
3
|
Yang P, Li J, Lv M, He P, Song G, Shan B, Yang X. Molecular Epidemiology and Horizontal Transfer Mechanism of optrA-Carrying Linezolid-Resistant Enterococcus faecalis. Pol J Microbiol 2024; 73:349-362. [PMID: 39268957 PMCID: PMC11395433 DOI: 10.33073/pjm-2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this work was to provide a theoretical and scientific basis for the treatment, prevention, and control of clinical drug-resistant bacterial infections by studying the molecular epidemiology and horizontal transfer mechanism of optrA-carrying linezolid-resistant Enterococcus faecalis strains (LREfs) that were clinically isolated in a tertiary hospital in Kunming, China. Non-repetitive LREfs retained in a tertiary A hospital in Kunming, China. The strains were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The transferability and horizontal transfer mechanism of optrA gene were analyzed using polymerase chain reaction (PCR), whole-genome sequencing (WGS), and conjugation experiments. A total of 39 LREfs strains were collected, and all of them were multi-drug resistant. There were 30 LREfs strains (76.9%) carrying the optrA gene, The cfr, poxtA genes and mutations in the 23S rRNA gene were not detected. The conjugation experiments showed that only three of 10 randomly selected optrA-carrying LREfs were successfully conjugated with JH2-2. Further analysis of one successfully conjugated strain revealed that the optrA gene, located in the donor bacterium, formed the IS1216E-erm(A)-optrA-fexA-IS1216E transferable fragment under the mediation of the mobile genetic element (MGE) IS1216E, which was then transferred to the recipient bacterium via horizontal plasmid transfer. Carrying the optrA gene is the primary resistance mechanism of LREfs strains. The optrA gene could carry the erm(A) and fexA genes to co-transfer among E. faecalis. MGEs such as insertion sequence IS1216E play an important role in the horizontal transfer of the optrA gene.
Collapse
Affiliation(s)
- Peini Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Wang Z, Liu D, Zhang J, Liu L, Zhang Z, Liu C, Hu S, Wu L, He Z, Sun H. Genomic epidemiology reveals multiple mechanisms of linezolid resistance in clinical enterococci in China. Ann Clin Microbiol Antimicrob 2024; 23:41. [PMID: 38704577 PMCID: PMC11070108 DOI: 10.1186/s12941-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Danping Liu
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Lingli Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China
| | - Zeming Zhang
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Chang Liu
- Department of Clinical Laboratory, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Rd37, xueyuan, Haidian, Beijing, 100191, P.R. China.
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China.
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China.
| | - Hongli Sun
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, P.R. China.
| |
Collapse
|
5
|
Chen W, Wang Q, Wu H, Xia P, Tian R, Li R, Xia L. Molecular epidemiology, phenotypic and genomic characterization of antibiotic-resistant enterococcal isolates from diverse farm animals in Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168683. [PMID: 37996027 DOI: 10.1016/j.scitotenv.2023.168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Multidrug-resistant (MDR) bacteria in farm environments can be transferred to humans through the food chain and occupational exposure. Enterococcus infections caused by linezolid resistant enterococci (LRE) are becoming more challenging to treat as their resistance to antibiotics intensifies. Therefore, this study investigated the molecular epidemiology, phenotypic and genomic characterization of enterococci in seven species of farm animals (sheep, chicken, swine, camel, cattle, equine, pigeon) anal swab from Xinjiang, China by agar dilution method, polymerase chain reaction (PCR), whole-genome sequencing (WGS) and bioinformatics analysis. A total of 771 samples were collected, 599 (78 %) were contaminated with Enterococcus spp., among which Enterococcus faecalis (350/599) was dominant. Antimicrobial susceptibility testing showed that high resistance was observed in rifampicin (80 %), tetracycline (71 %), doxycycline (71 %), and erythromycin (69 %). The results of PCR showed the highest prevalent antibiotic resistance genes (ARGs) were aac(6')-aph(2″) (85 %), followed by tet(M) (73 %), erm(B) (62 %), and aph(3')-IIIa (61 %). Besides, 29 optrA-carrying E. faecalis isolates belonging to 13 STs (including 3 new alleles) were detected, with ST714 (31 %, 9/29) being the dominant ST type. The phylogenetic tree showed that optrA-carrying E. faecalis prevalent in the intensive swine farm is mainly caused by clonal transmission. Notably, optrA gene in Enterococcus spp. isolate from camel was first characterized here. WGS of E. faecalis F109 isolate from camel confirmed the colocalization of optrA with other five ARGs in the same plasmid (pAFL-109F). The optrA-harboring genetic context is IS1216E-fexA-optrA-erm(A)-IS1216E. This study highlights the prevalence of MDR Enterococcus (≥88 %) and four ARGs (≥75 %) in swine (intensive farming), cattle (commercial farming), and chickens (backyard farming) are high and also highlights that optrA-carrying E. faecalis of farm animals incur a transmission risk to humans through environment, food consumption and others. Therefore, antibiotic-resistant bacteria (ARB) monitoring and effective control measures should be strengthened and implemented in diverse animals.
