1
|
Mochetti MM, Pessoa AS, Tokuhara CK, Sanches MLR, Senger C, Moreira MAA, Oliveira RC. Red light-emitting diode therapy minimizes the functional deleterious effects of the antiretroviral ritonavir on osteoblasts in vitro. Lasers Med Sci 2024; 39:34. [PMID: 38231300 DOI: 10.1007/s10103-024-03979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE Long-term human immunodeficiency virus (HIV)-infected patients are considered at higher risk for osteoporosis. Among the various causes that lead these patients to lower bone health, there is the use of antiretroviral drugs (ARVs), especially protease inhibitors (PI), such as ritonavir (RTV). In this context, emerge the potential benefits of LED therapy, whose effects on bone cells are currently being extensively studied, showing a modulation in cell differentiation. However, it remains unclear if photobiostimulation might interfere with RTV effects on osteoblast differentiation. METHODS In the present study, we investigated the effects of red LED (625 nm) irradiation (15 mW/cm2, 0.2 J/cm2, and 8 mW/cm2, 0.12 J/cm2) on osteoblast cell line MC3T3-E1 treated with RTV (2.5, 5, and 10 μg/mL). RESULTS Our results indicated that red LED irradiation was able to reverse, or at least minimize, the deleterious effects of RTV on the osteoblasts. Neither the ARV treatments 5 and 10 μg/mL (104.4% and 95.01%) nor the LED protocols (100.3% and 105.7%) statistically altered cell viability, assessed by the MTT assay. Also, the alkaline phosphatase activity and mineralization showed a decrease in osteoblast activity followed by ARV exposure (39.3-73%), which was attenuated by LED in more than 70% with statistical significance (p < 0.05). CONCLUSION In conclusion, photobiostimulation with red LED at 625 nm was associated with improved beneficial biological effects as a potential inducer of osteogenic activity on RTV-affected cells. This is the first study that investigated the benefits of red LED irradiation over ARV-treated in vitro osteoblasts.
Collapse
Affiliation(s)
- Matheus Menão Mochetti
- Medicine Course, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Adriano Souza Pessoa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | | | - Mariana Liessa Rovis Sanches
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Cassia Senger
- Medicine Course, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Aparecida Andrade Moreira
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|
2
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
3
|
Dawoud LE, Hegazy EM, Galhom RA, Youssef MM. Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells-an in vitro Study. Lasers Med Sci 2021; 37:1993-2003. [PMID: 34787763 DOI: 10.1007/s10103-021-03461-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.
Collapse
Affiliation(s)
- Lama E Dawoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41523, Egypt
| | - Mervat M Youssef
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| |
Collapse
|
4
|
Kong Y, Duan J, Liu F, Han L, Li G, Sun C, Sang Y, Wang S, Yi F, Liu H. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev 2021; 50:12828-12872. [PMID: 34661592 DOI: 10.1039/d1cs00572c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic. In most cases, external macroscopic physical fields cannot be used to modulate stem cell fate, as only the localized physical signals accepted by the surface receptors can regulate stem cell differentiation via nanoscale fibrin polysaccharide fibers. However, surface receptors related to certain kinds of physical signals are still unknown. Recently, significant progress has been made in the development of functional materials for energy conversion. Consequently, localized physical fields can be produced by absorbing energy from an external physical field and subsequently releasing another type of localized energy through functional nanostructures. Based on the above concepts, we propose a methodology that can be utilized for stem cell engineering and for the regulation of stem cell fate via nanostructure-mediated physical signals. In this review, the combined effect of various approaches and mechanisms of physical signals provides a perspective on stem cell fate promotion by nanostructure-mediated physical signals. We expect that this review will aid the development of remote-controlled and wireless platforms to physically guide stem cell differentiation both in vitro and in vivo, using optimized stimulation parameters and mechanistic investigations while driving the progress of research in the fields of materials science, cell biology, and clinical research.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China.
| | - Gang Li
- Neurological Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China. .,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
5
|
LED photobiomodulation therapy combined with biomaterial as a scaffold promotes better bone quality in the dental alveolus in an experimental extraction model. Lasers Med Sci 2021; 37:1583-1592. [PMID: 34767116 DOI: 10.1007/s10103-021-03407-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/20/2021] [Indexed: 10/19/2022]
Abstract
A bone scaffold added to the dental alveolus immediately after an extraction avoids bone atrophy and deformity at the tooth loss site, enabling rehabilitation with implants. Photobiomodulation accelerates bone healing by stimulating blood flow, activating osteoblasts, diminishing osteoclastic activity, and improving the integration of the biomaterial with the bone tissue. The aim of the present study was to evaluate the effect of photobiomodulation with LED at a wavelength of 850 nm on bone quality in Wistar rats submitted to molar extraction with and without a bone graft using hydroxyapatite biomaterial (Straumann® Cerabone®). Forty-eight rats were distributed among five groups (n = 12): basal (no interventions); control (extraction) (basal and control were the same animal, but at different sides); LED (extraction + LED λ = 850 nm); biomaterial (extraction + biomaterial), and biomaterial + LED (extraction + biomaterial + LED λ = 850 nm). Euthanasia occurred at 15 and 30 days after the induction of the extraction. The ALP analysis revealed an improvement in bone formation in the control and biomaterial + LED groups at 15 days (p = 0.0086 and p = 0.0379, Bonferroni). Moreover, the LED group had better bone formation compared to the other groups at 30 days (p = 0.0007, Bonferroni). In the analysis of AcP, all groups had less resorption compared to the basal group. Bone volume increased in the biomaterial, biomaterial + LED, and basal groups in comparison to the control group at 15 days (p < 0.05, t-test). At 30 days, the basal group had greater volume compared to the control and LED groups (p < 0.05, t-test). LED combined with the biomaterial improved bone formation in the histological analysis and diminished bone degeneration (demonstrated by the reduction in AcP), promoting an increase in bone density and volume. LED may be an important therapy to combine with biomaterials to promote bone formation, along with the other known benefits of this therapy, such as the control of pain and the inflammatory process.
