1
|
Luo M, Chen P, Tian Y, Rigzin N, Sonam J, Shang F, Tai C, Li T, Sang H. Hif-1α expression targets the TMA/Fmo3/TMAO axis to participate in gallbladder cholesterol stone formation in individuals living in plateau regions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167188. [PMID: 38657913 DOI: 10.1016/j.bbadis.2024.167188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The incidence of gallbladder cholesterol stones (GCS) increases rapidly among people living in high-altitude hypoxic environments compared to those in normoxic areas. Upregulation of hepatic hypoxia inducible factor 1α (Hif-1α) plays a key role in the formation of GCS. High plasma trimethylamine-N-oxide (TMAO) levels are positively correlated with the occurrence of GCS. We hypothesized that HIF-1α may upregulate TMAO levels by promoting the transcription of flavin-containing monooxygenase 3 (Fmo3), which eventually leads to GCS formation. Our study shows that in women, high plasma total cholesterol and apolipoprotein B were positively correlated with cholecystolithiasis and hypoxia. Hif-1α binds to the Fmo3 promoter and promotes Fmo3 expression. Hypoxia and lithogenic diet induce the expression of Hif-1α, Fmo3, TMAO and cholesterol tube transporters in the livers of mice, disturb the proportion of bile and plasma components, and induce the formation of GCS. In cell experiments, silencing Hif-1α downregulates the expression of Fmo3, TMAO and cholesterol tube transporters. In a mouse model of hypoxic cholecystolithiasis, silencing Hif-1α downregulates the expression of related genes, restores the proportion of bile and plasma lipid components, and reduces the formation of GCS. Our study shows that Hif-1α binds to the promoter region of Fmo3 and promotes Fmo3 transcription. Thus, it mediates the transcriptional activation of the TMA/Fmo3/TMAO pathway, upregulates the expression of ATP-binding cassettes (Abc) g5 and g8, and participates in the regulation of the occurrence of GCS in the plateau region.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Peng Chen
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ye Tian
- Department of Thoracic Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Norbu Rigzin
- Department of General Surgery, Naqu People's Hospital of the Tibet Autonomous Region, Naqu, Tibet, PR China
| | - Jigme Sonam
- Department of General Surgery, Naqu People's Hospital of the Tibet Autonomous Region, Naqu, Tibet, PR China
| | - Feihu Shang
- Department of General Surgery, Naqu People's Hospital of the Tibet Autonomous Region, Naqu, Tibet, PR China
| | - Chuang Tai
- Department of General Surgery, Naqu People's Hospital of the Tibet Autonomous Region, Naqu, Tibet, PR China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of General Surgery, Naqu People's Hospital of the Tibet Autonomous Region, Naqu, Tibet, PR China.
| |
Collapse
|
2
|
Bhattacharya T, Nandi A, Das A, El-Shazly M. Role of liver in gallstone formation. GALLSTONE FORMATION, DIAGNOSIS, TREATMENT AND PREVENTION 2024:51-70. [DOI: 10.1016/b978-0-443-16098-1.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Bali V, Khajuria Y, Maniyar V, Rai PK, Kumar U, Ghany C, Gondal M, Singh VK. Quantitative analysis of human hairs and nails. Biophys Rev 2023; 15:401-417. [PMID: 37396444 PMCID: PMC10310683 DOI: 10.1007/s12551-023-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Hair and nails are human biomarkers capable of providing a continuous assessment of the concentrations of elements inside the human body to indicate the nutritional status, metabolic changes, and the pathogenesis of various human diseases. Laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF) spectrometry are robust and multi-element analytical techniques able to analyze biological samples of various kinds for disease diagnosis. The primary objective of this review article is to focus on the major developments and advances in LIBS and XRF for the elemental analysis of hair and nails over the last 10-year period. The developments in the qualitative and quantitative analyses of human hair and nail samples are discussed in detail, with special emphasis on the key aspects of elemental imaging and distribution of essential and non-essential elements within the hair and nail tissue samples. Microchemical imaging applications by LIBS and XRF (including micro-XRF and scanning electron microscopy, SEM) are also presented for healthy as well as diseased tissue hair and nail samples in the context of disease diagnosis. In addition, main challenges, prospects, and complementarities of LIBS and XRF toward analyzing human hair and nails for disease diagnosis are also thoroughly discussed here.
