1
|
Roets B, Abrahamse H, Crous A. The Application of Photobiomodulation on Mesenchymal Stem Cells and its Potential Use for Tenocyte Differentiation. Curr Stem Cell Res Ther 2025; 20:232-245. [PMID: 38847377 DOI: 10.2174/011574888x295488240319111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 05/13/2025]
Abstract
Tendinopathy is a prevalent and debilitating musculoskeletal disorder. Uncertainty remains regarding its pathophysiology, but it is believed to be a combination of inflammation, damage, degenerative changes, and unsuccessful repair mechanisms. Cell-based therapy is an emerging regenerative medicine modality that uses mesenchymal stem cells (MSCs), their progeny or exosomes to promote tendon healing and regeneration. It is based on the fact that MSCs can be differentiated into tenocytes, the major cell type within tendons, and facilitate tendon repair. Photobiomodulation (PBM) is a non-invasive and potentially promising therapeutic technique that utilizes low-level light to alter intracellular processes and promote tissue healing and regeneration. Recent studies have examined the potential for PBM to improve MSC therapy use in tendinopathy by promoting viability, proliferation, and differentiation. As well as enhance tendon regeneration. This review focuses on Photobiomodulation and MSC therapy applications in regenerative medicine and their potential for tendon tissue engineering.
Collapse
Affiliation(s)
- Brendon Roets
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
2
|
Wang X, Huang J, Li H, Li Y, Cai S, Xue B, Zhu Z, Zeng X, Zeng X. Establishment and application of high throughput screening cell model for nutrient regulation of embryonic development. J Nutr Biochem 2024; 123:109502. [PMID: 37890711 DOI: 10.1016/j.jnutbio.2023.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Embryo development exerts far-reaching influence on pregnancy outcome, postnatal development and lifelong health. Thereafter, to select functional nutrients to improve embryo development is of great importance. Herein, a stable porcine trophectoderm cell line expressing a luciferase reporter gene driven by a 1,009 bp PCNA gene promoter was constructed through lentiviral transduction and G418 selection. A high throughput screening assay was subsequently developed using the stable reporter cell line to screen a library of 225 nutrients. Seven nutrients with a minimum Z-score of 2.0 were initially identified to be capable of enhancing embryonic development. Among these nutrients, resveratrol, apigenin, and retinol palmitate were furtherly confirmed the beneficial effects for embryo development. Resveratrol significantly increased the expression of key genes involved in pTr cell proliferation and the number of S-phase cells. Resveratrol was furtherly confirmed to promote the expression of key genes in trophoblast development and increase embryo adhesion rate in vitro. Similarly, dietary 0.05% resveratrol supplementation significantly increased the number of embryo attachment and serum level of P4 and E2 in rats. Resveratrol could also improve maternal antioxidant levels and reduce intracellular ROS. Collectively, a high throughput screening cell model for nutrient regulation of embryonic development was established, which can be used to highly effectively select the potential candidates for embryo development. These findings have great implications for exploring optimal functional nutrients to improve embryo development, ultimately beneficial for pregnancy outcome, offspring postnatal development and lifelong health for human beings and mammalian animals.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Huan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Yanlong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Han J, Geng L, Lu C, Zhou J, Li Y, Ming T, Zhang Z, Su X. Analyzing the mechanism by which oyster peptides target IL-2 in melanoma cell apoptosis based on RNA-seq and m6A-seq. Food Funct 2023; 14:2362-2373. [PMID: 36779260 DOI: 10.1039/d2fo03672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Melanoma is a kind of skin cancer with high malignancy and strong proliferation and invasion abilities. Chemotherapy drugs in the clinic have the disadvantages of high price and high toxicity. Peptides are natural active ingredients that have many functions and are safe and effective. Previous studies have shown that oysters are rich in protein and have antitumor effects. In this study, a high-throughput strategy combined with MALDI TOF/TOF-MS and molecular docking was developed to screen peptides with antitumor functions from oyster hydrolysate. Three dominant peptides were predicted to have similar functions to IL-2 via molecular docking. Then, the activity of the peptides was confirmed in B16 cells, and we found that the three peptides increased the apoptosis of B16 cells. Furthermore, via RNA-seq and m6A-seq of B16 cells treated with the peptides, we found that ILADSAPR downregulates the expression of Pcna, Tlr4, and Ncbp2 and upregulates the expression of Bax, Bad, Pak4, Rasa2, Cct6, and Gbp2. ILADSAPR inhibited B16 cell proliferation and promoted cell apoptosis by regulating the expression of these genes. In addition, the result of metabolic pathway analysis also proved this point. This study provides a preliminary reference for antitumor research on oyster peptides.