Collapse
|
6
|
Arshad M, Ghanavati Z, Aminishakib P, Rasouli K, Shirani G. Effect of Light-Emitting Diode Phototherapy on Allograft Bone After Open Sinus Lift Surgery: A Randomized Clinical Trial (Concurrent Parallel). J Lasers Med Sci 2021; 12:e16. [PMID: 34733739 DOI: 10.34172/jlms.2021.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Phototherapy with a light-emitting diode (LED) is used in medicine due to its potential bio-stimulatory effects on the human body. However, controversy still exists regarding the efficacy of low-level laser therapy (LLLT) and phototherapy with LED. This in vivo study aimed to quantitatively and qualitatively assess the newly formed bone following LED phototherapy of the human maxillary sinuses. Methods: This randomized clinical trial (concurrent parallel) was conducted on 44 patients in two groups (n=22) at the Implant Department of Tehran University of Medical Sciences. Randomization was done by a random sequence generator program. The inclusion criteria were absence of chronic sinusitis and chronic bone marrow conditions, no history of surgery at the site, absence of diabetes mellitus, no history of chemotherapy or radiotherapy, maxillary premolar edentulism, and signing informed consent forms. Group A underwent LED phototherapy with 620 ± 2 nm wavelength for 20 minutes daily for a total of 21 days after sinus lift surgery. Group B served as the control group and did not receive phototherapy. After 6 months, the grafted sites were re-opened for implant placement, and bone biopsy samples were obtained using a trephine bur. The samples were stained with hematoxylin and eosin and inspected under a light microscope. The results were statistically analyzed using the Mann-Whitney U test. Both the surgeon and pathologist were blinded to the group allocation of patients. Results: Forty tissue specimens were analyzed. Insignificant differences existed between the two groups in terms of the degree of inflammation, bone quality, and maturity of collagen. Histological analyses revealed no significant difference in the mineralized areas of bone between the two groups (P >0.05). Conclusion: The results indicated that LED phototherapy cannot significantly enhance osteogenesis after sinus lift surgery. No side effects were observed in the experimental group.
Collapse
Affiliation(s)
- Mahnaz Arshad
- Associate Professor, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran Iran.,Department of Prosthodontics, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghanavati
- D.D.S., School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouyan Aminishakib
- Associate Professor, Oral and Maxillofacial Pathologist, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Rasouli
- Dental Student, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Shirani
- Associate Professor, Department of Oral and Maxillofacial Surgery, Craniomaxillofacial Research Center, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
The Effects of Photobiomodulation on Bone Defect Repairing in a Diabetic Rat Model. Int J Mol Sci 2021; 22:ijms222011026. [PMID: 34681687 PMCID: PMC8541159 DOI: 10.3390/ijms222011026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to examine the prospective therapeutic effects of photobiomodulation on the healing of bone defects in diabetic mellitus (DM) using rat models to provide basic knowledge of photobiomodulation therapy (PBMT) during bone defect repair. For in vitro study, an Alizzarin red stain assay was used to evaluate the effect of PBMT on osteogenic differentiation. For in vivo study, micro-computed tomography (microCT) scan, H&E and IHC stain analysis were used to investigate the effect of PBMT on the healing of the experimental calvarial defect (3 mm in diameter) of a diabetic rat model. For in vitro study, the high glucose groups showed lower osteogenic differentiation in both irradiated and non-irradiated with PBMT when compared to the control groups. With the PBMT, all groups (control, osmotic control and high glucose) showed higher osteogenic differentiation when compared to the non-irradiated groups. For in vivo study, the hyperglycemic group showed significantly lower bone regeneration when compared to the control group. With the PBMT, the volume of bone regeneration was increasing and back to the similar level of the control group. The treatment of PBMT in 660 nm could improve the bone defect healing on a diabetic rat calvarial defect model.
Collapse
|
8
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
9
|
Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A. Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway. Int J Mol Sci 2021; 22:ijms22147586. [PMID: 34299204 PMCID: PMC8304212 DOI: 10.3390/ijms22147586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-β-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Reem Hanna
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK;
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Nicola De Angelis
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), 11991 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
11
|
Rech CA, Pansani TN, Cardoso LM, Ribeiro IM, Silva-Sousa YTC, de Souza Costa CA, Basso FG. Photobiomodulation using LLLT and LED of cells involved in osseointegration and peri-implant soft tissue healing. Lasers Med Sci 2021; 37:573-580. [PMID: 33844114 DOI: 10.1007/s10103-021-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated the influence of photobiomodulation (PBM) using low-level laser therapy (PBM/LLLT) or light-emitting diode (PBM/LED) therapy on peri-implant tissue healing. A laboratory model was used to assess the adhesion and metabolism of osteoblasts (SaOs-2), human gingival fibroblasts (HGF), and normal oral keratinocytes (NOK) seeded on a titanium (Ti) surface. After seeding the cells on disks of Ti placed in wells of 24-well plates, three irradiations were performed every 24 h at energy density of 3 J/cm2. For PBM/LLLT, a LaserTABLE device was used with a wavelength of 780 nm and 25 mW, while for PBM/LED irradiation, a LEDTABLE device was used at 810 nm, 20 mW, at a density of 3 J/cm2. After irradiations, the number of cells (NC) attached and spread on the Ti surface, cell viability (CV), total protein (TP), and collagen (Col) synthesis were assessed. Alkaline phosphate activity (ALP) was evaluated only for SaOs-2. Data were submitted to ANOVA complemented by Turkey statistical tests at a 5% significance level. PBM significantly increased adherence of NOK to the Ti surface, while no significant effect was observed for SaOs-2 and HGF. PBM positively affected CV, as well as Col and TP synthesis, in distinct patterns according to the cell line. Increased ALP activity was observed only in those cells exposed to PBM/LLLT. Considering cell specificity, this investigation reports that photobiomodulation with low-power laser and LED at determined parameters enhances cellular functions related to peri-implant tissue healing in a laboratory model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernanda Gonçalves Basso
- Universidade de Ribeirão Preto, UNAERP, Ribeirão Preto, SP, Brazil. .,Department of Dentistry, Ribeirão Preto University (UNAERP), 2201 Costábile Romano Avenue, Ribeirão Preto, SP, 14096-900, Brazil.