Collapse
Affiliation(s)
- Varun Bali
- School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 India
| | - Yugal Khajuria
- School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 India
| | | | - Pradeep K. Rai
- Department of Urology and Nephrology, Opal Hospital, Kakarmatta, Varanasi, Uttar Pradesh 221005 India
| | - Upendra Kumar
- Advanced Functional Materials Laboratory, Department of Applied Sciences, IIIT Allahabad, Prayagraj, Uttar Pradesh 211005 India
| | - Charles Ghany
- Department of Engineering, Computer Science, and Physics, Mississippi College, Clinton, MS 39056 USA
| | - M.A. Gondal
- Laser Research laboratory, Physics Department, IRC- Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Vivek K. Singh
- School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320 India
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007 India
| |
Collapse
|
4
|
Bali V, Khajuria Y, Sharma J, Rai PK, Gondal MA, Kumar U, Singh VK. Compositional and Morphological Studies of Kidney and Gallbladder Stones from Fundamentals to Advanced Level using SEM–EDS Technique: A Short Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Analysis of stones formed in the human gall bladder and kidney using advanced spectroscopic techniques. Biophys Rev 2020; 12:647-668. [PMID: 32410185 DOI: 10.1007/s12551-020-00697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Stone diseases (gallstones and kidney stones) are extremely painful and often cause death. The prime aim of biomedical research in this area has been determination of factors resulting in stone formation inside the gallbladder and urinary tract. Many theories have been put forward to explain the mechanism of stone formation and their growth; however, their complete cycle of pathogenesis is still under debate. Several factors are responsible for stone formation; however, much emphasis is placed on the determination of elemental and molecular composition of the stones. In the present review article, we describe different kinds of spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and laser-induced breakdown spectroscopy (LIBS) and highlight their use in the analysis of stone diseases. We have summarized work done on gallstones and kidney stones using these advanced techniques particularly over the last 10 years. We have also briefly elaborated the basics of stone formations inside the human body and their complications for a better understanding of the subject.
Collapse
|
6
|
Peter A, Cozmuta LM, Nicula C, Cozmuța AM, Vulpoi A, Barbu-Tudoran L, Magyari K, Todea M, Baia L, Pop FG. Multi-analyses of gallstones and correlation between their properties with the laboratory results. Anal Biochem 2020; 593:113587. [PMID: 31978457 DOI: 10.1016/j.ab.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
This study explores the morpho-structure of gallstones (GSs) removed from 36 patients in NW Romania and correlate it with the laboratory results of the patients. GSs were analyzed by SEM-EDS, X-ray diffraction and IR, UV-Vis and X-ray photoelectron spectroscopy. The laboratory studies consisted in hematological, coagulation, biochemistry, immunological and tumor markers tests. The morphological and structural investigations allowed to classify the GS in five different types and to establish their mechanism of formation. Only macroscopic evaluation, SEM microscopy, FTIR and UV-Vis spectroscopy give different easily noticeable information for each GS type. EDS, XPS and XRD diffraction are recommended to distinguish pigment and carbonate stones from the other GS types and a carefully examination is needed to establish the differences between the pure cholesterol, the mixed cholesterol and the composite cholesterol stones, due to the high similarities. The variation of specific markers cannot differentiate the patients with pure cholesterol GS from those with mixed cholesterol and pigment GS and those with mixed cholesterol from those with composite cholesterol stones. Seven laboratory parameters (RDW-CV, MPV, PCT, GLUC-HK, WBC, PT, GPT) are the key indicators for the GS disease and trend to present generally higher values than normal.