Collapse
Affiliation(s)
- Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Lingxin Geng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China. .,School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Li L, Wang C, Qiu Z, Deng D, Chen X, Wang Q, Meng Y, Zhang B, Zheng G, Hu J. Triptolide inhibits intrahepatic cholangiocarcinoma growth by suppressing glycolysis via the AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154575. [PMID: 36610163 DOI: 10.1016/j.phymed.2022.154575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND High levels of glycolysis supply large quantities of energy and biological macromolecular raw materials for cell proliferation. Triptolide (TP) is a kind of epoxy diterpene lactone extracted from the roots, flowers, leaves, or grains of the Celastraceae plant, Tripterygium wilfordii. TP has multiple biological activities, including anti-inflammatory, immunologic suppression, and anti-cancer effects. Nevertheless, it is little known regarding its anti-intrahepatic cholangiocarcinoma (ICC) growth, and the mechanism still require exploration. PURPOSE This research explored the effect of TP on ICC growth and investigated whether TP inhibits glycolysis via the AKT/mTOR pathway. METHODS Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8), clonogenic assay, and flow cytometry. The underlying molecular mechanism was identified by determining glucose consumption, ATP production, lactate production, hexokinase (HK) and pyruvate kinase (PK) activity, and Western blot analysis. A rapid ICC model of AKT/YapS127A oncogene coactivation in mice was used to clarify the effect of TP treatment on tumor growth and glycolysis. RESULTS The results showed that TP treatment significantly inhibited ICC cell proliferation and glycolysis in a dose- and time-dependent manner(P < 0.05). Further analysis suggested that TP suppressed ICC cell glycolysis by targeting AKT/mTOR signaling. Additionally, we found that TP inhibits tumor growth and glycolysis in AKT/YapS127A mice(P < 0.05). CONCLUSION Taken together, we revealed that TP suppressed ICC growth by suppressing glycolysis via the AKT/mTOR pathway and may provide a potential therapeutic target for ICC treatment.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chuting Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongjie Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
5
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
6
|
Light stimulation on tenocytes: A systematic review of in vitro studies. Porto Biomed J 2022; 7:e176. [PMID: 36186115 PMCID: PMC9521787 DOI: 10.1097/j.pbj.0000000000000176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
|
7
|
Li LY, Chen J, Yu M, Li YL, Zhou G. Effects of Low-Level Laser Therapy on Osseous Defects Distal to Mandibular Second Molar after Extraction of Impacted Third Molar. Appl Bionics Biomech 2022; 2022:9900146. [PMID: 35498143 PMCID: PMC9050336 DOI: 10.1155/2022/9900146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To evaluate the efficiency of low-level laser therapy on the distal osseous defects of the mandibular second molar (M2) after the adjacent impacted third molar (M3) extraction. Methods A total of 59 clinic cases were screened out, whose M3 were impacted and the distal alveolar bone of M2 had been destroyed horizontally. They were randomly divided into 2 groups based on whether they would have laser irradiation or not after M3 extraction. Then, postoperative complications of the 2 groups were compared. The alveolar bone level distal to M2 was established before and 3 to 6 months after M3 extraction by radiographic evaluation, which was compared between two groups. Results The incidence of severe pain and mouth-opening limitation was significantly lower in the LLLT group than that in the control group. The amount of bone formation in the LLLT group was higher than that in the control group 3 months after the operation, and the difference was statistically significant. But the difference was not statistically significant 6 months after surgery. Conclusion LLLT may alleviate postoperative complications and improve early osteogenesis. It is a viable option for use in the treatment of osseous defects distal to mandibular second molars following extraction of impacted third molars.
Collapse
Affiliation(s)
- Ling-Yu Li
- Dental Comprehensive Department, The Dental Center, Jiading District, Shanghai, China
| | - Jie Chen
- Oral and Maxillofacial Surgery, The Dental Center, Jiading District, Shanghai, China
| | - Ming Yu
- Oral and Maxillofacial Surgery, The Dental Center, Jiading District, Shanghai, China
| | - Yue-Ling Li
- Oral and Maxillofacial Surgery, The Dental Center, Jiading District, Shanghai, China
| | - Gang Zhou
- Oral and Maxillofacial Surgery, The Dental Center, Jiading District, Shanghai, China
| |
Collapse
|
8
|
The effect of low-level red and near-infrared photobiomodulation on pain and function in tendinopathy: a systematic review and meta-analysis of randomized control trials. BMC Sports Sci Med Rehabil 2021; 13:91. [PMID: 34391447 PMCID: PMC8364035 DOI: 10.1186/s13102-021-00306-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022]
Abstract
Background Tendinopathy is a common clinical condition that can significantly affect a person’s physical function and quality of life. Despite exercise therapy being the mainstay of tendinopathy management, there are many potential adjunct therapies that remain under investigated, one of which is photobiomodulation (PBM). PBM uses varied wavelengths of light to create a biological effect. While PBM is used frequently in the management of tendinopathy, high quality evidence supporting its utility is lacking. Methods A systematic search of the Pubmed, CINAHL, SCOPUS, Cochrane Database, Web of Science and SPORTSDICUS databases was performed for eligible articles in August 2020. Randomized Control Trials that used red or near-infrared PBM to treat tendinopathy disorders that made comparisons with a sham or ‘other’ intervention were included. Pain and function data were extracted from the included studies. The data were synthesized using a random effects model. The meta-analysis was performed using the mean difference (MD) and standardized mean difference (SMD) statistics. Results A total of 17 trials were included (n = 835). When compared solely to other interventions PBM resulted in similar decreases in pain (MD -0.09; 95% CI − 0.79 to 0.61) and a smaller improvement in function (SMD -0.52; 95% CI − 0.81 to − 0.23). When PBM plus exercise was compared to sham treatment plus exercise, PBM demonstrated greater decreases in pain (MD 1.06; 95% CI 0.57 to 1.55) and improved function (MD 5.65; 95% CI 0.25 to 11.04). When PBM plus exercise was compared to other interventions plus exercise, no differences were noted in pain levels (MD 0.31; 95% CI − 0.07 to 0.70). Most studies were judged as low-risk of bias. The outcome measures were classified as very low to moderate evidence quality according to the Grading of Recommendation, Development and Evaluation tool. Conclusion There is very-low-to-moderate quality evidence demonstrating that PBM has utility as a standalone and/or adjunctive therapy for tendinopathy disorders. Trial registration PROPERO registration number: CRD42020202508. Supplementary Information The online version contains supplementary material available at 10.1186/s13102-021-00306-z.
