1
|
Kuruwa S, Zade A, Shah S, Moidu R, Lad S, Chande C, Joshi A, Hirani N, Nikam C, Bhattacharya S, Poojary A, Kapoor M, Kondabagil K, Chatterjee A. An integrated method for targeted Oxford Nanopore sequencing and automated bioinformatics for the simultaneous detection of bacteria, fungi, and ARG. J Appl Microbiol 2024; 135:lxae037. [PMID: 38346849 DOI: 10.1093/jambio/lxae037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
AIMS The use of metagenomics for pathogen identification in clinical practice has been limited. Here we describe a workflow to encourage the clinical utility and potential of NGS for the screening of bacteria, fungi, and antimicrobial resistance genes (ARGs). METHODS AND RESULTS The method includes target enrichment, long-read sequencing, and automated bioinformatics. Evaluation of several tools and databases was undertaken across standard organisms (n = 12), clinical isolates (n = 114), and blood samples from patients with suspected bloodstream infections (n = 33). The strategy used could offset the presence of host background DNA, error rates of long-read sequencing, and provide accurate and reproducible detection of pathogens. Eleven targets could be successfully tested in a single assay. Organisms could be confidently identified considering ≥60% of best hits of a BLAST-based threshold of e-value 0.001 and a percent identity of >80%. For ARGs, reads with percent identity of >90% and >60% overlap of the complete gene could be confidently annotated. A kappa of 0.83 was observed compared to standard diagnostic methods. Thus, a workflow for the direct-from-sample, on-site sequencing combined with automated genomics was demonstrated to be reproducible. CONCLUSION NGS-based technologies overcome several limitations of current day diagnostics. Highly sensitive and comprehensive methods of pathogen screening are the need of the hour. We developed a framework for reliable, on-site, screening of pathogens.
Collapse
Affiliation(s)
- Sanjana Kuruwa
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amrutraj Zade
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchi Shah
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rameez Moidu
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh Lad
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chhaya Chande
- Department of Microbiology, Sir J. J. Group of Hospitals, Mumbai 400008, India
| | - Ameeta Joshi
- Department of Microbiology, Sir J. J. Group of Hospitals, Mumbai 400008, India
| | - Nilma Hirani
- Department of Microbiology, Sir J. J. Group of Hospitals, Mumbai 400008, India
| | - Chaitali Nikam
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Thyrocare Technologies Pvt. Ltd, Navi Mumbai 400703, India
| | - Sanjay Bhattacharya
- Department of Microbiology, Tata Medical Center, 14, MAR(E-W), DH Block (Newtown), Action Area I, Newtown, Kolkata, Chakpachuria 700160, India
| | - Aruna Poojary
- Department of Microbiology, Breach Candy Hospital and Research Center, Mumbai 400026, India
| | - Mahua Kapoor
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kiran Kondabagil
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirvan Chatterjee
- HaystackAnalytics Pvt. Ltd, SINE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
3
|
Wang J, Feng J, Jia W, Yuan T, He X, Wu Q, Peng F, Gao W, Yang Z, Tao Y, Li Q. Genomic and phenotypic analysis of a novel clinical isolate of Corynebacterium pyruviciproducens. BMC Microbiol 2023; 23:385. [PMID: 38053056 PMCID: PMC10699042 DOI: 10.1186/s12866-023-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Corynebacterium pyruviciproducens is a recently described species of Corynebacterium. There are few reports on the microbiological characteristics of the new species, and there is a lack of reports on the genomic analysis of the species. RESULTS This study involved a clinical isolate from the pus of a hospital patient with sebaceous gland abscesses. The clinically isolated strain was identified as C. pyruviciproducens strain WYJY-01. In this study, referring to Koch's postulates, we observed the pathological changes of animal models infected by intraperitoneal injection and subcutaneous injection of pure culture of the strain WYJY-01. Furthermore, the strain WYJY-01 was isolated and cultured again from animal models' subcutaneous abscess drainage fluid. Subsequently, the genomics of the strain WYJY-01 was analyzed. By comparing various gene databases, this study predicted the core secondary metabolite gene cluster of the strain WYJY-01, virulence factor genes carried by prophage, pathogenicity islands, and resistance islands. In addition, the genomes of C. pyruviciproducens strain WYJY-01, ATCC BAA-1742 T, and UMB0763 were analyzed by comparative genomics, and the differential genes of strain WYJY-01 were compared, and their functions were analyzed. CONCLUSION The findings showed that the strain WYJY-01 had pathogenicity, supplementing the phenotype characteristics of C. pyruviciproducens. Meanwhile, this research revealed the possible molecular mechanism of the pathogenicity of the strain WYJY-01 at the gene level through whole genome sequence analysis, providing a molecular basis for further research.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Jiajia Feng
- Clinical Laboratory, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, 261011, PR China
| | - Wei Jia
- Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Tingxun Yuan
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xinyu He
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Qianqian Wu
- Clinical Laboratory, the Affiliated Hospital of Weifang Medical University, Weifang, 261031, PR China
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyong Tao
- Clinical Laboratory, the Affiliated Hospital of Weifang Medical University, Weifang, 261031, PR China.