Collapse
Affiliation(s)
- Wanzhao Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Panpan Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Rui Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
6
|
Ngbede EO, Sy I, Akwuobu CA, Nanven MA, Adikwu AA, Abba PO, Adah MI, Becker SL. Carriage of linezolid-resistant enterococci (LRE) among humans and animals in Nigeria: coexistence of the cfr, optrA, and poxtA genes in Enterococcus faecium of animal origin. J Glob Antimicrob Resist 2023; 34:234-239. [PMID: 37516354 DOI: 10.1016/j.jgar.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVES In contrast to increasing reports of the emergence of linezolid-resistant enterococci (LRE) emanating from many countries in Europe, Asia, and North America, data on its status and dissemination from the African continent remain scarce, with the information available limited to countries in North Africa. This study investigated the carriage of LRE and the genetic mechanism of resistance among Enterococcus faecium and Enterococcus faecalis strains recovered from humans and animals in Makurdi, Nigeria. METHODS We conducted a cross-sectional study between June 2020 and July 2021 during which 630 non-duplicate human and animal faecal samples were collected and processed for the recovery of LRE. The genetic mechanisms for resistance were investigated using polymerase chain reaction (PCR) and Sanger sequencing. RESULTS Linezolid-resistant enterococci were recovered from 5.87% (37/630; 95% CI: 4.17-8.00) of the samples, with the prevalence in animals and humans being 6.22% [(28/450); 95% CI: 4.17-8.87] and 5.00% [(9/180); 95% CI: 2.31-9.28], respectively. All isolates remained susceptible to vancomycin. No known point mutation mediating linezolid resistance was detected in the 23S rRNA and ribosomal protein genes; however, acquisition of one or more potentially transferable genes (cfr, optrA, and poxtA) was observed in 26 of the 37 LRE isolates. Co-existence of all three transferable genes in a single isolate was found in four E. faecium strains of animal origin. CONCLUSION This study provides baseline evidence for the emergence and active circulation of LRE driven majorly by the acquisition of the optrA gene in Nigeria. To the best of our knowledge, our study is the first to report a co-carriage of all three transferable linezolid resistance determinants in E. faecium. Active LRE surveillance is urgently required to understand the extent of LRE spread across sub-Saharan Africa and to develop tailored mitigation strategies.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.
| | - Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Maurice A Nanven
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Mohammed I Adah
- Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria; Department of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Swiss Tropical and Public Health Institute, CH-4002 Allschwil, Switzerland; University of Basel, CH-4003 Basel, Switzerland.
| |
Collapse
|
7
|
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kudo K, Tsukamoto N, Ito M, Kobayashi N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics (Basel) 2023; 12:antibiotics12010108. [PMID: 36671309 PMCID: PMC9855154 DOI: 10.3390/antibiotics12010108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Enterococcus faecalis and E. faecium are the major pathogens causing community- and healthcare-associated infections, with an ability to acquire resistance to multiple antimicrobials. The present study was conducted to determine the prevalence of virulence factors, drug resistance and its genetic determinants, and clonal lineages of E. faecalis and E. faecium clinical isolates in northern Japan. A total of 480 (426 E. faecalis and 54 E. faecium) isolates collected over a four-month period were analyzed. Three virulence factors promoting bacterial colonization (asa1, efaA, and ace) were more prevalent among E. faecalis (46-59%) than E. faecium, while a similar prevalence of enterococcal surface protein gene (esp) was found in these species. Between E. faecalis and E. faecium, an evident difference was noted for resistance to erythromycin, gentamicin, and levofloxacin and its responsible resistance determinants. Oxazolidinone resistance gene optrA and phenicol exporter gene fexA were identified in an isolate of E. faecalis belonging to ST480 and revealed to be located on a cluster similar to those of isolates reported in other Asian countries. The E. faecalis isolates analyzed were differentiated into 12 STs, among which ST179 and ST16 of clonal complex (CC) 16 were the major lineage. Nearly all the E. faecium isolates were assigned into CC17, which consisted of 10 different sequence types (STs), including a dominant ST17 containing multidrug resistant isolates and ST78 with isolates harboring the hyaluronidase gene (hyl). The present study revealed the genetic profiles of E. faecalis and E. faecium clinical isolates, with the first identification of optrA in ST480 E. faecalis in Japan.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan
