1
|
Chen Z, Ai Q, Zheng S, Chen Z, Wang S, Zhang N, Liu H, Liu Y, Li J, Huang X. Enhanced efficacy of sequential administration of fosfomycin and linezolid against methicillin-resistant Staphylococcus aureus. Front Microbiol 2025; 16:1511707. [PMID: 40165785 PMCID: PMC11955620 DOI: 10.3389/fmicb.2025.1511707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
The aim of this study was to assess the superiority of sequential administration of fosfomycin and linezolid in combination on the efficacy of methicillin-resistant Staphylococcus aureus (MRSA). The antimicrobial activity was assessed using static and dynamic bactericidal assays, along with pharmacokinetics/pharmacodynamics in vitro simulation models. Transmission electron microscopy (TEM) was employed to observe ultrastructural changes in MRSA cell walls following both sequential and concomitant dosing strategies. The results indicated that in the static time-kill assay, at MIC levels (fosfomycin at 4-8 mg/L and linezolid at 2-4 mg/L), the combination effectively inhibited MRSA growth under both concurrent and sequential administration; however, the sequential dosing regimen exhibited significantly greater bactericidal activity. Similarly, in the dynamic sterilization test conducted at clinically relevant doses (linezolid 600 mg and fosfomycin 2 g), a comparable trend was observed, further supporting the superior efficacy of sequential administration. TEM analysis further revealed that sequential dosing caused more extensive damage to the bacterial cell wall and nucleus compared to concomitant administration. These findings suggest that sequential administration of fosfomycin and linezolid enhances in vitro efficacy against MRSA and may provide an improved approach for managing complicated and drug-resistant infections.
Collapse
Affiliation(s)
- Zaixing Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Ai
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuai Zheng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ziyan Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Sailan Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Antonello RM, Riccardi N, Saderi L, Sotgiu G. Synergistic properties of linezolid against Enterococcus spp. isolates: a systematic review from in vitro studies. Eur J Clin Microbiol Infect Dis 2024; 43:17-31. [PMID: 37975976 DOI: 10.1007/s10096-023-04704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Vancomycin-resistant enterococci (VRE) are a leading cause of hospital-acquired infections with limited therapeutic options. Combination of at least two antimicrobials is a possible strategy to obtain rapid and sustained bactericidal effects and overcome the emergence of resistance. We revised the literature on linezolid synergistic properties from in vitro studies to assess its activity in combination with molecules belonging to other antibiotic classes against Enterococcus spp. METHODS We performed a systematic review of the literature from three peer-reviewed databases including papers evaluating linezolid synergistic properties in vitro against Enterococcus spp. isolates. RESULTS We included 206 Enterococcus spp. isolates (92 E. faecalis, 90 E. faecium, 2 E. gallinarum, 3 E. casseliflavus, 19 Enterococcus spp.) from 24 studies. When an isolate was tested with different combinations, each combination was considered independently for further analysis. The most frequent interaction was indifferent effect (247/343, 72% of total interactions). The highest synergism rates were observed when linezolid was tested in combination with rifampin (10/49, 20.4% of interactions) and fosfomycin (16/84, 19.0%, of interactions). Antagonistic effect accounted for 7/343 (2.0%) of total interactions. CONCLUSION Our study reported overall limited synergistic in vitro properties of linezolid with other antibiotics when tested against Enterococcus spp. The clinical choice of linezolid in combination with other antibiotics should be guided by reasoned empiric therapy in the suspicion of a polymicrobial infection or targeted therapy on microbiological results, rather than on an intended synergistic effect of the linezolid-based combination.