| | - Qian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China.
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
4
|
Zilberbeg MD, Khan I, Shorr AF. Respiratory Viruses in Nosocomial Pneumonia: An Evolving Paradigm. Viruses 2023; 15:1676. [PMID: 37632017 PMCID: PMC10458412 DOI: 10.3390/v15081676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Nosocomial pneumonia (NP) represents a leading cause of morbidity and mortality in hospitalized patients. Historically, clinicians have considered hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), which comprise NP, to be essentially bacterial processes. As such, patients suspected of having either HAP or VAP are initially treated with broad-spectrum antibiotics, and few clinicians search for a possible culprit virus. Recent reports which build on earlier studies, however, indicate that viruses likely play an important role in NP. Studies employing viral diagnostics as part of the evaluation for NP indicate that common respiratory viruses can spread nosocomially and lead to HAP and VAP. Similarly, studies of the general epidemiology of respiratory viral infections, such as influenza, respiratory syncytial virus, adenovirus, and rhinovirus, confirm that these pathogens are important causes of NP, especially among immunosuppressed and pediatric patients. More importantly, these more contemporary analyses reveal that one cannot, based on clinical characteristics, distinguish a viral from a bacterial cause of NP. Additionally, viral HAP and VAP result in crude mortality rates that rival or exceed those reported in bacterial NP. Rigorous prospective, multicenter trials are needed to confirm the significance of respiratory viruses in NP, as are studies of novel therapeutics for these viral infections.
Collapse
Affiliation(s)
| | - Imran Khan
- Pulmonary and Critical Care Medicine, Medstar Washington Hospital Center, Washington, DC 20010, USA;
| | - Andrew F. Shorr
- Pulmonary and Critical Care Medicine, Medstar Washington Hospital Center, Washington, DC 20010, USA;
| |
Collapse
|
5
|
Hou D, Lian T, Guo G, Gong H, Wu C, Han P, Weng S, He J. Integration of microbiome and Koch's postulates to reveal multiple bacterial pathogens of whitish muscle syndrome in mud crab, Scylla paramamosain. MICROBIOME 2023; 11:155. [PMID: 37475003 PMCID: PMC10357871 DOI: 10.1186/s40168-023-01570-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND For more than a century, the Koch's postulates have been the golden rule for determining the causative agents in diseases. However, in cases of multiple pathogens-one disease, in which different pathogens can cause the same disease, the selection of microorganisms that regress infection is hard when Koch's postulates are applied. Microbiome approaches can obtain relatively complete information about disease-related microorganisms and can guide the selection of target microorganisms for regression infection. In the present study, whitish muscle syndrome (WMS) of Scylla paramamosain, which has typical symptoms with whitish muscle and blackened hemolymph was used as an example to establish a new research strategy that integrates microbiome approaches and Koch's postulates to determinate causative agents of multiple pathogens-one disease. RESULTS Microbiome results revealed that Aeromonas, Acinetobacter, Shewanella, Chryseomicrobium, Exiguobacterium, Vibrio and Flavobacterium, and Kurtzmaniella in hemolymph were bacterial and fungal indicators for WMS. A total of 23 bacteria and 14 fungi were isolated from hemolymph and muscle tissues, and among the bacteria, Shewanella chilikensis, S. xiamenensis, Vibrio alginolyticus, S. putrefaciens, V. fluvialis, and V. parahaemolyticus were present in hemolymph and/or muscle tissues in each WMS crab, and the last three species were also present in three Healthy crabs. The target bacteria and fungi were further screened to regression infections based on two criteria: whether they belonged to the indicator genera for WMS, whether they were isolated from both hemolymph and muscle tissues in most WMS crabs. Only S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria. The six bacteria that met both two criteria and six fungi and another bacterium that unmatched any of two criteria were used to perform regression infection experiments based on Koch's postulates. S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria, and the results indicate that they cause WMS in crabs independently. CONCLUSIONS This study fully demonstrated that our research strategy that integrates the microbiome and Koch's postulates can maximize the ability to catch pathogens in one net for the situation of multiple pathogens-one disease. Video Abstract.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Taixin Lian
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Han Gong
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chengcheng Wu
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Peiyun Han
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- School of Life Sciences/China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China.