Collapse
|
9
|
Gavish L, Spitzer E, Friedman I, Lowe J, Folk N, Zarbiv Y, Gelman E, Vishnevski L, Fatale E, Herman M, Gofshtein R, Gam A, Gertz SD, Eisenkraft A, Barzilay Y. Photobiomodulation as an Adjunctive Treatment to Physiotherapy for Reduction of Anterior Knee Pain in Combat Soldiers: A Prospective, Double-Blind, Randomized, Pragmatic, Sham-Controlled Trial. Lasers Surg Med 2021; 53:1376-1385. [PMID: 34101208 DOI: 10.1002/lsm.23442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Anterior knee pain (AKP) is the most common knee pathology in athletes and occurs in 15% of army recruits of elite units during basic training. Of these, 50% are symptomatic 6 years later. Photobiomodulation (PBM) is a nonthermal red-to-near-infrared irradiation used for pain reduction of a variety of etiologies. This study was designed to determine whether addition of PBM to physiotherapy (PT) for AKP in combat soldiers is superior to PT alone. STUDY DESIGN/MATERIALS AND METHODS In this prospective, double-blind, sham-controlled, randomized clinical trial (NCT02845869), 26 combat soldiers/policemen (male:female, 15:11; body mass index [BMI] = 24.2 ± 3.9, n = 46 knees), with AKP due to overuse/load, received 4 weeks of PT + sham (PT + Sham) or active PBM (wavelength = 660 and 850 nm, pulsing = 2.5 Hz, LED power = 50 mW/cm2 [local tissue/regional lymph nodes]; 810 nm continuous beam, laser cluster 6 W/cm2 [analgesia] and laser pointer 4.75 W/cm2 [trigger points]) (PT + PBM). The main outcome measures were subjective pain by visual analog scale (VAS) (0 [none]-100 [intolerable]) and functional disability by Kujala score (0 [worst]-100 [best]). Evaluations were carried out at baseline, end of treatments, and 3-month follow-up. RESULTS All participants completed the treatment protocol without any reported adverse device effects. Post-treatment pain was significantly reduced in the PT+PBM group, compared with baseline and sham (Δpain, VAS, mean ± SD: PT + PBM = -19 ± 23, P = 0.002; PT + Sham = -6 ± 21, P = 0.16; between groups, P = 0.032). At 3-month follow-up, pain reduction was similar between groups; however, the Kujala score was significantly improved only in the PBM-treated group (ΔKujala: PT + PBM = 11 ± 10, P = 0.003; PT + Sham = 5 ± 7, P = 0.059). CONCLUSIONS Addition of PBM to PT for AKP resulted in earlier reduction in pain and improved functionality, compared with PT alone. This noninvasive, nonpharmacologic, adjunctive therapeutic modality can be easily incorporated into team healthcare frameworks or end units and may lead to earlier return to competition or combat-level service. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Lilach Gavish
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, 9112001, Israel.,The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Elad Spitzer
- MeDES Medical Center, Jerusalem, 9314103, Israel
| | - Ilan Friedman
- Shaare Zedek Medical Center, Jerusalem, 9103102, Israel
| | - Joseph Lowe
- Hadassah Medical Organization, Mount Scopus, Jerusalem, 9765422, Israel
| | - Nathalie Folk
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, 9112001, Israel
| | - Yonaton Zarbiv
- Israel Defense Forces Medical Corps, Ramat Gan, 5260416, Israel
| | - Evgeny Gelman
- Israel Defense Forces Medical Corps, Ramat Gan, 5260416, Israel
| | - Lev Vishnevski
- Israel Defense Forces Medical Corps, Ramat Gan, 5260416, Israel
| | | | | | - Roni Gofshtein
- Israel Defense Forces Medical Corps, Ramat Gan, 5260416, Israel
| | - Arnon Gam
- Israel Defense Forces Medical Corps, Ramat Gan, 5260416, Israel
| | - S David Gertz
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, 9112001, Israel.,The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Arik Eisenkraft
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, 9112001, Israel
| | - Yair Barzilay
- Shaare Zedek Medical Center, Jerusalem, 9103102, Israel
| |
Collapse
|
10
|
Prabhu V, Rao BSS, Rao ACK, Prasad K, Mahato KK. Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers Med Sci 2020; 37:171-180. [PMID: 33247410 PMCID: PMC8803692 DOI: 10.1007/s10103-020-03202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