| | - Kenji Kudo
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | | | - Masahiko Ito
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
8
|
Li Y, Peng Y, Zhang N, Liu H, Mao J, Yan Y, Wang S, Yang G, Liu Y, Li J, Huang X. Assessing the Emergence of Resistance in vitro and Invivo: Linezolid Combined with Fosfomycin Against Fosfomycin-Sensitive and Resistant Enterococcus. Infect Drug Resist 2022; 15:4995-5010. [PMID: 36065277 PMCID: PMC9440711 DOI: 10.2147/idr.s377848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yu Peng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Jun Mao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yisong Yan
- Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, People’s Republic of China
| | - Shuaishuai Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Guang Yang
- Department of Pharmacy, The Third People’s Hospital of Tongling, Tongling, Anhui, People’s Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Xiaohui Huang, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Meishan Road 81#, Hefei, Anhui, 230032, People’s Republic of China, Tel +86 138 5518 3138, Email
| |
Collapse
|
9
|
Linezolid-Resistant Enterococcus spp. Isolates from Foods of Animal Origin-The Genetic Basis of Acquired Resistance. Foods 2022; 11:foods11070975. [PMID: 35407062 PMCID: PMC8998034 DOI: 10.3390/foods11070975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Enterococci are important opportunistic pathogens with the capacity to acquire and spread antibiotic resistance. At present, linezolid-resistant enterococci (LRE) pose a great challenge. Linezolid is considered as a last resort antibiotic in the treatment of enterococcal infections, so it is important to monitor the occurrence of LRE in various environments. The aim of this study was to define the genetic mechanisms of linezolid resistance in enterococci (E. faecalis, E. faecium, E. hirae, E. casseliflavus) isolated from foods of animal origin (n = 104). Linezolid resistance (LR) was shown by 26.9% of isolates. All of them displayed linezolid MICs of 8–32 µg/mL, and 96.4% of them were multidrug multidrug-resistant. The most common acquired linezolid resistance gene in LR isolates was poxtA (64%), followed by optrA (28%) and cfr (12%). According to the authors’ knowledge, this research is the first to indicate the presence of the cfr gene among isolates from food. In 28.6% of the isolates, the point mutation G2576T in the V domain of the 23S rRNA was responsible for linezolid resistance. All isolates harbored the wild-type rplC, rplD and rplV genes. The obtained results indicate that linezolid resistance among enterococci in animal-derived food may result from various genetic mechanisms. The most worrying is that this resistance is encoded on mobile genetic elements, so there is a risk of its rapid transmission, even despite the lack of selective pressure resulting from the use of antibiotics.
Collapse
|
10
|
Comparative Analysis of Chloramphenicol-Resistant Enterococcus faecalis Isolated from Dairy Companies in Korea. Vet Sci 2021; 8:vetsci8080143. [PMID: 34437465 PMCID: PMC8402777 DOI: 10.3390/vetsci8080143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although chloramphenicol is currently banned from use in livestock, other phenicols, such as florfenicol and thiamphenicol, have been used for the treatment of bacterial infections in domestic cattle in Korea. This study compares the characteristics of chloramphenicol-resistant Enterococcus faecalis isolated from the bulk tank milk of four major dairy companies in Korea. Although the distribution of multidrug resistance patterns showed no significant differences between the four companies, 85 chloramphenicol-resistant Enterococcus faecalis isolates showed a significantly high number of resistances against five or six antimicrobial classes (37.6%, respectively) (p < 0.05). When analyzing the distribution of phenicol resistance genes, 31 (36.5%) isolates only carried the catA gene, and two (6.3%) isolates from company A only carried the cfr gene. No isolates carried the catB or fexA genes. Regarding the distribution of other resistance genes, both the tetL and tetM (45.9%), ermB (82.4%), and both aac(6″)-Ie-aph(2″)-la and ant(6′)-Ia genes (30.6%) showed a high prevalence, and the optrA and poxtA genes were observed separately, each in only two (2.4%) isolates. Our results confirm that the dissemination of chloramphenicol-resistant Enterococcus faecalis and some antimicrobial resistance genes show significant differences between dairy companies. Therefore, our results support that each dairy company should undertake effective surveillance programs to better understand and minimize the emergence of resistance on a multidisciplinary level.