| |
Collapse
|
6
|
Hutson KS, Davidson IC, Bennett J, Poulin R, Cahill PL. Assigning cause for emerging diseases of aquatic organisms. Trends Microbiol 2023:S0966-842X(23)00031-8. [PMID: 36841735 DOI: 10.1016/j.tim.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Resolving the cause of disease (= aetiology) in aquatic organisms is a challenging but essential goal, heightened by increasing disease prevalence in a changing climate and an interconnected world of anthropogenic pathogen spread. Emerging diseases play important roles in evolutionary ecology, wildlife conservation, the seafood industry, recreation, cultural practices, and human health. As we emerge from a global pandemic of zoonotic origin, we must focus on timely diagnosis to confirm aetiology and enable response to diseases in aquatic ecosystems. Those systems' resilience, and our own sustainable use of seafood, depend on it. Synchronising traditional and recent advances in microbiology that span ecological, veterinary, and medical fields will enable definitive assignment of risk factors and causal agents for better biosecurity management and healthier aquatic ecosystems.
Collapse
Affiliation(s)
- Kate S Hutson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Ian C Davidson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
7
|
Replication Activities of Major 5' Terminally Deleted Group-B Coxsackievirus RNA Forms Decrease PCSK2 mRNA Expression Impairing Insulin Maturation in Pancreatic Beta Cells. Viruses 2022; 14:v14122781. [PMID: 36560784 PMCID: PMC9788552 DOI: 10.3390/v14122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Emergence of 5' terminally deleted coxsackievirus-B RNA forms (CVB-TD) have been associated with the development of human diseases. These CVB-TD RNA forms have been detected in mouse pancreas during acute or persistent experimental infections. To date, the impact of the replication activities of CVB-TD RNA forms on insulin metabolism remains unexplored. Using an immunocompetent mouse model of CVB3/28 infection, acute and persistent infections of major CVB-TD populations were evidenced in the pancreas. The inoculation of mice with homogenized pancreases containing major CVB-TD populations induced acute and chronic pancreatic infections with pancreatitis. In the mouse pancreas, viral capsid protein 1 (VP1) expression colocalized with a decrease in beta cells insulin content. Moreover, in infected mouse pancreases, we showed a decrease in pro-hormone convertase 2 (PCSK2) mRNA, associated with a decrease in insulin plasmatic concentration. Finally, transfection of synthetic CVB-TD50 RNA forms into cultured rodent pancreatic beta cells demonstrated that viral replication with protein synthesis activities decreased the PCSK2 mRNA expression levels, impairing insulin secretion. In conclusion, our results show that the emergence and maintenance of major CVB-TD RNA replicative forms in pancreatic beta cells can play a direct, key role in the pathophysiological mechanisms leading to the development of type 1 diabetes.