The present investigation focuses on understanding the role of photobiomodulation in enhancing tissue proliferation. Circular excision wounds of diameter 1.5 cm were created on Swiss albino mice and treated immediately with 2 J/cm2 and 10 J/cm2 single exposures of the Helium-Neon laser along with sham-irradiated controls. During different days of healing progression (day 5, day 10, and day 15), the tissue samples upon euthanization of the animals were taken for assessing collagen deposition by Picrosirius red staining and cell proliferation (day 10) by proliferating cell nuclear antigen (PCNA) and Ki67. The positive influence of red light on collagen synthesis was found to be statistically significant on day 10 (P < 0.01) and day 15 (P < 0.05) post-wounding when compared to sham irradiation, as evident from the image analysis of collagen birefringence. Furthermore, a significant rise in PCNA (P < 0.01) and Ki67 (P < 0.05) expression was also recorded in animals exposed to 2 J/cm2 when compared to sham irradiation and (P < 0.01) compared to the 10 J/cm2 treated group as evidenced by the microscopy study. The findings of the current investigation have distinctly exhibited the assenting influence of red laser light on excisional wound healing in Swiss albino mice by augmenting cell proliferation and collagen deposition.
Collapse
Affiliation(s)
- Vijendra Prabhu
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Directorate of Research, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Anuradha Calicut Kini Rao
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Department of Pathology, Yenepoya Medical College, Yenepoya (a Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Keerthana Prasad
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Tripodi N, Feehan J, Husaric M, Kiatos D, Sidiroglou F, Fraser S, Apostolopoulos V. Good, better, best? The effects of polarization on photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960230. [PMID: 32077232 DOI: 10.1002/jbio.201960230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Photobiomodulation therapy (PBMT) is a widely adopted form of phototherapy used to treat many chronic conditions that effect the population at large. The exact physiological mechanisms of PBMT remain unsolved; however, the prevailing theory centres on changes in mitochondrial function. There are many irradiation parameters to consider when investigating PBMT, one of which is the state of polarization. There is some evidence to show that polarization of red and near-infrared light may promote different and/or increased biological activity when compared to otherwise identical non-polarized light. These enhanced cellular effects may also be present when the polarized light is applied linear to the tissue direction. Herein, we synthesize the current experimental and clinical evidence pertaining to polarized photobiomodulation therapy; ultimately, to better inform future research into this area of phototherapy.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Maja Husaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Dimitrios Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | |
Collapse
|
12
|
Chinese Society of Sports Medicine, Xu H, Li H, Hua Y, Bai L, Chang F, Chen S, Chen W, Fang Z, Gui J, Guo Q, Hu Y, Huang H, Jiao C, Li Q, Li W, Liang X, Lu H, Lu L, Miao X, Qu J, Song W, Xu T, Wang Z, Wang X, Wei M, Wei S, Xiang D, Xu H, Yang M, Zhan J, Zhang F, Zhao F, Zhu Y, Tang K. Chinese Consensus on Insertional Achilles Tendinopathy. Orthop J Sports Med 2019; 7:2325967119879052. [PMID: 31656824 PMCID: PMC6791038 DOI: 10.1177/2325967119879052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Insertional Achilles tendinopathy (IAT) is a common finding in the clinic. However, consensus on its mechanism, pathological process, diagnosis, treatment, and rehabilitation is lacking. Thus, the Chinese Society of Sports Medicine organized and invited experts representing the fields of ankle disease and tendinopathy to jointly develop an expert consensus on IAT. Study Design: A consensus statement of the Chinese Society of Sports Medicine. Methods: A total of 34 experts in the field of sports medicine and orthopaedics were invited to participate in the compilation of a consensus statement regarding IAT. Consensus was achieved according to the Delphi method. First, 10 working groups composed of 34 experts were established to compile draft statements about clinical problems related to IAT by reviewing and analyzing the available literature. An expert consensus meeting to discuss drafts was then arranged. Each statement was individually presented and discussed, followed by a secret vote. Consensus was reached when more than 50% of the experts voted in its favor. The strength of the proposed recommendation was classified based on the proportion of favorable votes: consensus, 51% to 74%; strong consensus, 75% to 99%; unanimity, 100%. Results: Of the 10 expert consensus statements on the clinical diagnosis and treatment of IAT, there was strong consensus for 8 statements and unanimity for 2 statements. Conclusion: This expert consensus focused on the concepts, causes, pathological process, clinical diagnosis, and treatment of IAT. Accepted recommendations in these areas which will assist clinicians in carrying out standardized management of related diseases.