| |
Collapse
|
12
|
Wu Y, Zhu T, Yang Y, Gao H, Shu C, Chen Q, Yang J, Luo X, Wang Y. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021; 36:1535-1543. [PMID: 33719020 DOI: 10.1007/s10103-021-03278-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). PDLSCs were derived from human periodontal ligament tissues of premolars and were irradiated with 0 (control group), 1, 3, or 5 J/cm2 red LED in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reaction (RT-PCR) results. Osteoblast-associated proteins (Runx2, OCN, OPN, and BSP) were detected using western blotting. The results of the MTT assay indicated that PDLSCs in the irradiation groups exhibited a higher proliferation rate than those in the control group (P < 0.05). ALP results showed that after 7 days of illumination, only 5 J/cm2 promoted the expression of ALP of PDLSCs. However, after 14 days of illumination, the irradiation treatments did not increase ALP activity. The results of alizarin red staining showed that red LED promoted osteogenic differentiation of the PDLSCs. The real-time polymerase chain reaction (RT-PCR) results demonstrated that red LED upregulated the expression levels of osteogenic genes. Expression of the proteins BSP, OPN, OCN, and Runx2 in the irradiation groups was higher than that in the control group. Our results confirmed that low-energy red LED at 1, 3, and 5 J/cm2 promotes proliferation and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Wu
- Southwest Medical University, Lu Zhou, 646000, China.,West China-Guang'an Hospital, Sichuan University, Guang'an, 638550, China
| | - Tingting Zhu
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Yaoyao Yang
- Hospital/School of Stomatology, Zunyi Medical University, Zun Yi, 563000, China
| | - Hong Gao
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Chunxia Shu
- Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- Southwest Medical University, Lu Zhou, 646000, China
| | - Juan Yang
- Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- Hospital of Stomatology, Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
13
|
Costa ACDF, Maia TAC, de Barros Silva PG, Abreu LG, Gondim DV, Santos PCF. Effects of low-level laser therapy on the orthodontic mini-implants stability: a systematic review and meta-analysis. Prog Orthod 2021; 22:6. [PMID: 33586080 PMCID: PMC7882650 DOI: 10.1186/s40510-021-00350-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives The aim of this systematic review and meta-analysis was to assess the effects of low-level laser therapy (LLLT) on the orthodontic mini-implants (OMI) stability. Materials and methods An unrestricted electronic database search in PubMed, Science Direct, Embase, Scopus, Web of Science, Cochrane Library, LILACS, Google Scholar, and ClinicalTrials.gov and a hand search were performed up to December 2020. Randomized clinical trials (RCTs) or non-randomized clinical trials (Non-RCTs) that assessed the effects of LLLT on the OMI stability were included. Data regarding the general information, LLLT characteristics, and outcomes were extracted. The authors performed risk of bias assessment with Cochrane Collaboration’s or ROBINS-I tool. Meta-analysis was also conducted. Results Five RCTs and one Non-RCT were included and 108 patients were evaluated. The LLLT characteristics presented different wavelength, power, energy density, irradiation time, and protocol duration. Five RCTs had a low risk of selection bias. Two RCTs had a low risk of performance and detection bias. All RCTs had a low risk of attrition bias, reporting bias and other bias. The Non-RCT presented a low risk of bias for all criteria, except for the bias in selection of participants. The meta-analysis revealed that LLLT significantly increased the OMI stability (p < 0.001, Cohen’s d = 0.67) and the highest clinical benefit was showed after 1 (p < 0.001, Cohen’s d = 0.75), 2 (p < 0.001, Cohen’s d = 1.21), and 3 (p < 0.001, Cohen’s d = 1.51) months of OMI placement. Conclusions LLLT shows positive effects on the OMI stability. Supplementary Information The online version contains supplementary material available at 10.1186/s40510-021-00350-y.
Collapse
Affiliation(s)
- Ana Carolina de Figueiredo Costa
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Monsenhor Furtado Street, Rodolfo Teófilo, Fortaleza, Ceará, 60430-350, Brazil.
| | - Thays Allane Cordeiro Maia
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Monsenhor Furtado Street, Rodolfo Teófilo, Fortaleza, Ceará, 60430-350, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Monsenhor Furtado Street, Rodolfo Teófilo, Fortaleza, Ceará, 60430-350, Brazil
| | - Lucas Guimarães Abreu
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Delane Viana Gondim
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Monsenhor Furtado Street, Rodolfo Teófilo, Fortaleza, Ceará, 60430-350, Brazil.,Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro César Fernandes Santos
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Monsenhor Furtado Street, Rodolfo Teófilo, Fortaleza, Ceará, 60430-350, Brazil
| |
Collapse
|
14
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
15
|
Sabino VG, Ginani F, da Silva TN, Cabral AA, Mota-Filho HG, Freire MCLC, de Souza Furtado P, Assumpção PWMC, Cabral LM, Moura CE, Rocha HAO, de Souza Picciani PH, Barboza CAG. Laser therapy increases the proliferation of preosteoblastic MC3T3-E1 cells cultured on poly(lactic acid) films. J Tissue Eng Regen Med 2020; 14:1792-1803. [PMID: 33010118 DOI: 10.1002/term.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022]
Abstract
This study aimed to verify the efficacy of low-level laser irradiation (LLLI) on the proliferation of MC3T3-E1 preosteoblasts cultured on poly(lactic acid) (PLA) films. The produced films were characterized by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy, differential scanning calorimetry, and X-ray diffraction. The MC3T3-E1 cells were cultured as three different groups: Control-cultured on polystyrene plastic surfaces; PLA-cultured on PLA films; and PLA + Laser-cultured on PLA films and submitted to laser irradiation (660 nm; 30 mW; 4 J/cm2 ). Cell proliferation was analyzed by Trypan blue and Alamar blue assays at 24, 48, and 72 h after irradiation. Cell viability was assessed by Live/Dead assay, apoptosis-related events were evaluated by Annexin V/propidium iodide (PI) expression, and cell cycle events were analyzed by flow cytometry. Cell morphology on the surface of films was assessed by SEM. Cell counting and biochemical assay results indicate that the PLA + Laser group exhibited higher proliferation (p < 0.01) when compared with the Control and PLA groups. The Live/Dead and Annexin/PI assays indicate increased cell viability in the PLA + Laser group that also presented a higher percentage of cells in the proliferative cell cycle phases (S and G2/M). These findings were also confirmed by the higher cell density observed in the irradiated group through SEM images. The evidence from this study supports the idea that LLLI increases the proliferation of MC3T3-E1 cells on PLA surfaces, suggesting that it can be potentially applied in bone tissue engineering.