Collapse
|
11
|
Kim YB, Yoon S, Seo KW, Shim JB, Noh EB, Lee YJ. Detection of Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Isolates from the Layer Operation System in Korea. Microb Drug Resist 2021; 27:1443-1449. [PMID: 34297629 DOI: 10.1089/mdr.2020.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linezolid (LNZ) is one of the most important antimicrobial agents against infections caused by gram-positive bacteria, including enterococci. In a layer operation system, antimicrobial resistance can be transferred to commercial layers via the fecal-oral route. This study investigated the presence and distribution of LNZ-resistant Enterococcus faecalis and Enterococcus faecium in a layer operation system. Among 117 E. faecalis and 154 E. faecium, 10 (8.5%) E. faecalis and 5 (3.2%) E. faecium isolates showed resistance to LNZ and chloramphenicol, and they exhibited multidrug resistance against 5 or more classes of antimicrobial agents. Among the resistant isolates, 9 (90.0%) and 2 (20.0%) E. faecalis harbored optrA and cfr genes, respectively. The optrA and fexA genes were not detected in five LNZ-resistant E. faecium. None of the 15 LNZ-resistant isolates harbored the fexA gene, and no mutations were observed in the genes encoding domain V of 23S ribosomal RNA (rRNA) and ribosomal proteins L3 (rplC) and L4 (rplD). Transferability was identified in three of the nine optrA-positive LNZ-resistant isolates. The tetM, tetL, and ermB genes were cotransferred with the optrA gene in all optrA-positive transconjugants. The results indicate that optrA is well-distributed in E. faecalis, implying a greater level of transferability. Thus, enhanced surveillance efforts are needed to monitor the emergence and spread of optrA in enterococci in layer operation system.
Collapse
Affiliation(s)
- Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi State, USA
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Incheon, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Markwart R, Willrich N, Eckmanns T, Werner G, Ayobami O. Low Proportion of Linezolid and Daptomycin Resistance Among Bloodborne Vancomycin-Resistant Enterococcus faecium and Methicillin-Resistant Staphylococcus aureus Infections in Europe. Front Microbiol 2021; 12:664199. [PMID: 34135877 PMCID: PMC8203336 DOI: 10.3389/fmicb.2021.664199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREF) and methicillin-resistant Staphylococcus aureus (MRSA) are associated with significant health burden. We investigated linezolid and daptomycin resistance among VREF and MRSA in the EU/EEA between 2014 and 2018. Descriptive statistics and multivariable logistic regression were used to analyze 6,949 VREF and 35,131 MRSA blood isolates from patients with bloodstream infection. The population-weighted mean proportion of linezolid resistance in VREF and MRSA between 2014 and 2018 was 1.6% (95% CI 1.33–2.03%) and 0.28% (95% CI 0.32–0.38%), respectively. Daptomycin resistance in MRSA isolates was similarly low [1.1% (95% CI 0.75–1.6%)]. On the European level, there was no temporal change of daptomycin and linezolid resistance in MRSA and VREF. Multivariable regression analyses showed that there was a higher likelihood of linezolid and daptomycin resistance in MRSA (aOR: 2.74, p < 0.001; aOR: 2.25, p < 0.001) and linezolid in VREF (aOR: 1.99, p < 0.001) compared to their sensitive isolates. The low proportion of linezolid and daptomycin resistance in VREF and MRSA suggests that these last-resort antibiotics remain effective and will continue to play an important role in the clinical management of these infections in Europe. However, regional and national efforts to contain antimicrobial resistance should continue to monitor the trend through strengthened surveillance that includes genomic surveillance for early warning and action.
Collapse
Affiliation(s)
- Robby Markwart
- Jena University Hospital, Institute of General Practice and Family Medicine, Jena, Germany
| | - Niklas Willrich
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Guido Werner
- Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, National Reference Centre for Staphylococci and Enterococci, Robert Koch Institute, Wernigerode, Germany
| | - Olaniyi Ayobami
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
13
|
Park K, Jeong YS, Chang J, Sung H, Kim MN. Emergence of optrA-Mediated Linezolid-Nonsusceptible Enterococcus faecalis in a Tertiary Care Hospital. Ann Lab Med 2020; 40:321-325. [PMID: 32067432 PMCID: PMC7054691 DOI: 10.3343/alm.2020.40.4.321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022] Open
Abstract
This study investigated resistance mechanisms and epidemiology of emerging linezolid-nonsusceptible Enterococcus faecalis (LNSEF) in a tertiary care hospital. LNSEF isolated from clinical samples were collected from November 2017 to June 2019. The isolates were investigated for linezolid resistance and the associated molecular mechanisms, including mutations of 23S rRNA domain V and acquisition of the cfr or optrA resistance gene. We used pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing for the molecular typing of the isolates. Among 4,318 E. faecalis isolates, 10 (0.23%) were linezolid-nonsusceptible. All LNSEF isolates were optrA-positive and cfr-negative. Of these isolates, five were sequence type (ST) 476, two ST585, one ST16, one ST16-like, and one ST480. Six LNSEF isolates obtained in the first year clustered to three types in the PFGE analysis: two ST476 isolates of type A, two ST585 isolates of type B, and two ST16 or ST16-like isolates of type C. Seven cases were of community-onset and three were hospital acquired, but total of eight were healthcare-associated including five community-onset. None of the patients had a history of linezolid treatment, and in one patient, we detected linezolid-susceptible E. faecalis one month before LNSEF detection. In conclusion, heterogenous clones of optrA-positive LNSEF emerged in the hospital mainly via community-onset.