Collapse
Affiliation(s)
- Chinese Society of Sports Medicine
- Yinghui Hua, MD, PhD, and Kanglai Tang, MD, PhD, No 12, Wulumuqi Zhong Road, Shanghai 200040, China & Gaotanyan Str. 30, Chongqing 400038, People’s Republic of China ( and )
| | | | | | - Yinghui Hua
- Yinghui Hua, MD, PhD, and Kanglai Tang, MD, PhD, No 12, Wulumuqi Zhong Road, Shanghai 200040, China & Gaotanyan Str. 30, Chongqing 400038, People’s Republic of China ( and )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kanglai Tang
- Yinghui Hua, MD, PhD, and Kanglai Tang, MD, PhD, No 12, Wulumuqi Zhong Road, Shanghai 200040, China & Gaotanyan Str. 30, Chongqing 400038, People’s Republic of China ( and )
| |
Collapse
|
13
|
Kaplan K, Olivencia O, Dreger M, Hanney WJ, Kolber MJ. Achilles Tendinopathy: An Evidence-Based Overview for the Sports Medicine Professional. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Lucke LD, Bortolazzo FO, Theodoro V, Fujii L, Bombeiro AL, Felonato M, Dalia RA, Carneiro GD, Cartarozzi LP, Vicente CP, Oliveira ALR, Mendonça FAS, Esquisatto MAM, Pimentel ER, de Aro AA. Low-level laser and adipose-derived stem cells altered remodelling genes expression and improved collagen reorganization during tendon repair. Cell Prolif 2019; 52:e12580. [PMID: 30734394 PMCID: PMC6536450 DOI: 10.1111/cpr.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Objectives The cellular therapy using adipose‐derived mesenchymal stem cells (ASCs) aims to improve tendon healing, considering that repaired tendons often result in a less resistant tissue. Our objective was to evaluate the effects of the ASCs combination with a low‐level laser (LLL), an effective photobiostimulation for the healing processes. Materials and methods Rats calcaneal tendons were divided into five groups: normal (NT), transected (T), transected and ASCs (SC) or LLL (L), or with ASCs and LLL (SCL). Results All treated groups presented higher expression of Dcn and greater organization of collagen fibres. In comparison with T, LLL also up‐regulated Gdf5 gene expression, ASCs up‐regulated the expression of Tnmd, and the association of LLL and ASCs down‐regulated the expression of Scx. No differences were observed for the expression of Il1b, Timp2, Tgfb1, Lox, Mmp2, Mmp8 and Mmp9, neither in the quantification of hydroxyproline, TNF‐α, PCNA and in the protein level of Tnmd. A higher amount of IL‐10 was detected in SC, L and SCL compared to T, and higher amount of collagen I and III was observed in SC compared to SCL. Conclusions Transplanted ASCs migrated to the transected region, and all treatments altered the remodelling genes expression. The LLL was the most effective in the collagen reorganization, followed by its combination with ASCs. Further investigations are needed to elucidate the molecular mechanisms involved in the LLL and ASCs combination during initial phases of tendon repair.
Collapse
Affiliation(s)
- Letícia D Lucke
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda O Bortolazzo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Viviane Theodoro
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - Lucas Fujii
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - André L Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Maíra Felonato
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - Rodrigo A Dalia
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - Giane D Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Luciana P Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Alexandre L R Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda A S Mendonça
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - Marcelo A M Esquisatto
- Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| | - Edson R Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Andrea A de Aro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.,Biomedical Sciences Graduate Program, Herminio Ometto University Center - UNIARARAS, Araras, São Paulo, Brazil
| |
Collapse
|
15
|
Poorpezeshk N, Ghoreishi SK, Bayat M, Pouriran R, Yavari M. Early Low-Level Laser Therapy Improves the Passive Range of Motion and Decreases Pain in Patients with Flexor Tendon Injury. Photomed Laser Surg 2018; 36:530-535. [DOI: 10.1089/pho.2018.4458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Naghmeh Poorpezeshk
- Department of Plastic Surgery, Research, and Developmental Center, 15 Khordad Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Surgery, Naft Central Hospital, Petroleum Industry Health Organization, Tehran, Iran
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Yavari
- Department of Plastic Surgery, Research, and Developmental Center, 15 Khordad Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yao Z, Wang X, Zhang W, Liu Y, Ni T. Photochemical tissue bonding promotes the proliferation and migration of injured tenocytes through ROS/RhoA/NF-κB/Dynamin 2 signaling pathway. J Cell Physiol 2018; 233:7047-7056. [PMID: 29744878 DOI: 10.1002/jcp.26628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/30/2018] [Indexed: 12/26/2022]
Abstract