Collapse
Affiliation(s)
| | - Fernanda Ginani
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Lucio Mendes Cabral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Eduardo Moura
- Department of Animal Sciences, Federal Rural University of Semiarid Region, Mossoró, Brazil
| | | | | | | |
Collapse
|
16
|
Kim YM, Ko SH, Shin YI, Kim Y, Kim T, Jung J, Lee SY, Kim NG, Park KJ, Ryu JH. Light-emitting diode irradiation induces AKT/mTOR-mediated apoptosis in human pancreatic cancer cells and xenograft mouse model. J Cell Physiol 2020; 236:1362-1374. [PMID: 32749680 DOI: 10.1002/jcp.29943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 01/22/2023]
Abstract
The beneficial effects of light-emitting diode (LED) irradiation have been reported in various pathologies, including cancer. However, its effect in pancreatic cancer cells remains unclear. Herein, we demonstrated that blue LED of 460 nm regulated pancreatic cancer cell proliferation and apoptosis by suppressing the expression of apoptosis-related factors, such as mutant p53 and B-cell lymphoma 2 (Bcl-2), and decreasing the expression of RAC-β serine/threonine kinase 2 (AKT2), the phosphorylation of protein kinase B (AKT), and mammalian target of rapamycin (mTOR). Blue LED irradiation also increased the levels of cleaved poly-(ADP-ribose) polymerase (PARP) and caspase-3 in pancreatic cancer cells, while it suppressed AKT2 expression and inhibited tumor growth in xenograft tumor tissues. In conclusion, blue LED irradiation suppressed pancreatic cancer cell and tumor growth by regulating AKT/mTOR signaling. Our findings indicated that blue LEDs could be used as a nonpharmacological treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Young Mi Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sung-Hwa Ko
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yeonye Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Taehyung Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jaehoon Jung
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang-Yull Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
17
|
Pires LA, de Meira CR, Tokuhara CK, de Oliveira FA, Dainezi VB, Zardin Graeff MS, Fortulan CA, de Oliveira RC, Puppin-Rontani RM, Borges AFS. Wettability and pre-osteoblastic behavior evaluations of a dense bovine hydroxyapatite ceramics. J Oral Sci 2020; 62:259-264. [PMID: 32581175 DOI: 10.2334/josnusd.19-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, the wettability, cell viability, and roughness of an experimental dense bovine hydroxyapatite [Ca10(PO4)6(OH)2] ceramic block were evaluated so that, in the future, it could be used as a base material for dental implants. The results to commercial zirconia and a commercially pure titanium (Ti) alloy were compared. The surface roughness and contact angles were measured. An in vitro evaluation was conducted by means of tests in which pre-osteoblastic MC3T3-E1 cells were placed in indirect and direct contact with these materials. For cell viability, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and crystal violet test were conducted. A qualitative analysis was conducted using variable pressure scanning electron microscopy (SEM). No statistically significant differences were observed in wettability and roughness tests among the groups. In both the MTT assay and crystal violet test, all groups demonstrated satisfactory results without cytotoxicity. SEM showed cell adhesion and cell proliferation results on the material surfaces after 24 h and 48 h. In conclusion, this dense Ca10 (PO4)6(OH)2 ceramic can be considered as a potential biocompatible material.
Collapse
Affiliation(s)
- Luara A Pires
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo
| | - Camila R de Meira
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo
| | - Cintia K Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Flávia A de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Vanessa B Dainezi
- Department of Pediatric Dentistry, Faculty of Dentistry of Piracicaba, State University of Campinas
| | | | - Carlos A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo
| | - Rodrigo C de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Faculty of Dentistry of Piracicaba, State University of Campinas
| | - Ana Flávia S Borges
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo
| |
Collapse
|
18
|
Cardoso MV, do Vale Placa R, Sant'Ana ACP, Greghi SLA, Zangrando MSR, de Rezende MLR, Oliveira RC, Damante CA. Laser and LED photobiomodulation effects in osteogenic or regular medium on rat calvaria osteoblasts obtained by newly forming bone technique. Lasers Med Sci 2020; 36:541-553. [PMID: 32514865 DOI: 10.1007/s10103-020-03056-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The purposes of this study are to evaluate the effects of photobiomodulation (PBM) with laser and LED on rat calvaria osteoblasts (rGO lineage), cultured in osteogenic (OST) or regular (REG) medium, after induction of a quiescent state and to test if PBM is capable of osteogenic induction and if there is a sum of effects when combining OST medium with PBM. Before irradiation, the cells were put in a quiescent state (1% FBS) 24 h, when red (AlGaInP-660 nm) and infrared laser (GaAlAs-808 nm) and LED (637 ± 15 nm) were applied. The groups were as follows: red laser (RL3-5 J/cm2, 3 s and RL5-8.3 J/cm2, 5 s, 1.66 W/cm2); infrared laser (IrL3-5 J/cm2, 3 s and IrL5-8.3 J/cm2, 5 s); LED (LED3-3 s and LED5-5 s, 0.02 J/cm2, 0.885 W/cm2); positive (C+, 10% FBS) and negative control (C-, 1% FBS). For alkaline phosphatase (ALP) and mineralization assays, the cells were cultured in REG (DMEM 10% FBS) and OST medium (DMEM 10% FBS, 50 μg/mL ascorbic acid, 10 mM β-glycerophosphate). Statistical analysis was performed using ANOVA and Tukey's tests (p < 0.05). RL5 and LED5 increased proliferation, in vitro wound closure, ALP, and mineralization in rGO cells (p < 0.05). PBM with red laser and LED induced mineralization by itself, without osteogenic medium, not observed for infrared laser (p < 0.05). A sum of effects was observed in osteogenic medium and PBM by infrared, red laser, and LED (5 s). Red laser and LED increased proliferation, migration, and secretory phases in rGO cells in a dose-dependent manner. PBM with red laser and LED promotes osteogenic induction by itself. PBM with infrared laser and osteogenic medium potentializes mineralization.
Collapse
Affiliation(s)
- Matheus Völz Cardoso
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil.
| | - Rebeca do Vale Placa
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Sebastião Luiz Aguiar Greghi
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Maria Lucia Rubo de Rezende
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Rodrigo Cardoso Oliveira
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Carla Andreotti Damante
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| |
Collapse
|
19
|
Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 2020; 35:1981-1988. [PMID: 32173788 DOI: 10.1007/s10103-020-02995-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effects of low-energy blue LED irradiation on the osteogenic differentiation of stem cells from the apical papilla (SCAPs). SCAPs were derived from human tooth root tips and were irradiated with 0 (control group), 1 J/cm2, 2 J/cm2, 3 J/cm2, or 4 J/cm2 blue light in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP), alizarin red staining, and real-time polymerase chain reaction (RT-PCR). The results of the MTT assay indicated that SCAPs in the LED groups exhibited a lower proliferation rate than those in the control group, and there were statistically differences between the 2 J/cm2, 3 J/cm2, and 4 J/cm2 groups and the control group (P < 0.05). The results of the ALP and alizarin red analyses showed that blue LED promoted osteogenic differentiation of the SCAPs. And 4 J/cm2 blue light upregulates the expression levels of the osteogenic/dentinogenic genes ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), and osteocalcin (OCN) in SCAPs. Our results confirmed that low-energy blue LED at 1 J/cm2, 2 J/cm2, 3 J/cm2, and 4 J/cm2 could inhibit the proliferation of SCAPs and promotes osteogenic differentiation of SCAPs. Further in vitro studies are required to explore the mechanisms of the effects by low-energy blue LED.