Collapse
Affiliation(s)
| | - Niccolò Riccardi
- StopTB Italia ODV, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Laura Saderi
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Vintila BI, Arseniu AM, Morgovan C, Butuca A, Sava M, Bîrluțiu V, Rus LL, Ghibu S, Bereanu AS, Roxana Codru I, Gligor FG. A Pharmacovigilance Study Regarding the Risk of Antibiotic-Associated Clostridioides difficile Infection Based on Reports from the EudraVigilance Database: Analysis of Some of the Most Used Antibiotics in Intensive Care Units. Pharmaceuticals (Basel) 2023; 16:1585. [PMID: 38004450 PMCID: PMC10675398 DOI: 10.3390/ph16111585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The Gram-positive anaerobic bacterium Clostridioides difficile (CD) can produce intense exotoxins, contributing to nosocomial infections, and it is the most common cause of health-care-associated infectious diarrhea. Based on spontaneous Individual Case Safety Reports from EudraVigilance (EV), we conducted a descriptive analysis of Clostridioides difficile infection (CDI) cases that reported a spontaneous adverse reaction related to using ceftriaxone, colistimethate, ciprofloxacin, gentamicin, linezolid, meropenem, and piperacillin/tazobactam. Most ADR reports registered in EV that were related to CDI were associated with ceftriaxone (33%), ciprofloxacin (28%), and piperacillin/tazobactam (21%). Additionally, the disproportionality analysis performed showed that all studied antibiotics had a lower reporting probability when compared to clindamycin. A causal relationship between a drug and the occurrence of an adverse reaction cannot be established from EV data alone because the phenomena of underreporting, overreporting, and reporting bias may affect the results. Based on the analysis of the collected data, this study underlines the importance of surveillance and monitoring programs for the consumption of antibiotics. Furthermore, it is essential to use standardized laboratory tests to define CDI's nature accurately. To prevent this infection, specialists should collaborate and adhere strictly to antibiotic stewardship programs, hygiene practices, and isolation protocols.
Collapse
Affiliation(s)
- Bogdan Ioan Vintila
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Mihai Sava
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Victoria Bîrluțiu
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
- Clinical Medical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Luca Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Simona Bereanu
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (B.I.V.); (A.S.B.); (I.R.C.)
- County Clinical Emergency Hospital, 550245 Sibiu, Romania;
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.); (A.B.); (L.L.R.); (F.G.G.)
| |
Collapse
|
4
|
Navarro S, Keith K, Stafylis C, Konda K, Klausner JD. Safety of Linezolid During Pregnancy. Sex Transm Dis 2023; 50:e37-e40. [PMID: 37643415 DOI: 10.1097/olq.0000000000001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT With growing maternal and congenital syphilis epidemics and shortages of benzathine penicillin, alternative syphilis treatments are needed. Linezolid has shown efficacy against syphilis in animal models. This review found no teratogenic effects. Some adverse effects were seen in animals, but none were reported in a small number of human studies.
Collapse
Affiliation(s)
- Sabrina Navarro
- From the Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | | | | | | | | |
Collapse
|
5
|
Cattaneo D, Marriott DJ, Gervasoni C. Hematological toxicities associated with linezolid therapy in adults: key findings and clinical considerations. Expert Rev Clin Pharmacol 2023; 16:219-230. [PMID: 36787631 DOI: 10.1080/17512433.2023.2181160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Linezolid can cause serious adverse effects including thrombocytopenia and anemia. Here, we focus specifically on linezolid-related hematological toxicity in adult patients requiring prolonged drug treatment. AREAS COVERED We review the available evidence on the likelihood of hematological toxicity in adult patients treated with linezolid, with a focus on the main risk factors and strategies to prevent this adverse event. A MEDLINE PubMed search for articles published from January 2000 to May 2022 was completed matching the terms linezolid, hematology, hematological toxicity, anemia, and thrombocytopenia. Moreover, additional studies were identified from the reference lists of retrieved articles. EXPERT OPINION Thrombocytopenia is the major concern with administration of linezolid for Gram-positive infections, whereas anemia is more common in patients with tuberculosis. The important clinical risk factors for the development of linezolid-related thrombocytopenia are aging, renal dysfunction, low baseline platelet count, duration of treatment, and linezolid plasma trough concentrations >8 mg/L. Patients receiving linezolid for extended periods of time or patient populations with increased risk of altered drug pharmacokinetics would benefit from therapeutic drug monitoring or from the availability of toxico-dynamic predictive models to optimize linezolid dosing.