Collapse
Affiliation(s)
- Anca Peter
- Technical University of Cluj Napoca, Department of Chemistry and Biology, Victor Babes 76, 430083, Baia Mare, Romania.
| | - Leonard Mihaly Cozmuta
- Technical University of Cluj Napoca, Department of Chemistry and Biology, Victor Babes 76, 430083, Baia Mare, Romania.
| | - Camelia Nicula
- Technical University of Cluj Napoca, Department of Chemistry and Biology, Victor Babes 76, 430083, Baia Mare, Romania.
| | - Anca Mihaly Cozmuța
- Technical University of Cluj Napoca, Department of Chemistry and Biology, Victor Babes 76, 430083, Baia Mare, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania.
| | - Lucian Barbu-Tudoran
- Babes-Bolyai University, Faculty of Biology & Geology, Clinicilor 5-7, 400006, Cluj-Napoca, Romania; NIRD of Isotopic and Molecular Technologies, 67-103 Donath, 400293, Cluj-Napoca, Romania.
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania; Institute of Environmental Science and Technology, University of Szeged, Tisza Lajos blvd. 103, 6720, Szeged, Hungary.
| | - Milica Todea
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania; Department of Molecular Sciences, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271, Cluj-Napoca, Romania; Babes-Bolyai University, Faculty of Physics & Institute for Interdisciplinary Research on Bio-Nano-Sciences, M, Kogalniceanu 1, 400084, Cluj-Napoca, Romania.
| | - Flaviu Gheorghe Pop
- Surgery III, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Laser-induced breakdown spectroscopy (LIBS): a novel technology for identifying microbes causing infectious diseases. Biophys Rev 2018; 10:1221-1239. [PMID: 30338479 DOI: 10.1007/s12551-018-0465-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 01/15/2023] Open
Abstract
With the advent of improved experimental techniques and enhanced precision, laser-induced breakdown spectroscopy (LIBS) offers a robust tool for probing the chemical constituents of samples of interest in biological sciences. As the interest continues to grow rapidly, the domain of study encompasses a variety of applications vis-à-vis biological species and microbes. LIBS is basically an atomic emission spectroscopy of plasma produced by the high-power pulsed laser which is tightly focused on the surface of any kinds of target materials in any phase. Due to its experimental simplicity, and versatility, LIBS has achieved its high degree of interest particularly in the fields of agricultural science, environmental science, medical science, forensic sciences, and biology. It has become a strong and sensitive elemental analysis tool as compared to the traditional gold standard techniques. As such, it offers a handy, rapid, and flexible elemental measurement of the sample compositions, together with the added benefits of less cumbersome sample preparation requirements. This technique has extensively been used to detect various microorganisms, extending the horizon from bacteria, molds, to yeasts, and spores on surfaces, while also being successful in sensing disease-causing viruses. LIBS-based probe has also enabled successful detection of bacteria in agriculture as well. In order for good quality processing of food, LIBS is also being used to detect and identify bacteria such as Salmonella enteric serovar typhimurium that causes food contamination. Differences in soil bacteria isolated from different mining sites are a very good indicator of relative environmental soil quality. In this connection, LIBS has effectively been employed to discriminate both the inter- and intra-site differences of the soil quality across varying mining sites. Therefore, this article summarizes the basic theory and use of LIBS for identifying microbes causing serious agricultural and environmental infectious diseases.
Collapse
|
8
|
Tan B, Huang M, Zhu Q, Guo Y, Qin J. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting. APPLIED OPTICS 2017; 56:7116-7122. [PMID: 29047971 DOI: 10.1364/ao.56.007116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO4·5H2O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.