Collapse
|
20
|
Cronshaw M, Parker S, Anagnostaki E, Lynch E. Systematic Review of Orthodontic Treatment Management with Photobiomodulation Therapy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:862-868. [DOI: 10.1089/photob.2019.4702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark Cronshaw
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
| | - Eugenia Anagnostaki
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genova, Italy
| | - Edward Lynch
- School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada
| |
Collapse
|
21
|
Chang B, Qiu H, Zhao H, Yang X, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y. The Effects of Photobiomodulation on MC3T3-E1 Cells via 630 nm and 810 nm Light-Emitting Diode. Med Sci Monit 2019; 25:8744-8752. [PMID: 31743330 PMCID: PMC6880645 DOI: 10.12659/msm.920396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Photobiomodulation (PBM) has been explored as a promising therapeutic strategy to regulate bone cell growth; however, the effects of PBM on osteoblast cell lines remains poorly understood. In addition, as a light source of PBM, the light uniformity of light-emitting diode (LED) devices has not been given enough attention. MATERIAL AND METHODS Here, we sought to investigate the effects of PBM on MC3T3-E1 cells via 630 nm and 810 nm light from a newly designed LED with high uniformity of light. Cell proliferation, flow cytometric analysis, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out to assess treatment response. MC3T3-E1 cells were irradiated with LED devices (630±5 nm and 810±10 nm, continuous wave) for 200 seconds at a power density of 5 mW/cm² once daily. RESULTS Increases in cell proliferation and decreases in cell apoptosis were evident following irradiation. ALP staining intensity and activity were also significantly increased following irradiation. Level of mineralization was obviously enhanced in irradiated groups compared with non-irradiated controls. qRT-PCR also showed significant increases in mRNA expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the irradiated groups. CONCLUSIONS Our results showed that LED PBM could promote the proliferation, ALP staining intensity and activity, level of mineralization, gene expression of OCN and OPG of MC3T3-E1 cells, with no significant difference between the 630 nm- and 810 nm-irradiated groups.
Collapse
Affiliation(s)
- Biao Chang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P.R. China
- General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, P.R. China
| | - Ying Wang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Tengda Ji
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Yuxuan Zhang
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Qi Quan
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Yunqi Li
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Jing Zeng
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Ying Gu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
22
|
Photobiomodulation via multiple-wavelength radiations. Lasers Med Sci 2019; 35:307-316. [PMID: 31523781 DOI: 10.1007/s10103-019-02879-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Photobiomodulation via a combination of different radiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single radiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more radiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy or pathologic conditions. Several studies have been conducted to evaluate the combination of different radiation effects on cells and biological tissues. Positive effects resulting from multiple-wavelength radiations could be attributed to different absorption levels because superficial and deep tissues could absorb different levels of radiations. Multiple-wavelength radiations from devices combining radiations emitted by low power lasers and light-emitting diodes could be a new approach for promoting photobiomodulation-induced beneficial effects.
Collapse
|
23
|
Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M. Photobiomodulation and gametogenic potential of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2019; 514:239-245. [PMID: 31029424 DOI: 10.1016/j.bbrc.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023]
Abstract
Recently, light emitting diode (LED) irradiation has been introduced as a new strategy to enhance proliferation and affect differentiation of stem cells. Human Wharton's jelly-derived mesenchymal (hWJM) cells have unique characteristics that make them an appropriate source of stem cells for use in basic and clinical applications. In this study, we aimed to evaluate the effect of polarized (PL) and non-polarized (NPL) red light irradiation on gametogenic differentiation of hWJM cells in the presence or absence of bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). Exposure of hWJM cells to PL and NPL red LED (625 nm, 1.9 J/cm2) with or without BMP4+RA pre-treatment effectively differentiated them into germ lineage when the gene expression pattern (Fragilis, DAZL, VASA, SCP3 and Acrosin) and protein synthesis (anti-DAZL, anti-VASA, anti-SCP3 and anti-Acrosin antibodies) of the induced cells was evaluated. These data demonstrated that photobiomodulation may be applied for gametogenic differentiation in-vitro.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Samereh Dehghani-Soltani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Synergistic effect of phototherapy and chemotherapy on bladder cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:148-154. [PMID: 30884284 DOI: 10.1016/j.jphotobiol.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/22/2022]
Abstract
Drug resistance as an important barrier to cancer treatment, has a close relation with alteration of cancer metabolism. Therefore, in this study the synergistic effect of phototherapy and chemotherapy were investigated on the bladder cancer cells viability. The cytotoxicity effect of blue light irradiation was measured by the MTT assay. Glucose consumption, lactate and ammonium formation were analyzed in the blue LED-irradiated cancer cells culture. Also, the expression of some genes involved in apoptosis and epithelial-mesenchymal transition was assessed using real-time PCR in comparison with the control group. The analysis of the results indicated that blue light irradiation inhibited the cell viability in a dose-dependent manner. Blue light irradiation decreased the cell viability by 7% and 19% (p < .05) in 5637 cells at doses of 8.7 J/cm2 and 17.5 J/cm2 in comparison with the control group respectively. Glucose consumption, lactate and ammonium formation diminished in the blue LED-irradiated 5637 cells in both doses. The real time PCR results indicated that the expression of Bax increased in blue light-irradiated cells. In addition, the cell cycle analysis showed that blue light irradiation arrested the bladder cancer in the G1 phase. Also, the effect of combination therapy on cancer cells was investigated in presence of blue light irradiation and cisplatin. The obtained results of the MTT assay indicated that blue light irradiation enhance the cytotoxicity effect of cisplatin on bladder cancer cells.
Collapse
|
25
|
Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 2019; 34:1473-1481. [PMID: 30826951 DOI: 10.1007/s10103-019-02750-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of blue light irradiation on the process of osteogenic differentiation in stem cells. The cells used in this study were derived from human gingival mesenchymal stem cells (hGMSCs), and were treated with 0 (control group), 1, 2, 4 or 6 J/cm2 blue light using blue light-emitting diodes. Cell growth was assessed by the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-Diphenyl-2H-tetrazolium bromide (MTT) cell proliferation assay and osteogenic differentiation was evaluated by monitoring alkaline phosphatase (ALP) activity, alizarin red staining and real-time PCR (RT-PCR). The results of the MTT assay indicated that blue light inhibited hGMSC proliferation, and the ALP and alizarin red results showed that blue light promoted osteogenesis. The expression levels of the osteogenic genes runt-related transcription factor2 (Runx2), collagen type I (Col1) and osteocalcin (OCN) increased significantly (P < 0.05) when cells were irradiated with 2 or 4 J/cm2 of blue light. In conclusion, irradiation with blue light inhibits the proliferation of hGMSC and promotes osteogenic differentiation.