Collapse
Affiliation(s)
- Dario Cattaneo
- Department of Infectious Diseases, Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.,Department of Laboratory Medicine, Unit of Clinical Pharmacology ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Deborah Je Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia
| | - Cristina Gervasoni
- Department of Infectious Diseases, Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.,Department of Infectious Diseases ASST Fatebenefratelli Sacco University Hospital, IIIrd Division of Infectious DiseasesMilan, Italy
| |
Collapse
|
6
|
Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach. J Biol Inorg Chem 2023; 28:153-171. [PMID: 36484826 PMCID: PMC9734640 DOI: 10.1007/s00775-022-01979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Collapse
|
7
|
Kaskatepe B, Ozturk S. Assessment of synergistic activity of rhamnolipid and linezolid against methicillin-resistant Staphylococcus aureus in-vitro and in-vivo with Galleria mellonella larvae model. Microb Pathog 2023; 174:105945. [PMID: 36526037 DOI: 10.1016/j.micpath.2022.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance, one of the most crucial public health problems, has increased the interest in synergy studies of antibiotics with existing antibiotics and natural compounds to make current treatment more effective in addition to new drug development. In this study, the effectiveness of rhamnolipid and linezolid on the Galleria mellonella larvae model in-vitro and in-vivo against Methicillin-resistant Staphylococcus aureus isolates, which are problematic in treatment, were investigated. Four S.aureus (One ATCC 29213 strain and three methicillin-resistant strains) were used in the study. Two MRSA isolates were resistant to linezolid, and one was susceptible. Partial synergy was observed in one resistant strain, and although no synergy was observed in the other resistant strain, the minimum inhibitory concentration of the resistant strain decreased from 16 to 4 μg/mL with a four-fold decrease and reached the susceptibility limit. No change was observed in the MIC of linezolid-susceptible strains. The G.mellonella larval model demonstrated that combined therapy was more effective than monotherapy by survival function tests and CFU determination. RML/LNZ combination improved survival compared to monotherapy and decreased the bacterial burden from 108 to 103.
Collapse
Affiliation(s)
- Banu Kaskatepe
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, 06560, Turkey.
| | - Sukran Ozturk
- Zonguldak Bulent Ecevit University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Zonguldak, 67100, Turkey
| |
Collapse
|
8
|
Gordon O, Dikeman DA, Ortines RV, Wang Y, Youn C, Mumtaz M, Orlando N, Zhang J, Patel AM, Gough E, Kaushik A, Nuermberger EL, Upton AM, Fotouhi N, Miller LS, Archer NK. The Novel Oxazolidinone TBI-223 Is Effective in Three Preclinical Mouse Models of Methicillin-Resistant Staphylococcus aureus Infection. Microbiol Spectr 2022; 10:e0245121. [PMID: 36106881 PMCID: PMC9603142 DOI: 10.1128/spectrum.02451-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus is an important cause of various infections in humans, including bacteremia, skin and soft tissue infections, and infections associated with implanted medical devices. The emergence of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) underscores the urgent and unmet need to develop novel, safe, and effective antibiotics against these multidrug-resistant clinical isolates. Oxazolidinone antibiotics such as linezolid have excellent oral bioavailability and provide coverage against MRSA infections. However, their widespread and long-term use is often limited by adverse effects, especially myelosuppression. TBI-223 is a novel oxazolidinone with potentially reduced myelosuppression, compared to linezolid, but its efficacy against MRSA infections is unknown. Therefore, the preclinical efficacy of TBI-223 (80 and 160 mg/kg twice daily) was compared with that of linezolid (40 and 80 mg/kg twice daily) and sham treatment in mouse models of MRSA bacteremia, skin wound infection, and orthopedic-implant-associated infection. The dosage was selected based on mouse pharmacokinetic analysis of both linezolid and TBI-223, as well as measurement of the MICs. In all three models, TBI-223 and linezolid had comparable dose-dependent efficacies in reducing bacterial burden and disease severity, compared with sham-treated control mice. Taken together, these findings indicate that TBI-223 represents a novel oxazolidinone antibiotic that may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans. IMPORTANCE Staphylococcus aureus is the predominant cause of bloodstream, skin, and bone infections in humans. Resistance to commonly used antibiotics is a growing concern, making it more difficult to treat staphylococcal infections. Use of the oxazolidinone antibiotic linezolid against resistant strains is hindered by high rates of adverse reactions during prolonged therapy. Here, a new oxazolidinone named TBI-223 was tested against S. aureus in three mouse models of infection, i.e., bloodstream infection, skin infection, and bone infection. We found that TBI-223 was as effective as linezolid in these three models. Previous data suggest that TBI-223 has a better safety profile than linezolid. Taken together, these findings indicate that this new agent may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammed Mumtaz