Collapse
Affiliation(s)
- Kuenyoul Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Yun Sil Jeong
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jeonghyun Chang
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Mi Na Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| |
Collapse
|
14
|
Almeida LM, Gaca A, Bispo PM, Lebreton F, Saavedra JT, Silva RA, Basílio-Júnior ID, Zorzi FM, Filsner PH, Moreno AM, Gilmore MS. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front Public Health 2020; 8:518. [PMID: 33102417 PMCID: PMC7546817 DOI: 10.3389/fpubh.2020.00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid—the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration—and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Lara M Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil.,Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anthony Gaca
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Paulo M Bispo
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Jose T Saavedra
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Rafael A Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | - Felipe M Zorzi
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro H Filsner
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Zou J, Xia Y. Molecular characteristics and risk factors associated with linezolid-resistant Enterococcus faecalis infection in Southwest China. J Glob Antimicrob Resist 2020; 22:504-510. [DOI: 10.1016/j.jgar.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022] Open
|
16
|
Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages. Microorganisms 2020; 8:microorganisms8081240. [PMID: 32824090 PMCID: PMC7463919 DOI: 10.3390/microorganisms8081240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is one of the major causes of urinary tract infection, showing acquired resistance to various classes of antimicrobials. The objective of this study was to determine the prevalence of drug resistance and its genetic determinants for E. faecalis clinical isolates in north-central Bangladesh. Among a total of 210 E. faecalis isolates, isolated from urine, the resistance rates to erythromycin, levofloxacin, and gentamicin (high level) were 85.2, 45.7, and 11.4%, respectively, while no isolates were resistant to ampicillin, vancomycin and teicoplanin. The most prevalent resistance gene was erm(B) (97%), and any of the four genes encoding aminoglycoside modifying enzyme (AME) were detected in 99 isolates (47%). The AME gene aac(6′)-Ie-aph(2”)-Ia was detected in 46 isolates (21.9%) and was diverse in terms of IS256-flanking patterns, which were associated with resistance level to gentamicin. Tetracycline resistance was ascribable to tet(M) (61%) and tet(L) (38%), and mutations in the quinolone resistance-determining region of both GyrA and ParC were identified in 44% of isolates. Five isolates (2.4%) exhibited non-susceptibility to linezolide (MIC, 4 μg/mL), and harbored the oxazolidinone resistance gene optrA, which was located in a novel genetic cluster containing the phenicol exporter gene fexA. The optrA-positive isolates belonged to ST59, ST902, and ST917 (CC59), while common lineages of other multiple drug-resistant isolates were ST6, ST28, CC16, and CC116. The present study first revealed the prevalence of drug resistance determinants of E. faecalis and their genetic profiles in Bangladesh.
Collapse
|
17
|
Mechanisms of Linezolid Resistance Among Enterococci of Clinical Origin in Spain-Detection of optrA- and cfr(D)-Carrying E. faecalis. Microorganisms 2020; 8:microorganisms8081155. [PMID: 32751552 PMCID: PMC7464793 DOI: 10.3390/microorganisms8081155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of linezolid resistance among 13 E. faecalis and 6 E. faecium isolates, recovered from six Spanish hospitals during 2017–2018, were investigated. The presence of acquired linezolid resistance genes and mutations in 23S rDNA and in genes encoding for ribosomal proteins was analyzed by PCR and amplicon sequencing. Moreover, the susceptibility to 18 antimicrobial agents was investigated, and the respective molecular background was elucidated by PCR-amplicon sequencing and whole genome sequencing. The transferability of the linezolid resistance genes was evaluated by filter-mating experiments. The optrA gene was detected in all 13 E. faecalis isolates; and one optrA-positive isolate also carried the recently described cfr(D) gene. Moreover, one E. faecalis isolate displayed the nucleotide mutation G2576T in the 23S rDNA. This mutation was also present in all six E. faecium isolates. All linezolid-resistant enterococci showed a multiresistance phenotype and harbored several antimicrobial resistance genes, as well as many virulence determinants. The fexA gene was located upstream of the optrA gene in 12 of the E. faecalis isolates. Moreover, an erm(A)-like gene was located downstream of optrA in two isolates recovered from the same hospital. The optrA gene was transferable in all but one E. faecalis isolates, in all cases along with the fexA gene. The cfr(D) gene was not transferable. The presence of optrA and mutations in the 23S rDNA are the main mechanisms of linezolid resistance among E. faecalis and E. faecium, respectively. We report the first description of the cfr(D) gene in E. faecalis. The presence of the optrA and cfr(D) genes in Spanish hospitals is a public health concern.