Collapse
|
26
|
Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:730-739. [DOI: 10.1016/j.msec.2018.11.090] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
27
|
Bomfim FRCD, Sella VRG, Thomasini RL, Plapler H. Influence of low-level laser irradiation on osteocalcin protein and gene expression in bone tissue1. Acta Cir Bras 2018; 33:736-743. [PMID: 30328905 DOI: 10.1590/s0102-865020180090000001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate osteocalcin gene and protein expression in vitro and in an in vivo model of ostectomy. METHODS Twenty Wistar rats were assigned into two groups A (n=10, laser) and B (n=10, control). Ostectomy was performed in the femur diaphysis; the twenty fragments removed, composed in vitro groups named as in vivo (A and B) and cultivated in CO2 atmosphere for thirteen days. Low-level laser irradiation was performed in groups A (in vivo and in vitro) by an GaAlAs device (λ=808 nm, dose of 2J/cm2, power of 200mW, power density of 0.2W/cm2, total energy of 1.25J, spot diameter of 0.02mm) for 5 seconds, at one point, daily. It was performed immunocytochemistry assays in vivo and in vitro groups. In vitro groups were also submitted to RNA extraction, cDNA synthesis and gene expression by quantitative PCR. Statistical analysis was realized with p<0.05. RESULTS Immunocytochemistry scores showed no significant differences between control and laser groups either in vivo and in vitro. Gene expression also showed no statistical differences. CONCLUSION Low-level laser irradiation did not alter osteocalcin protein and gene expression in vivo and in vitro in the studied period but it may have been expressed them in an earlier period.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- BSc, MSc, Fellow PhD degree, Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), Brazil. Conception and design of the study, acquisition of data, histopathological examinations, manuscript writing
| | - Valeria Regina Gonzalez Sella
- PhD, Operative Technique and Experimental Surgery Division, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Technical procedures, manuscript preparation
| | - Ronaldo Luís Thomasini
- BSc, PhD, Full Professor, Medicine Faculty, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina-MG, Brazil. Acquisition, analysis and interpretation of data; critical revision
| | - Helio Plapler
- PhD, Full Professor, Operative Technique and Experimental Surgery Division, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Manuscript writing, critical revision, final approval
| |
Collapse
|
28
|
Li Q, Li C, Xi S, Li X, Ding L, Li M. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 2018; 34:607-614. [DOI: 10.1007/s10103-018-2636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
29
|
Babaee A, Nematollahi-Mahani SN, Shojaei M, Dehghani-Soltani S, Ezzatabadipour M. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2018; 504:871-877. [PMID: 30219226 DOI: 10.1016/j.bbrc.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Light emitting diode (LED) irradiation has recently been introduced as an encouraging strategy for promotion of cell proliferation. Human umbilical cord Wharton's jelly-derived mesenchymal (hUCM) cells are among the most available mesenchymal cells with a promising application in regenerative medicine. The aim of the present study was to examine the effect of polarized (PL) and non-polarized (NPL) red-light emitted by LED on various proliferation properties of hUCM cells. Cell proliferation was assessed 48 h after irradiation of hUCM cells by different energy densities. Cell density increased to a significant level both in PL and NPL irradiation at 0.954 J/cm2 following WST-1 assay. Staining of irradiated and non-irradiated cells with Hoechst after 3 and 6 days revealed an increased proliferation rate in irradiated cells, but the non-irradiated cells proliferated more than irradiated cells at day 9 of cultivation. Similar results were obtained in trypan blue assay. Scratch repair test for 18 h with an interval of 6 h did not reveal a significant difference between irradiated and non-irradiated cells. In addition, CFU-F assay in PL irradiated cells was higher than control when 500 cells/plate was cultivated. Totally, this study revealed that hUCM cells could be induced to achieve higher number of cells by PL and NPL red-light irradiation after 48 h.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Samereh Dehghani-Soltani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Abstract
Photobiomodulation (PBM) is a treatment method based on research findings showing that irradiation with certain wavelengths of red or near-infrared light has been shown to produce a range of physiological effects in cells, tissues, animals and humans. Scientific research into PBM was initially started in the late 1960s by utilizing the newly invented (1960) lasers, and the therapy rapidly became known as "low-level laser therapy". It was mainly used for wound healing and reduction of pain and inflammation. Despite other light sources being available during the first 40 years of PBM research, lasers remained by far the most commonly employed device, and in fact, some authors insisted that lasers were essential to the therapeutic benefit. Collimated, coherent, highly monochromatic beams with the possibility of high power densities were considered preferable. However in recent years, non-coherent light sources such as light-emitting diodes (LEDs) and broad-band lamps have become common. Advantages of LEDs include no laser safety considerations, ease of home use, ability to irradiate a large area of tissue at once, possibility of wearable devices, and much lower cost per mW. LED photobiomodulation is here to stay.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Abstract
Photobiomodulation (PBM) is a treatment method based on research findings showing that irradiation with certain wavelengths of red or near-infrared light has been shown to produce a range of physiological effects in cells, tissues, animals and humans. Scientific research into PBM was initially started in the late 1960s by utilizing the newly invented (1960) lasers, and the therapy rapidly became known as "low-level laser therapy". It was mainly used for wound healing and reduction of pain and inflammation. Despite other light sources being available during the first 40 years of PBM research, lasers remained by far the most commonly employed device, and in fact, some authors insisted that lasers were essential to the therapeutic benefit. Collimated, coherent, highly monochromatic beams with the possibility of high power densities were considered preferable. However in recent years, non-coherent light sources such as light-emitting diodes (LEDs) and broad-band lamps have become common. Advantages of LEDs include no laser safety considerations, ease of home use, ability to irradiate a large area of tissue at once, possibility of wearable devices, and much lower cost per mW. LED photobiomodulation is here to stay.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
33
|
Indocyanine green-mediated photobiomodulation on human osteoblast cells. Lasers Med Sci 2018; 33:1591-1599. [DOI: 10.1007/s10103-018-2530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
|
34
|
Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci 2018; 33:1189-1195. [PMID: 29450763 DOI: 10.1007/s10103-018-2453-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/23/2018] [Indexed: 01/13/2023]
Abstract
Photobiomodulation (PBM) is a non-invasive treatment that uses laser or led devices making its effects a response to light and not to heat. The possibility of accelerating dental implant osteointegration and orthodontic movements and the need to treat refractory bone lesions, such as bisphosphonate related osteonecrosis of the jaws, has led researchers to consider the effects of PBM on bone for dentistry purposes. The aim of our study was to investigate the effects of 915 nm light supplied with a GaAs diode laser on human osteoblasts in vitro. Osteoblasts were isolated from mandibular cortical bone of a young healthy donor. The irradiation parameters were as follows: doses = 5, 15 and 45 J/cm2; power densities = 0.12 and 1.25 W/cm2; and irradiation times = 41.7, 125 and 375 s. We performed one irradiation per day for 3 and 6 days to study proliferation and differentiation, respectively. Microscopic analysis showed a greater amount of bone nodules in samples treated with 5 J/cm2 and 0.12 W/cm2 compared to controls (56.00 ± 10.44 vs 19.67 ± 7.64, P = 0.0075). Cell growth and quantification of calcium deposition did not show any differences when comparing irradiated and non-irradiated samples. Photobiomodulation, with the parameters investigated in the present study, positively modulated the mineralization process in human osteoblasts, inducing the formation of a greater amount of bone nodules, but did not increase cell proliferation.