Collapse
|
8
|
Asgharian M, Gholizadeh P, Samadi Kafil H, Ghojazadeh M, Samadi A, Soleymani J, Jouyban A, Tayebi Khosroshahi H. Correlation of inflammatory biomarkers with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in the intestinal microbiota of patients with end stage renal disease. Adv Med Sci 2022; 67:304-310. [PMID: 35994929 DOI: 10.1016/j.advms.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Serum levels of inflammatory cytokines and uremic toxins, and their inter-correlations with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in intestinal microbiota were investigated in patients with end stage renal disease (ESRD). METHODS Stool and blood samples from 20 ESRD patients on maintenance hemodialysis were collected. DNA genome of the bacterial composition of the stool samples was extracted and evaluated by the sequencing analysis of 16S rRNA genes. Serum levels of inflammatory cytokines and uremic toxins were then analyzed. RESULTS The mean serum concentrations of TNF-α, IL-6, indoxyl sulfate (IS) and p-cresol (PC) were 305.99 ± 12.03 ng/L, 159.95 ± 64.22 ng/L, 36.76 ± 5.09 μg/mL and 0.39 ± 0.15 μg/mL, respectively. The most significant positive correlation was observed between Prevotellaceae family and total antioxidant capacity (TAC), Lactobacilli species and CRP and PC, as well as Scardovia wiggsiae and IS (p < 0.001). A negative correlation was also found between Bacteroides clarus and PC. Patients with ESRD on maintenance hemodialysis had elevated levels of PC and IS and increased levels of the inflammatory markers. The most positive correlation was found between microbiota and CRP and PC, while the most negative one was between microbiota and IL-1 and TAC. CONCLUSIONS The abundance and diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families and their correlations with clinical parameters could provide benefits in the ESRD patients but they could not promote the symptoms.
Collapse
Affiliation(s)
- Mostafa Asgharian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Samadi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | | |
Collapse
|
9
|
De R, Zhang KX, Wang F, Zhou YT, Sun Y, Chen DM, Zhu RN, Guo Q, Liu S, Qu D, Qian Y, Zhao LQ. Human bocavirus 1 is a genuine pathogen for acute respiratory tract infection in pediatric patients determined by nucleic acid, antigen, and serology tests. Front Microbiol 2022; 13:932858. [PMID: 35966673 PMCID: PMC9372409 DOI: 10.3389/fmicb.2022.932858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Human bocavirus 1 (HBoV1), first discovered in 2005, was positive in symptomatic and healthy children and co-detected with other respiratory viruses. It is a long journey to decisively demonstrate the unique viral pathogenic function of acute respiratory tract infection (ARTI) in pediatric patients. Methods Respiratory specimens collected from pediatric patients with ARTI from January 2017 to December 2021 were screened by a capillary electrophoresis-based multiplex PCR (CEMP) assay, then genotyped by PCR and sequencing for HBoV1. For the antigen test, a part of HBoV1 DNA positive nasopharyngeal aspirates (NPAs) was used as an antigen, while a rabbit anti-HBoV1 DR2 specific to HBoV1 was used as an antibody in the indirect-immunofluorescence assay (IFA). Finally, the levels of IgG specific to HBoV1 in acute and convalescent sera selected retrospectively from only HBoV1 DNA-positive patients were evaluated by IFA. Results Among 9,899 specimens, 681 were positive for HBoV1 DNA (6.88%, 681/9899), which included 336 positives only for HBoV1 (49.34%, 336/681) and 345 (50.66%, 345/681) positives also for other pathogens. In the antigen test, there were 37 among 47 NPAs determined as HBoV1 antigen-positive (78.72%, 37/47), including 18 (48.65%, 18/37) positives solely for HBoV1 DNA. Among 4 pediatric patients with both acute and convalescent sera, there was one positive for HBoV1 antigen (D8873) and 2 lack the antigen results (D1474 and D10792), which showed seroconversion with a ≥ 4-fold increase in IgG levels. Conclusions The combination results of nucleic acid, antigen, and serology tests answered that HBoV1 is a genuine pathogen for ARTI in pediatric patients.