Collapse
|
18
|
Chen L, Han D, Tang Z, Hao J, Xiong W, Zeng Z. Co-existence of the oxazolidinone resistance genes cfr and optrA on two transferable multi-resistance plasmids in one Enterococcus faecalis isolate from swine. Int J Antimicrob Agents 2020; 56:105993. [PMID: 32335280 DOI: 10.1016/j.ijantimicag.2020.105993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To identify and characterize oxazolidinone resistance genes cfr and optrA in enterococcal isolates. METHODS Two hundred and ninety-three enterococcal isolates were screened for the presence of cfr and optrA by polymerase chain reaction. The transferability of cfr and optrA was examined by conjugation. S1 nuclease pulsed-field gel electrophoresis and Southern blotting were used to identify the location of cfr and optrA. One Enterococcus faecalis isolate carrying both cfr and optrA was sequenced in full. RESULTS cfr and optrA were detected in 16 (5.5%) and 170 (58.0%) enterococcal isolates, respectively. Sixteen enterococcal isolates (E. faecalis n=13, Enterococcus avium n=2, Enterococcus mundtii n=1) carried both cfr and optrA. The cfr-carrying fragment between res and theta in plasmid p4 showed 98.9% identity to the corresponding region of plasmid pEF120805 from vancomycin-resistant Enterococcus faecium. The optrA-carrying segment between tnpB and optrA in plasmid p1 showed >99.9% identity to the corresponding region of genomic DNA from E. faecalis A101. Plasmid p4 and plasmid p1 were simultaneously conjugated to E. faecalis JH2-2. CONCLUSIONS One hundred and seventy optrA-positive enterococci were identified in 293 enterococcal isolates from swine and the farm environment. The co-existence of cfr and optrA in E. avium and E. mundtii has been identified previously. cfr and optrA were identified on two new conjugative plasmids from one E. faecalis isolate. The optrA-carrying segment (IS1216E-optrA-IS1216E) was reported initially. Among different types of enterococcal plasmids, ISEnfa5 and IS1216E elements may play a vital role in the dissemination of cfr and optrA, respectively.
Collapse
Affiliation(s)
- Lin Chen
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dongdong Han
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ziyun Tang
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Hao
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Zhang X, Han D, Pei P, Hao J, Lu Y, Wan P, Peng X, Lv W, Xiong W, Zeng Z. In vitro Antibacterial Activity of Isopropoxy Benzene Guanidine Against Multidrug-Resistant Enterococci. Infect Drug Resist 2019; 12:3943-3953. [PMID: 31920348 PMCID: PMC6934121 DOI: 10.2147/idr.s234509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Background Bacterial infections cause a serious public health crisis due to the emergence of resistance towards multiple conventional antibacterial drugs. In particular, multidrug-resistant (MDR) Enterococcus faecium which belongs to "ESKAPE" organisms is causing significant problems worldwide. Hence, there is an urgent need to find alternative therapies. Recently, substituted benzene guanidine compounds have been used as lead structures to discover new promising drugs in both synthetic and medicinal chemistry. Purpose Here we investigated the antimicrobial activity of a new substituted benzene guanidine analog, isopropoxy benzene guanidine, against Enterococci. Material and methods The isopropoxy benzene guanidine was synthesized by Guangzhou Insighter Biotechnology Co., Ltd and tested on both reference bacterial strain and 32 clinical MDR Enterococci strains. The in vitro antibacterial activity was evaluated by microdilution method and kill kinetic assays. The potential antibacterial mechanism was measured by fluorescence spectrometry using fluorescent membrane potential probe 3, 3-diethyloxacarbocyanine iodide (DiOC2 (3)). Results Isopropoxy benzene guanidine exhibited potent bactericidal activity against both reference strain and MDR Enterococci isolates. The minimum inhibitory concentration (MIC) range for isopropoxy benzene guanidine was 1-4 μg/mL. Minimum bactericidal concentration (MBC) was about 2-8-fold of its MIC values. Time-kill studies showed that isopropoxy benzene guanidine provided superior bactericidal effect against reference and MDR strains within 12 hrs at 2×MIC. Furthermore, isopropoxy benzene guanidine could cause a large reduction in the magnitude of the generated membrane potential compared to that of the untreated cells. Conclusion The present study highlights the potent bactericidal activity of isopropoxy benzene guanidine on Enterococci by disrupting the cell membrane potential. These findings demonstrate that isopropoxy benzene guanidine may be a good chemical lead for further medicinal chemistry and pharmaceutical development and could be used as a therapeutic agent for infectious diseases caused by MDR Enterococci.