Collapse
|
35
|
Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:36-48. [PMID: 29126668 DOI: 10.1016/j.pbiomolbio.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
To compare the in vitro effectiveness of Low-Level Laser Therapy (LLLT) and Low Intensity Pulsed Ultrasound (LIPUS) on bony cells and related stem cells. In this study, we aim to systematically review the published scientific literature which explores the use of LLLT and LIPUS to biostimulate the activity or the proliferation of bony cells or stem cells in vitro. We searched the database PubMed for LLLT or LIPUS, with/without bone, osteoblast, osteocyte, stem cells, the human osteosarcoma cell line (MG63), bone-forming cells, and cell culture (or in vitro). These studies were subdivided into categories exploring the effect of LLLT or LIPUS on bony cells, stem cells, and other related cells. 75 articles were found between 1987 and 2016; these included: 50 full paper articles on LLLT and 25 full papers on LIPUS. These articles met the eligibility criteria and were included in our review. A detailed and concise description of the LLLT and the LIPUS protocols and their individual effects on bony cells or stem cells and their results are presented in five tables. Based on the main results and the conclusions of the reviewed articles in the current work, both, LLLT and LIPUS, apply a biostimulatory effect on osteoblasts, osteocytes, and enhance osteoblast proliferation and differentiation on different bony cell lines used in in vitro studies, and therefore, these may be useful tools for bone regeneration therapy. Moreover, in consideration of future cell therapy protocols, both, LLLT and LIPUS (especially LLLT), enhnce a significant increase in the initial number of SCs before differentiation, thus increasing the number of differentiated cells for tissue engineering, regenerative medicine, and healing. Further studies are necessary to determine the LLLT or the LIPUS parameters, which are optimal for biostimsulating bony cells and SCs for bone healing and regenerative medicine.
Collapse
|
36
|
Hadis MA, Cooper PR, Milward MR, Gorecki PC, Tarte E, Churm J, Palin WM. Development and application of LED arrays for use in phototherapy research. JOURNAL OF BIOPHOTONICS 2017; 10:1514-1525. [PMID: 28164460 DOI: 10.1002/jbio.201600273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Lasers/LEDs demonstrate therapeutic effects for a range of biomedical applications. However, a consensus on effective light irradiation parameters and efficient and reliable measurement techniques remain limited. The objective here is to develop, characterise and demonstrate the application of LED arrays in order to progress and improve the effectiveness and accuracy of in vitro photobiomodulation studies. 96-well plate format LED arrays (400-850 nm) were developed and characterised to accurately assess irradiance delivery to cell cultures. Human dental pulp cells (DPCs) were irradiated (3.5-142 mW/cm2 : 15-120 s) and the biological responses were assessed using MTT assays. Array calibration was confirmed using a range of optical and analytical techniques. Multivariate analysis of variance revealed biological responses were dependent on wavelength, exposure time and the post-exposure assay time (P < 0.05). Increased MTT asbsorbance was measured 24 h post-irradiation for 30 s exposures of 3.5 mW/cm2 at 470, 527, 631, 655, 680, 777, 798 and 826 nm with distinct peaks at 631 nm and 798 nm (P < 0.05). Similar wavelengths were also effective at higher irradiances (48-142 mW/cm2 ). LED arrays and high throughput assays provide a robust and reliable platform to rapidly identify irradiation parameters which is both time- and cost-effective. These arrrays are applicable in photobiomodulation, photodynamic therapy and other photobiomedical research.
Collapse
Affiliation(s)
- Mohammed A Hadis
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paul R Cooper
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Michael R Milward
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Patricia C Gorecki
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Edward Tarte
- School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - James Churm
- School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - William M Palin
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| |
Collapse
|
37
|
Dehghani-Soltani S, Shojaee M, Jalalkamali M, Babaee A, Nematollahi-Mahani SN. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Sci Rep 2017; 7:9976. [PMID: 28855704 PMCID: PMC5577274 DOI: 10.1038/s41598-017-10655-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.
Collapse
Affiliation(s)
- Samereh Dehghani-Soltani
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Jalalkamali
- Semiconductors Group, Photonics Research Center, Graduate University of Advanced Technology, Kerman, Iran
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
38
|
Pinheiro CCG, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. Low Power Laser Therapy: A Strategy to Promote the Osteogenic Differentiation of Deciduous Dental Pulp Stem Cells from Cleft Lip and Palate Patients. Tissue Eng Part A 2017; 24:569-575. [PMID: 28699387 DOI: 10.1089/ten.tea.2017.0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) can undergo several types of differentiation, including osteogenic differentiation. One osteogenesis-inducing factor that has been previously described is in vitro low-power laser irradiation of cells. Laser irradiation promotes the acceleration of bone matrix mineralization of the cell strain. However, no consensus exists regarding the dose and treatment time. We used DPSC strains from cleft lip and palate patients because new bone tissue engineering strategies have used DPSCs in preclinical and clinical trials for the rehabilitation of alveolar bone clefts. Optimizing bone tissue engineering techniques for cleft and lip palate patients by applying low-power laser therapy (LPLT) to DPSCs obtained from these patients can help improve current strategies to quickly close large alveolar clefts. The aim of this study was to investigate the effects of LPLT at different energy densities in DPSC strains obtained from cleft lip and palate patients during in vitro osteogenic differentiation. Ten DPSC strains were obtained from cleft lip and palate patients and then used in the following study groups: group 1: control, the strains underwent osteogenic differentiation for 21 days; and groups 2, 3, and 4: the strains were irradiated each day with a low-power red laser (660 nm) (5, 10, and 20 J) during 21 days of osteogenic differentiation. Using Bonferroni's test, a statistically significant difference in the mean values was found between the irradiated groups (2, 3, and 4) and the control group (p < 0.001). However, no significant difference in osteogenic potential was found among the irradiated groups. Our findings showed that the osteogenic potential of DPSCs increases with red laser irradiation at 5, 10, and 20 J, and this treatment could be considered a new approach for preconditioning these cells to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Carla C G Pinheiro
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Milena C de Pinho
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Ana Cecilia Aranha
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Eduardo Fregnani
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Daniela F Bueno
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| |
Collapse
|
39
|
In vitro effects of mechanical stimulation and photobiomodulation on osteoblastic cell function: A proof of concept study. PEDIATRIC DENTAL JOURNAL 2017. [DOI: 10.1016/j.pdj.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Bölükbaşı Ateş G, Ak Can A, Gülsoy M. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 2017; 32:591-599. [PMID: 28116535 DOI: 10.1007/s10103-017-2153-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023]
Abstract
Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm2. Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.