Collapse
Affiliation(s)
- Ri De
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Ke-Xiang Zhang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Fang Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yu-Tong Zhou
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Dong-Mei Chen
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Ru-Nan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Shuang Liu
- Department of Intensive Care Unit, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Department of Intensive Care Unit, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Lin-Qing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Lin-Qing Zhao
| |
Collapse
|
10
|
Abstract
Assessing the threat posed by bacterial samples is fundamentally important to safeguarding human health. Whole-genome sequence analysis of bacteria provides a route to achieving this goal. However, this approach is fundamentally constrained by the scope, the diversity, and our understanding of the bacterial genome sequences that are available for devising threat assessment schemes. For example, genome-based strategies offer limited utility for assessing the threat associated with pathogens that exploit novel virulence mechanisms or are recently emergent. To address these limitations, we developed PathEngine, a machine learning strategy that features the use of phenotypic hallmarks of pathogenesis to assess pathogenic threat. PathEngine successfully classified potential pathogenic threats with high accuracy and thereby establishes a phenotype-based, sequence-independent pipeline for threat assessment. Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.
Collapse
|
11
|
Ma J, Lv XL, Zhang X, Han SZ, Wang ZD, Li L, Sun HT, Ma LX, Cheng ZL, Shao JW, Chen C, Zhao YH, Sui L, Liu LN, Qian J, Wang W, Liu Q. Identification of a new orthonairovirus associated with human febrile illness in China. Nat Med 2021; 27:434-439. [PMID: 33603240 DOI: 10.1038/s41591-020-01228-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
The genus Orthonairovirus, which is part of the family Nairoviridae, includes the important tick-transmitted pathogens Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, as well as many other poorly characterized viruses found in ticks, birds and mammals1,2. In this study, we identified a new orthonairovirus, Songling virus (SGLV), from patients who reported being bitten by ticks in Heilongjiang Province in northeastern China. SGLV shared similar genomic and morphological features with orthonairoviruses and phylogenetically formed a unique clade in Tamdy orthonairovirus of the Nairoviridae family. The isolated SGLV induced cytopathic effects in human hepatoma cells in vitro. SGLV infection was confirmed in 42 hospitalized patients analyzed between 2017 and 2018, with the main clinical manifestations being headache, fever, depression, fatigue and dizziness. More than two-thirds (69%) of patients generated virus-specific antibody responses in the acute phase. Taken together, these results suggest that this newly discovered orthonairovirus is associated with human febrile illness in China.
Collapse
Affiliation(s)
- Jun Ma
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiao-Long Lv
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Xu Zhang
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Shu-Zheng Han
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Ze-Dong Wang
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - He-Ting Sun
- State Forestry and Grassland Administration, Shenyang, Liaoning Province, China
| | - Li-Xin Ma
- Alongshan Forestry Bureau, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Zheng-Lei Cheng
- Alongshan Forest Pest Control Station, Yakeshi, Inner Mongolia Autonomous Region, China
| | - Jian-Wei Shao
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Chen Chen
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying-Hua Zhao
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liyan Sui
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin-Na Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Wei Wang
- Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, Inner Mongolia Autonomous Region, China.
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China. .,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, Jilin Province, China. .,The First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
12
|
Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141030. [PMID: 32726703 DOI: 10.1016/j.scitotenv.2020.141030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Non-communicable diseases (NCDs) have replaced communicable diseases as the leading cause of premature death worldwide over the past century. Increasing numbers of studies have reported a link between NCDs and dysbiotic gut microbiota. Some gut microbiota, such as Helicobacter pylori, have been implicated in person-to-person transmission. Based on these reports, we develop a hypothesis regarding dysbiotic microbiota-associated NCDs, and explore how the presence of communicable NCDs could be confirmedexperimentally. We have also reviewed reports on environmental factors, including a high-fat diet, alcohol, smoking, exercise, radiation and air pollution, which have been associated with dysbiotic microbiota, and determined whether any of these parameters were also associated with NCDs. This review discusses the potential mechanism by which dysbiotic microbiota induced by environmental factors are directly or indirectly involved in person-to-person transmission. The hypothetical interplay between the environment, gut microbiota and host can be tested through high-throughput sequencing, animal models, and cell studies, although each of these modalities presents specific challenges. Confirmation of a causative association of dysbiotic microbiota with NCDs would represent a paradigm shift in efforts to prevent and control these diseases, and should stimulate additional studies on the associations among environmental factors, gut microbiota, and NCDs.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China.
| | - Zhao Ju
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing 100850, PR China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|