Collapse
|
9
|
Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study. Clin Chim Acta 2017. [PMID: 28625681 DOI: 10.1016/j.cca.2017.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Epidemiological data among the human population has shown a significantly increased incidence of gallstone (GS) disease worldwide. It was studied that some essential (calcium) and transition elements (iron and copper) in bile play an important role in the development of GS. METHOD The estimation of calcium, copper and iron were carried out in the serum, gall bladder bile and different types of GS (cholesterol, mixed and pigmented) of 172 patients, age ranged 20-55years. For comparative purpose age matched referents not suffering from GS diseases were also selected. Biliary concentrations of calcium (Ca), iron (Fe) and copper (Cu) were correlated with their concentrations in serum and different types of GS samples. The ratio of Ca, Fe and Cu in bile with serum was also calculated. Understudy metals were determined by flame atomic absorption spectroscopy after acid decomposition of matrices of selected samples. RESULTS The Ca concentrations in serum samples were significantly higher in patients with pigmented GS as compared to controls (p<0.005), whereas for patients having cholesterol and mixed GS the concentrations were on the lower side. Biliary Ca concentrations of patients were found to be higher than controls, but difference was significant for pigmented GS patients (p>0.001). The contents of Cu and Fe in serum and bile of all patients (except female cholesterol GS patient have low serum iron concentration) were found to be higher than control, but difference was significant in those patients who have pigmented GS. The concentration of Ca, Fe and Cu in different types GS were found in the order, Pigmented>mixed>cholesterol. The bile/serum ratio for Ca, Cu and Fe was found to be significantly higher in pigmented GS patients. Gall bladder bile was slightly alkaline in patients as compared to referents. The density of bile was found to be higher in patients as compared to the referents. Various functional groups present in different types of GS samples were confirmed by Fourier transform infra-red spectroscopy. CONCLUSION The higher density and pH of bile, elevated concentrations of transition elements in all types of biological samples (serum, bile and GS), could be an important factor for the formation of different types of GS.
Collapse
|
10
|
Mizutani S, Torisu S, Kaneko Y, Yamamoto S, Fujimoto S, Ong BHE, Naganobu K. Retrospective analysis of canine gallbladder contents in biliary sludge and gallbladder mucoceles. J Vet Med Sci 2016; 79:366-374. [PMID: 27990011 PMCID: PMC5326943 DOI: 10.1292/jvms.16-0562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The pathophysiology of canine gallbladder diseases, including biliary sludge, gallbladder
mucoceles and gallstones, is poorly understood. This study aimed to evaluate the component
of gallbladder contents and bacterial infection of the gallbladder in order to elucidate
the pathophysiology of biliary sludge and gallbladder mucoceles. A total of 43 samples of
canine gallbladder contents (biliary sludge, 21 and gallbladder mucoceles, 22) were
subjected to component analysis by infrared spectroscopy, and the resultant infrared
spectra were compared with that of swine mucin. Of the 43 samples, 41 were also evaluated
by aerobic and anaerobic bacterial culture. The contents of 20 (95.2%) biliary sludge and
22 (100%) gallbladder mucocele samples exhibited similar infrared spectra as swine mucin.
Although biliary sludge and gallbladder mucocele contents exhibited similar infrared
spectra, one sample of biliary sludge (4.8%) was determined to be composed of proteins.
The rate of bacterial infection of the gallbladder was 10.0% for biliary sludge and 14.3%
for gallbladder mucoceles. Almost all of the identified bacterial species were intestinal
flora. These results indicate that the principal components of gallbladder contents in
both gallbladder mucoceles and biliary sludge are mucins and that both pathophysiologies
exhibit low rates of bacterial infection of the gallbladder. Therefore, it is possible
that gallbladder mucoceles and biliary sludge have the same pathophysiology, and, rather
than being independent diseases, they could possibly represent a continuous disease. Thus,
biliary sludge could be considered as the stage preceding the appearance of gallbladder
mucoceles.
Collapse
Affiliation(s)
- Shinya Mizutani
- University of Miyazaki Veterinary Teaching Hospital, 1-1 Gakuen Kibana-dai Nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|