Collapse
Affiliation(s)
- Gamze Bölükbaşı Ateş
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, Turkey, 34684.
| | - Ayşe Ak Can
- Engineering Faculty, Biomedical Engineering, Erzincan University, Erzincan, Turkey, 24100
| | - Murat Gülsoy
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, Turkey, 34684
| |
Collapse
|
41
|
Yang D, Yi W, Wang E, Wang M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci Rep 2016; 6:37370. [PMID: 27874039 PMCID: PMC5118816 DOI: 10.1038/srep37370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to examine the effects of light-emitting diode (LED) photobiomodulation therapy on the proliferation and differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) cultured in osteogenic differentiation medium. HUMSCs were irradiated with an LED light at 620 nm and 2 J/cm2 and monitored for cell proliferation and osteogenic differentiation activity. The experiment involved four groups of cells: the control group; the osteogenic group (osteo group); the LED group; the osteogenic + LED group (LED + osteo group). HUMSC proliferation was detected by performing a3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide(MTT) assay. Osteogenic activity was evaluated by performing alkaline phosphatase (ALP) and Von Kossa staining, and osteopontin (OPN) gene mRNA expression was evaluated byreverse transcription polymerase chain reaction (RT-PCR). The hUMSCs in the LED + osteo group exhibited a significantly higher proliferation rate than the other subgroups. Additionally, there were greater numbers of ALP-positive cells and Von Kossa nodules in the LED + osteo group. OPN mRNA expression in the LED + osteo group was higher than other subgroups. In conclusion, low levels of LED light at a wavelength of 620 nm enhance the proliferation and osteogenic differentiation of hUMSCs during a long culture period.
Collapse
Affiliation(s)
- Dazhi Yang
- Department of Orthopaedics, Nanshan Hospital, Guangdong MedicalCollege, Shenzhen Guangdong, 518052, China
| | - Weihong Yi
- Department of Orthopaedics, Nanshan Hospital, Guangdong MedicalCollege, Shenzhen Guangdong, 518052, China
| | - Ertian Wang
- Department of Orthopaedics, Nanshan Hospital, Guangdong MedicalCollege, Shenzhen Guangdong, 518052, China
| | - Min Wang
- Department of Orthopaedics, Nanshan Hospital, Guangdong MedicalCollege, Shenzhen Guangdong, 518052, China
| |
Collapse
|
42
|
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 162:577-582. [PMID: 27475781 DOI: 10.1016/j.jphotobiol.2016.07.022] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
CONTEXT Identification of factors that enhance the proliferation of human dental mesenchymal stem cells (DMSCs) is vital to facilitate tissue regeneration. The role of low-level laser irradiation (LLLI) on proliferation of human DMSCs has not been well established. OBJECTIVE To assess the effect of LLLI on proliferation of human DMSCs when applied in-vitro. DATA SOURCES Electronic search of literature was conducted (2000-2016) on PubMed, Web of Science, and Scopus databases. Search terms included low-level light therapy, low-level laser irradiation, low-level light irradiation, LLLT, humans, adolescent, adult, cells, cultured, periodontal ligament, dental pulp, stem cells, dental pulp stem cells, mesenchymal stem cells, periodontal ligament stem cell, deciduous teeth, cell proliferation, adult stem cells, radiation, and proliferation. RESULTS The literature search identified 165 studies with 6 being eligible for inclusion; all used diode lasers; 5 studies used InGaAIP diode lasers; 4 used 660nm, and the other two applied 810nm or 980nm wavelength LLLI. The distance between the DMSCs and the laser spot ranged between 0.5mm to 2mm. The time intervals of cell proliferation analysis ranged from 0h to 7days after LLLI. After 660nm LLLI, an increase in the DMSC's proliferation was reported [DMSCs extracted from dental pulp of deciduous teeth (two irradiations, 3J/cm(2), 20mW was more effective than 40mW), adult teeth (two irradiations, 0.5 and 1.0J/cm(2), 30mW), and from adult periodontal ligament (two irradiations, 1.0J/cm(2) was more effective than 0.5J/cm(2), 30mW)]. Similarly, an increase in the proliferation of DMSCs extracted from dental pulp of adult teeth was reported after 810nm LLLI (7 irradiations in 7days, 0.1 and 0.2J/cm(2), 60mW) or 980nm LLLI (single irradiation, 3J/cm(2), 100mW). However, 660nm LLLI in one study did not increase the proliferation of DMSCs (single irradiation, energy densities of 0.05, 0.30, 7, and 42J/cm(2), 28mW). CONCLUSION There is limited evidence that in-vitro LLLI (660/810/980nm, with energy densities of 0.1-3J/cm(2)) increases the proliferation of DMSCs. Considering the limited evidence and their method heterogeneity it is difficult to reach a firm conclusion. Further research is necessary to identify the optimal characteristics of the LLLI setting (wave length, energy density, power output, frequency/duration of irradiations, distance between the cells and the laser spot/probe) to increase proliferation of DMSCs, and assess its impact on replicative senescence, as well as determine feasibility of the use in the clinical setting.
Collapse
Affiliation(s)
- Ali Borzabadi-Farahani
- Orthodontics, Department of Clinical Sciences and Translational Medicine, Univeristy of Rome Tor Vergata, Rome, Italy; Warwick Medical School, University of Warwick, Coventry, and Specialist Orthodontic Practice, London, United Kingdom.
| |
Collapse
|
43
|
Zheng MZ, Lee SY, Yu SJ, Kim BO. Effect of Cornus officinalis extract on the differentiation of MC3T3-E1 osteoblast-like cells. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|