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Orlando
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aman M. Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amit Kaushik
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Immunology, Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Nickel Nanoparticles: Applications and Antimicrobial Role against Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics (Basel) 2022; 11:antibiotics11091208. [PMID: 36139986 PMCID: PMC9495148 DOI: 10.3390/antibiotics11091208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved vast antibiotic resistance. These strains contain numerous virulence factors facilitating the development of severe infections. Considering the costs, side effects, and time duration needed for the synthesis of novel drugs, seeking efficient alternative approaches for the eradication of drug-resistant bacterial agents seems to be an unmet requirement. Nickel nanoparticles (NiNPs) have been applied as prognostic and therapeutic cheap agents to various aspects of biomedical sciences. Their antibacterial effects are exerted via the disruption of the cell membrane, the deformation of proteins, and the inhibition of DNA replication. NiNPs proper traits include high-level chemical stability and binding affinity, ferromagnetic properties, ecofriendliness, and cost-effectiveness. They have outlined pleomorphic and cubic structures. The combined application of NiNPs with CuO, ZnO, and CdO has enhanced their anti-MRSA effects. The NiNPs at an approximate size of around 50 nm have exerted efficient anti-MRSA effects, particularly at higher concentrations. NiNPs have conferred higher antibacterial effects against MRSA than other nosocomial bacterial pathogens. The application of green synthesis and low-cost materials such as albumin and chitosan enhance the efficacy of NPs for therapeutic purposes.
Collapse
|
10
|
Toirac B, Garcia-Casas A, Monclús MA, Aguilera-Correa JJ, Esteban J, Jiménez-Morales A. Influence of Addition of Antibiotics on Chemical and Surface Properties of Sol-Gel Coatings. MATERIALS 2022; 15:ma15144752. [PMID: 35888219 PMCID: PMC9317242 DOI: 10.3390/ma15144752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/30/2023]
Abstract
Infection is one of the most common causes that leads to joint prosthesis failure. In the present work, biodegradable sol-gel coatings were investigated as a promising controlled release of antibiotics for the local prevention of infection in joint prostheses. Accordingly, a sol-gel formulation was designed to be tested as a carrier for 8 different individually loaded antimicrobials. Sols were prepared from a mixture of MAPTMS and TMOS silanes, tris(tri-methylsilyl)phosphite, and the corresponding antimicrobial. In order to study the cross-linking and surface of the coatings, a battery of examinations (Fourier-transform infrared spectroscopy, solid-state 29Si-NMR spectroscopy, thermogravimetric analysis, SEM, EDS, AFM, and water contact angle, thickness, and roughness measurements) were conducted on the formulations loaded with Cefoxitin and Linezolid. A formulation loaded with both antibiotics was also explored. Results showed that the coatings had a microscale roughness attributed to the accumulation of antibiotics and organophosphites in the surface protrusions and that the existence of chemical bonds between antibiotics and the siloxane network was not evidenced.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- Correspondence:
| | - Amaya Garcia-Casas
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Miguel A. Monclús
- Micro- and Nano-Mechanics Department, Madrid Institutes for Advanced Studies (IMDEA)—Materials, 28906 Madrid, Spain;
| | - John J. Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
11
|
Wei Y, Zhang H, Fu M, Ma R, Li R, Kong L. Plasma and Intrapulmonary Pharmacokinetics, and Dosage Regimen Optimization of Linezolid for Treatment of Gram-Positive Cocci Infections in Patients with Pulmonary Infection After Cerebral Hemorrhage. Infect Drug Resist 2022; 15:1733-1742. [PMID: 35422643 PMCID: PMC9004730 DOI: 10.2147/idr.s357300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yongli Wei
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - He Zhang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Maowu Fu
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Rui Ma
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Ronghui Li
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
- Correspondence: Ronghui Li, Neurosurgery Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China, Email
| | - Lingti Kong
- Department of Pharmacy, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
- Lingti Kong, Department of Pharmacy, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China, Email
| |
Collapse
|
12
|