Collapse
Affiliation(s)
- Xiufeng Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Dongdong Han
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Pengfei Pei
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Hao
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yixing Lu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Peng Wan
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd, Guangzhou 510642, People's Republic of China
| | - Weibiao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528000, People's Republic of China
| | - Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, People's Republic of China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
20
|
Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items. Sci Rep 2019; 9:15500. [PMID: 31664106 PMCID: PMC6820769 DOI: 10.1038/s41598-019-51918-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
The gene optrA is the first gene that confers resistance to the oxazolidinone tedizolid, a last resort antimicrobial agent in human medicine. In this study we investigated the presence of optrA and the multi-resistance genes poxtA and cfr in enterococci and staphylococci from (i) pet animals known to be fed raw meat and vegetables and (ii) the respective food items. We examined 341 bacterial isolates from cats and dogs, 195 bacterial isolates from supermarket food items and only one E. faecium collected from industrial food in Beijing during 2016. Thirty-five (6.5%) of the 537 isolates, including 31/376 (8.2%) enterococci and 4/161 (2.5%) staphylococci, were positive for optrA, while all isolates were negative for poxtA and cfr. S1-nuclease pulsed-field gel electrophoresis (PFGE) and Southern blotting confirmed that optrA was located in the chromosomal DNA of 19 isolates and on a plasmid in the remaining 16 isolates. Whole genome sequencing revealed several different genetic environments of optrA in plasmid- or chromosome-borne optrA genes. PFGE, multilocus sequence typing (MLST) and/or SNP analysis demonstrated that the optrA-carrying Staphylococcus and Enterococcus isolates were genetically heterogeneous. However, in single cases, groups of related isolates were identified which might suggest a transfer of closely related optrA-positive E. faecalis isolates between food items and dogs.
Collapse
|
21
|
Zhang X, Bi W, Chen L, Zhang Y, Fang R, Cao J, Zhou T. Molecular mechanisms and epidemiology of fosfomycin resistance in enterococci isolated from patients at a teaching hospital in China, 2013-2016. J Glob Antimicrob Resist 2019; 20:191-196. [PMID: 31422238 DOI: 10.1016/j.jgar.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the mechanisms of fosfomycin resistance and epidemiological characteristics in fosfomycin-resistant enterococci in China. METHODS A collection of 761 enterococcal clinical isolates from a teaching hospital in Wenzhou, China were studied. The fosfomycin susceptibility of the isolates was investigated by the agar dilution method. The isolates were also analysed for mechanisms of re fosfomycin resistance by PCR and quantitative real-time PCR. Furthermore, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to analyse the molecular epidemiological characteristics of the fosfomycin-resistant isolates. RESULTS In this study, 0.3% (1/372) of Enterococcus faecalis and 4.9% (19/389) of Enterococcus faecium clinical isolates were found to be resistant to fosfomycin. Among the 20 fosfomycin-resistant isolates, 5 harboured the fosB gene, 10 carried multiple amino acid substitutions in MurA, and 6 showed high-level expression of the fosX gene; of note, 1 isolate simultaneously carried fosB and amino acid mutation in MurA. Furthermore, a high degree of homology in the fosfomycin-resistant enterococci was confirmed using MLST and PFGE. CONCLUSION These finding demonstrate that the fosB gene, mutations in the fosfomycin target enzyme MurA, and a high expression level of fosX were the resistance mechanisms in these fosfomycin-resistant enterococci.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Wang S, Li Y, Xue F, Liu J, Yang W, Zhang J, Glenschek-Sieberth M, Lyu Y. Comparative in vitro potency and kill curve activity of tedizolid and linezolid against Gram-positive bacteria isolated from Chinese hospitalized patients in 2013-2016. J Chemother 2019; 31:313-319. [PMID: 31215343 DOI: 10.1080/1120009x.2019.1623968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We compared the kill-curve activity of tedizolid and linezolid at clinically relevant (total or free plasma, lung) concentrations against methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP) isolated from Chinese patients. Tedizolid had greater in vitro potency than linezolid against staphylococci, streptococci and enterococci species (tedizolid minimum inhibitory concentration (MIC) range: ≤ 0.016-0.5 µg/mL; linezolid MIC range: 0.25-2 µg/mL). In kill-curve experiments, growth of MRSA was inhibited at tedizolid concentration of 0.6 µg/mL (i.e. 4.8 × MIC; MIC = 0.125 µg/mL) and linezolid concentration of 2 µg/mL (2× MIC; MIC = 1 µg/mL). Against PRSP, tedizolid at a concentration of 0.25 µg/mL (representing its MIC) was bacteriostatic, but exerted a bactericidal effect at higher concentrations. Results were similar for linezolid, however, even at 21 µg/mL, a small proportion of organisms survived beyond 24 h. The results demonstrated the potency of tedizolid against clinical strains of Gram-positive pathogens supporting its use as a suitable alternative to linezolid in Chinese patients.