Photochemical tissue bonding (PTB) has been found to promote the healing of Achilles tendon tissue injury and to reduce postoperative complications. However, the underlying cellular and molecular mechanisms are not clear. In this study, the cell proliferation, ROS generation, migration and the protein expression of DNM2, NF-κB p65, TGF-β1 and VEGF in tenocytes after PTB treatment were measured by CCK-8, flow cytometry, Transwell and western blot assay, respectively. And those in tenocytes after DNM2 silencing or overexpressing or treatment with inhibitors of NF-κB, ROS and RhoA were also measured. Our results showed that 10 mW PTB treatment for 80 and 120 s significantly increased cell proliferation and increased ROS generation in tenocytes. 10 mW PTB treatment for 40 and 80 s significantly activated RhoA and increased the protein expression of DNM2, NF-κB p65, TGF-β1 and VEGF, but 10 mW PTB treatment for 120 s decreased the protein expression of those. DNM2 silencing significantly suppressed cell migration and the expression of DNM2, TGF-β1, and VEGF in tenocytes after PTB treatment (10 mW, 80 s), which was inhibited by DNM2 overexpression. Individual treatment with inhibitor of NF-κB, ROS, and RhoA in tenocytes showed decreased protein expression of DNM2, TGF-β1, and VEGF. Moreover, in vivo experiment found that PTB treatment significantly inhibited cell apoptosis and the expression of DNM2, NF-κB p65, RhoA, TGF-β1, and VEGF in a time-dependent manner. Taken together, our results suggest that PTB promotes the proliferation and migration of injured tenocytes through ROS/RhoA/NF-κB/DNM2 signaling pathway.
Collapse
Affiliation(s)
- Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yushu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Alzyoud JAM, Khan IM, Rees SG. In vitro studies to evaluate the effect of varying culture conditions and IPL fluencies on tenocyte activities. Lasers Med Sci 2017; 32:1561-1570. [PMID: 28770401 DOI: 10.1007/s10103-017-2279-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/29/2017] [Indexed: 01/26/2023]
Abstract
Tendons are dense, fibrous connective tissues which carry out the essential physiological role of transmitting mechanical forces from skeletal muscle to bone. From a clinical perspective, tendinopathy is very common, both within the sporting arena and amongst the sedentary population. Studies have shown that light therapy may stimulate tendon healing, and more recently, intense pulsed light (IPL) has attracted attention as a potential treatment modality for tendinopathy; however, its mechanism of action and effect on the tendon cells (tenocytes) is poorly understood. The present study therefore investigates the influence of IPL on an in vitro bovine tendon model. Tenocytes were irradiated with IPL at different devise settings and under variable culture conditions (e.g. utilising cell culture media with or without the pH indicator dye phenol red), and changes in tenocyte viability and migration were subsequently investigated using Alamar blue and scratch assays, respectively. Our data demonstrated that IPL fluencies of up to 15.9 J/cm2 proved harmless to the tenocyte cultures (this was the case using culture media with or without phenol red) and resulted in a significant increase in cell viability under certain culture conditions. Furthermore, IPL treatment of tenocytes did not affect the rate of cell migration. This study demonstrates that irradiation with IPL is not detrimental to the tenocytes and may increase their viability under certain conditions, thus validating our in vitro model. Further studies are required to elucidate the effects of IPL application in the clinical situation.
Collapse
Affiliation(s)
- Jihad A M Alzyoud
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan.
| | - Ilyas M Khan
- Swansea University Medical School, ILS2, Swansea, SA2 8SS, UK
| | - Sarah G Rees
- Swansea University Medical School, Grove Building, Swansea, SA2 8PP, UK
| |
Collapse
|
18
|
Lin J, Jing L, Zhu H, Dong FS. Fundamental research on the action mechanism of the 800 nm semiconductor laser on skin blackheads and coarse pores. Exp Ther Med 2017; 13:235-241. [PMID: 28428827 PMCID: PMC5396829 DOI: 10.3892/etm.2016.3937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
Abstract
The aim of the study was to determine the mechanism of action of the 800 nm semiconductor laser on skin blackheads and coarse pores. A total of 24 healthy purebred short-haired male guinea pigs, weighing 350-400 g, were selected and smeared with 0.5 ml coal tar suspension evenly by injector once daily. Treatment was continued for 14 days to form an experimental area of 8×3 cm on the back of the guinea pigs. The animals were divided into the following groups: Normal control group (NC), low-dose laser treatment group (L-LS), high-dose laser treatment group (H-LS), and Q-switched Nd:YAG treatment group (QC). Samples were extracted 1, 7 and 14 days after surgery and hematoxylin and eosin staining was used to identify the following: Epidermis, dermis, sebaceous gland change and hair follicle damage; the expression of proliferating cell nuclear antigen (PCNA) of sebaceous gland cells using immunohistochemistry; sebaceous gland cell apoptosis using TUNEL; and the protein expression of caspase-3, Bax and Bcl-2 using western blot analysis. With the extension of time, we observed inflammatory cell infiltration, an increase in hair follicle distortion and necrosis of the surrounding hair follicles. The expression levels of PCNA of the L-LS, H-LS and QC groups decreased with time. Regarding the respective time points, the NC group was highest, the L-LS and H-LS groups were next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). The apoptotic rate of the L-LS, H-LS and QC groups increased with time. With regard to the respective time points, the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. The difference was statistically significant (P<0.05). The protein expression of caspase-3, Bax and Bcl-2 of the L-LS, H-LS and QC groups increased with time. Regarding the respective time points, caspase-3 and Bax protein expression of the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. Bcl-2 protein expression of the NC group was highest, protein expression of the NC group was next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). In conclusion, the low-dose 800 nm semiconductor laser is an effective treatment on skin blackheads and coarse pores, and promotes hair follicle cell apoptosis without reducing the expression of PCNA.