Dose Optimization of Combined Linezolid and Fosfomycin against Enterococcus by Using an In Vitro Pharmacokinetic/Pharmacodynamic Model. Microbiol Spectr 2021; 9:e0087121. [PMID: 34851157 PMCID: PMC8635129 DOI: 10.1128/spectrum.00871-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The rapid spread of antibiotic resistance among Enterococcus has prompted considerable interest in determining the dosage regimen of linezolid combined with fosfomycin. A checkerboard assay was employed to evaluate whether linezolid combined with fosfomycin had a synergistic effect on Enterococcus isolates from the hospital, including three drug-resistant strains (MIC of linezolid [MICLZD], ≥8 mg/L; MIC of fosfomycin [MICFOF], ≥256 mg/L). The in vitro static time-kill assay, dynamic pharmacokinetic (PK)/pharmacodynamic (PD) model, and semimechanistic PK/PD model were used to explore and predict effective combined dosage regimens. The checkerboard assay and in vitro static time-kill assay demonstrated that linezolid combined with fosfomycin has a synergistic effect on drug-resistant and sensitive Enterococcus. In the in vitro PK/PD model, the dosage regimen of linezolid (8 mg/L or 12 mg/L, steady-state concentration) combined with fosfomycin (6 g or 8 g) via a 0.5-h infusion every 8 h effectively suppressed bacterial growth at 24 h with a 3 log10 CFU/mL decrease compared with the initial inocula against two resistant and one sensitive Enterococcus isolates. The semimechanistic PK/PD model predicted that linezolid (more than 16 mg/L) combined with fosfomycin (6 g or 10 g) via a 0.5-h infusion every 8 h was required to achieve a 4 log10 CFU/mL decrease at 24 h against Enterococcus isolates (MICLZD ≥ 8 mg/L and MICFOF ≥ 256 mg/L). According to the prediction of the semimechanical PK/PD model, the effect of the combination was driven by linezolid, with fosfomycin enhancing the effect. Our study is the first to explore the synergistic effects of these two drugs from a qualitative and quantitative perspective and provides a simulation tool for future studies. IMPORTANCE In this study, we found that linezolid combined with fosfomycin could kill Enterococcus in vitro and that the administered dose was significantly lower after the combination treatment, which could reduce adverse effects and the development of drug resistance. The potential mechanism of the two-drug combination against Enterococcus was revealed from a quantitative perspective, which is an important step toward dose optimization in simulated humans. We hope that our research will help build a better relationship between clinicians and patients as we work together to address the challenges of antibiotic resistance in the 21st century.
Collapse
|
13
|
Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics (Basel) 2021; 10:antibiotics10091116. [PMID: 34572698 PMCID: PMC8471638 DOI: 10.3390/antibiotics10091116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Gram positive pathogens are a significant cause of healthcare-associated infections, with Staphylococci and Enterococci being the most prevalent ones. Vancomycin, a last resort glycopeptide, is used to fight these bacteria but the emergence of resistance against this drug leaves some patients with few therapeutic options. To counter this issue, new generations of antibiotics have been developed but resistance has already been reported. In this article, we review the strategies in place or in development to counter vancomycin-resistant pathogens. First, an overview of traditional antimicrobials already on the market or in the preclinical or clinical pipeline used individually or in combination is summarized. The second part focuses on the non-traditional antimicrobials, such as antimicrobial peptides, bacteriophages and nanoparticles. The conclusion is that there is hitherto no substitute equivalent to vancomycin. However, promising strategies based on drugs with multiple mechanisms of action and treatments based on bacteriophages possibly combined with conventional antibiotics are hoped to provide treatment options for vancomycin-resistant Gram-positive pathogens.
Collapse
|
14
|
In vitro and in vivo activity of oxazolidinone candidate OTB-658 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0097421. [PMID: 34398674 DOI: 10.1128/aac.00974-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we assess anti-tuberculosis activity of OTB-658 in vitro and in vivo. In vitro, OTB-658 showed bacteriostatic effectiveness with a lower minimum inhibitory concentration than linezolid against Mycobacterium tuberculosis. The minimal bactericidal concentrations and time-kill curves for OTB-658 indicated similar inhibition activity to that of linezolid. OTB-658 entered macrophages to inhibit of M. tuberculosis growth. OTB-658 had a low mutant frequency (10-8), which would prevent drug-resistant mutations from emerging in combination regimens. In vivo, OTB-658 reduced colony-forming unit counts in the lungs and slightly inhibited bacterial growth in the spleen in the early stage and steady state in acute and chronic murine TB models. These results support the preclinical evaluation of OTB-658 and further clinical trials in China.