Collapse
Affiliation(s)
- Shan Wang
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | - Jian Liu
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | - Weiwei Yang
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | - Jia Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| | | | - Yuan Lyu
- Institute of Clinical Pharmacology, Peking University First Hospital , Beijing , China
| |
Collapse
|
23
|
Huang L, Zhang R, Hu Y, Zhou H, Cao J, Lv H, Chen S, Ding S, Chen G. Epidemiology and risk factors of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci infections in Zhejiang China from 2015 to 2017. Antimicrob Resist Infect Control 2019; 8:90. [PMID: 31164979 PMCID: PMC6543620 DOI: 10.1186/s13756-019-0539-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
Background Gram-positive bacteria are dangerous and challenging agents of infection due to their increasing resistance to antibiotics. We aim to analyse the epidemiology and risk factors of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) in Zhejiang China. Methods Gram-positive bacteria (including S. aureus, Enterococcus faecalis and Enterococcus faecium) were collected from eighty-six hospitals of eleven cities in Zhejiang China from 2015 to 2017. The detection rates of MRSA and VRE infection were calculated for the non-duplicated isolate according to year, region, hospital level, patient age, specimen type and patient category. Meanwhile, the detected resistances of MRSA, E. faecalis and E. faecium to different antibiotics from 2015 to 2017 were compared. The risk factors and the differences in MRSA and VRE detection rates were compared using odds ratio (OR) with 95% confidence interval (95% CI) and Chi-square test respectively. Results From 2015 to 2017, the detection rates of MRSA and VRE decreased gradually. The cities with the highest MRSA and VRE detection rates tended to be adjacent; for example, the neighbouring cities Hangzhou and Quzhou had simultaneously high rates of MRSA and VRE infection. Patients from IIIA hospital who were older than 75 years and in the intensive care unit (ICU) were most at risk. No vancomycin-resistant isolate was found in MRSA. Resistance of E. faecalis and E. faecium to vancomycin and linezolid decreased slightly and then maintained a low level. Conclusions The detection rates of MRSA and VRE stayed at moderate and low levels during the three year period of this study, while local dissemination was found in MRSA and VRE isolates. Sustained surveillance is necessary to prevent the spread or clonal dissemination of drug-resistant strains in Zhejiang China.
Collapse
Affiliation(s)
- Lin Huang
- 1Department of Clinical Microbiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009 People's Republic of China
| | - Rong Zhang
- 1Department of Clinical Microbiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009 People's Republic of China
| | - Yanyan Hu
- 1Department of Clinical Microbiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009 People's Republic of China
| | - Hongwei Zhou
- 1Department of Clinical Microbiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009 People's Republic of China
| | - Junmin Cao
- 2Zhejiang Provincial Hospital of TCM, Hangzhou, 310006 Zhejiang China
| | - Huoyang Lv
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014 Zhejiang China
| | - Shi Chen
- Hangzhou Third Hospital, Hangzhou, 310009 Zhejiang China
| | - Shibiao Ding
- 5Hangzhou Red Cross Hospital, Hangzhou, 310003 Zhejiang China
| | - Gongxiang Chen
- 1Department of Clinical Microbiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009 People's Republic of China
| |
Collapse
|
24
|
Poultry as a vector for emerging multidrug resistant Enterococcus spp.: First report of vancomycin (van) and the chloramphenicol–florfenicol (cat-fex-cfr) resistance genes from pigeon and duck faeces. Microb Pathog 2019; 128:195-205. [DOI: 10.1016/j.micpath.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
|