Collapse
Affiliation(s)
- Jie Lin
- Department of Surgery, Hebei Medical University,
Shijiazhuang, Hebei 050017, P.R. China
| | - Li Jing
- Department of Oncology, The Fourth Hospital of
Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hao Zhu
- Department of Medical Cosmetology, Hebei General
Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fu-Sheng Dong
- Department of Oral and Maxillofacial Surgery,
Stomatological Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R.
China
| |
Collapse
|
19
|
Achilles Tendinopathy: Current Concepts about the Basic Science and Clinical Treatments. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6492597. [PMID: 27885357 PMCID: PMC5112330 DOI: 10.1155/2016/6492597] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022]
Abstract
Achilles tendinopathy is one of the most frequently ankle and foot overuse injuries, which is a clinical syndrome characterized by the combination of pain, swelling, and impaired performance. The two main categories of Achilles tendinopathy are classified according to anatomical location and broadly include insertional and noninsertional tendinopathy. The etiology of Achilles tendinopathy is multifactorial including both intrinsic and extrinsic factors. Failed healing response and degenerative changes were found in the tendon. The failed healing response includes three different and continuous stages (reactive tendinopathy, tendon disrepair, and degenerative tendinopathy). The histological studies have demonstrated an increased number of tenocytes and concentration of glycosaminoglycans in the ground substance, disorganization and fragmentation of the collagen, and neovascularization. There are variable conservative and surgical treatment options for Achilles tendinopathy. However, there has not been a gold standard of these treatments because of the controversial clinical results between various studies. In the future, new level I researches will be needed to prove the effect of these treatment options.
Collapse
|
20
|
Duesterdieck-Zellmer KF, Larson MK, Plant TK, Sundholm-Tepper A, Payton ME. Ex vivo penetration of low-level laser light through equine skin and flexor tendons. Am J Vet Res 2016; 77:991-9. [DOI: 10.2460/ajvr.77.9.991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Qin Q, Xiong ZA, Liu Y, Yao CG, Zhou W, Hua YY, Wang ZL. Effects of irreversible electroporation on cervical cancer cell lines in vitro. Mol Med Rep 2016; 14:2187-93. [PMID: 27431825 DOI: 10.3892/mmr.2016.5468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 05/06/2016] [Indexed: 11/06/2022] Open
Abstract
The effects of irreversible electroporation (IRE) on the proliferation, migration, invasion and adhesion of human cervical cancer cell lines HeLa and SiHa were investigated in the present study. HeLa and SiHa cells were divided into a treatment group and control group. The treatment group cells were exposed to electric pulses at 16 pulses, 1 Hz frequency for 100 µsec with 1,000 V/cm strength. Cellular proliferation was determined 24 h after treatment using a Cell Counting Kit‑8 (CCK‑8) assay and carboxyfluorescein diacetate‑succinimidyl ester (CFDA‑SE) labeling assay. The different phases of the cell cycle were detected using flow cytometry. Wound healing, Transwell invasion and Matrigel adhesion assays were performed to evaluate the migration, invasion and adhesion abilities of HeLa and SiHa cells. The expression levels of metastasis‑associated proteins were determined by western blot analysis. CCK‑8 and CFSE labeling assays indicated that the inhibition of cellular proliferation occurs in cells treated with IRE. Additionally, cell cycle progression was arrested at the G1/S phase. A western blot analysis indicated that the expression levels of p53 and p21 proteins were increased, whilst those of cyclin‑dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) proteins were decreased. However, wound healing, invasion and adhesion assays indicated that cellular migration, invasion and adhesion abilities were not significantly altered following exposure to IRE. IRE was not observed to promote the migration, invasion or adhesion capacity of HeLa and SiHa cells. However, IRE may inhibit the capacity of cells to proliferate and their progression through the cell cycle in vitro. Preliminary evidence suggests that the underlying mechanism involves increased expression levels of p53 and p21 and decreased expression levels of CDK2 and PCNA.