Collapse
|
15
|
Sikder A, Chaudhuri A, Mondal S, Singh NDP. Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm. ACS APPLIED BIO MATERIALS 2021; 4:4667-4683. [PMID: 35007019 DOI: 10.1021/acsabm.1c00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The widespread occurrence of infections from multidrug-resistant (MDR) bacteria is a global health problem. It has been amplified over the past few years due to the increase in adaptive traits in bacteria and lack of advanced treatment strategies. Because of the low bioavailability and limited penetration at infected sites, the existing antibiotics often fail to resist bacterial growth. Recently, developed stimuli-responsive drug delivery systems and combinatorial therapeutic systems based on nanoparticles, metal-organic frameworks, hydrogels, and organic chromophores offer the ability to improve the therapeutic efficacy of antibiotics by reducing drug resistance and other side effects. These therapeutic systems have been designed with the relevant chemical and physical properties that respond to specific triggers resulting in spatiotemporal controlled release and site-specific transportability. This review highlights the latest development of single and dual/multistimuli-responsive antibiotic delivery systems for combination therapies to treat MDR bacterial infections and biofilm eradication.
Collapse
Affiliation(s)
- Antara Sikder
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Amrita Chaudhuri
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Saugat Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| |
Collapse
|
16
|
Song X, Zeng M, Wu Y, Pan Y. Competence Mining of Vancomycin (VAN) in the Management of Infections Due to Bacterial Strains With High VAN Minimum Inhibitory Concentrations (MICs): A Novel Dosing Strategy Based on Pharmacokinetic/Pharmacodynamic Modeling. Front Microbiol 2021; 12:649757. [PMID: 33967986 PMCID: PMC8100448 DOI: 10.3389/fmicb.2021.649757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing emergence of bacterial strains with high VAN MICs (BSH–VAN–M), such as Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus bovis, results in growing concern that VAN is not effective against these isolates. Due to the limited data on VAN against BSH–VAN–M and the application limits of drugs currently considered to be effective for BSH–VAN–M, exploration of “new usages for old drugs” is reasonable to improve and maximize the efficacy of existing antibiotics. This study aimed to construct a novel dosing strategy to mine the competence of VAN in the management of BSH–VAN–M infections. Herein, we optimized the traditional intermittent i.v. infusion (TIII) method to create an optimal two-step infusion (OTSI). With pharmacokinetic (PK)/pharmacodynamic (PD) modeling at the targeted ratio of the daily area under the concentration-time curve (AUC0–24) to the minimum inhibitory concentration (MIC) (AUC0–24/MIC) of 400, we used Monte Carlo simulations to evaluate the efficacy of 25 VAN regimens (including 15 OTSI regimens and 10 TIII regimens with daily doses of up to 6 g) to treat pneumonia, meningitis, sternal osteomyelitis, mastitis, pleuritis, bacteremia, and bacterial pericarditis resulting from isolates with MICs of ≤64 mg/L and to the current E. faecalis, E. faecium, S. aureus, S. epidermidis, and S. bovis populations with a pooled MIC distribution. Our data indicated that 4 g/day VAN, with an OTSI but not a TIII, for mastitis, pleuritis, bacteremia, and bacterial pericarditis due to isolates with MICs of ≤4 mg/L or to the current E. faecalis, S. aureus, S. epidermidis, and S. bovis populations achieved the desired PK/PD exposure at the AUC0–24/MIC target of 400. This study suggests the superiority and feasibility of OTSI relative to TIII for the competence mining of VAN against BSH–VAN–M from the perspective of PK/PD and provides a new resource for understanding how PK/PD modeling shapes the performance of VAN to meet the growing challenges of BSH–VAN–M infections.
Collapse
Affiliation(s)
- Xiangqing Song
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Meizi Zeng
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Wu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Pan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|