Collapse
Affiliation(s)
- Qin Qin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zheng-Ai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ying Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Chen-Guo Yao
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China
| | - Wei Zhou
- Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Yuan-Yuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhi-Liang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
22
|
Hendudari F, Piryaei A, Hassani SN, Darbandi H, Bayat M. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium. Lasers Med Sci 2016; 31:749-757. [PMID: 26984346 DOI: 10.1007/s10103-016-1867-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
Abstract
Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium.
Collapse
Affiliation(s)
- Farzane Hendudari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hasan Darbandi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran.
| |
Collapse
|
23
|
Khan I, Arany P. Biophysical Approaches for Oral Wound Healing: Emphasis on Photobiomodulation. Adv Wound Care (New Rochelle) 2015; 4:724-737. [PMID: 26634185 DOI: 10.1089/wound.2014.0623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Significance: Oral wounds can lead to significant pain and discomfort as well as affect overall general health due to poor diet and inadequate nutrition. Besides many biological and pharmaceutical methods being investigated, there is growing interest in exploring various biophysical devices that utilize electric, magnetic, ultrasound, pressure, and light energy. Recent Advances: Significant insight into mechanisms of these biophysical devices could provide a clear rationale for their clinical use. Preclinical studies are essential precursors in determining physiological mechanisms and elucidation of causal pathways. This will lead to development of safe and effective therapeutic protocols for clinical wound management. Critical Issues: Identification of precise events initiated by biophysical devices, specifically photobiomodulation-the major focus of this review, offers promising avenues in improving oral wound management. The primary phase responses initiated by the interventions that distinctly contribute to the therapeutic response must be clearly delineated from secondary phase responses. The latter events are a consequence of the wound healing process and must not be confused with causal mechanisms. Future Direction: Clinical adoption of these biophysical devices needs robust and efficacious protocols that can be developed by well-designed preclinical and clinical studies. Elucidation of the precise molecular mechanisms of these biophysical approaches could determine optimization of their applications for predictive oral wound care.
Collapse
Affiliation(s)
- Imran Khan
- Cell Regulation and Control Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Praveen Arany
- Cell Regulation and Control Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Torres-Silva R, Lopes-Martins RAB, Bjordal JM, Frigo L, Rahouadj R, Arnold G, Leal-Junior ECP, Magdalou J, Pallotta R, Marcos RL. The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis. Lasers Med Sci 2014; 30:1985-90. [PMID: 25380666 DOI: 10.1007/s10103-014-1676-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
Tendinopathy is a common disease with a variety of treatments and therapies. Laser therapy appears as an alternative treatment. Here, we investigate the effects of laser irradiation in an experimental model of tendinitis induced by collagenase injection on rats' Achilles tendon, verifying its action in important inflammatory markers. Male Wistar rats were used and divided into five groups: control saline (C), non-treated tendinitis (NT) and tendinitis treated with sodium diclofenac (D) or laser (1 J) and (3 J). The tendinitis was induced by collagenase (100 μg/tendon) on the Achilles tendon, which was removed for further analyses. The gene expression for COX-2; TNF-α; IL-6; and IL-10 (RT-PCR) was measured. The laser irradiation (660 nm, 100 mW, 3 J) used in the treatment of the tendinitis induced by collagenase in Achilles tendon in rats was effective in the reduction of important pro-inflammatory markers such as IL-6 and TNF-α, becoming a promising tool for the treatment of tendon diseases.
Collapse
Affiliation(s)
- Romildo Torres-Silva
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, 01504-001, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Second messengers mediating the proliferation and collagen synthesis of tenocytes induced by low-level laser irradiation. Lasers Med Sci 2014; 30:263-72. [PMID: 25231827 DOI: 10.1007/s10103-014-1658-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
For decades, low-level laser therapy (LLLT) has widespread applications in tendon-related injuries. Although the therapeutic effect of LLLT could be explained by photostimulation of target tissue and cells, how tenocytes sense photonic energy and convert them into cascades of cellular and molecular events is still not well understood. This study was designed to elucidate the effects of LLLT on cell proliferation and collagen synthesis by examining the associated second messengers including ATP, Ca(2+), and nitric oxide using rat Achilles tenocytes. Moreover, proliferating cell nuclear antigen (PCNA) and transforming growth factor-β1 (TGF-β1) related to cell proliferation and matrix metabolism were also studied. The results showed that 904 nm GaAs laser of 1 J/cm(2) could significantly increase the MTT activity and collagen synthesis of tenocytes. Second messengers including ATP and intracellular Ca2+ were increased after laser treatment. Quantitative PCR analysis of tenocytes treated with laser revealed up-regulated expression of PCNA, type I collagen, and TGF-β1. Besides, laser-induced TGF-β1 expression was significantly inhibited by extracellular signal-regulated kinase (ERK) specific inhibitor (PD98059). The findings suggested that LLLT stimulated ATP production and increased intracellular calcium concentration. Directly or indirectly via production of TGF-β1, these second messengers mediated the proliferation of tenocytes and synthesis of collagen.
Collapse
|