1
|
Dong D, Zhan J, Liao G, Zhu T, Yu Q, Zhang W, Wang L. Microfluidics-Assisted Polymer Vesicle Budding in Emulsion Systems: A Promising Approach for the Preparation and Application of Polymer Vesicles. Molecules 2024; 29:4802. [PMID: 39459171 PMCID: PMC11510250 DOI: 10.3390/molecules29204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The challenge of producing polymer vesicles remains difficult, despite numerous attempts to modulate the kinetics of polymer vesicle budding and achieve precise control over the membrane characteristics. An innovative approach that incorporates the use of copolymer-loaded single-emulsion droplets is proposed to address this challenge. This method enables the precise manipulation of micelles and polymer vesicles' composition, structures and dimensions. The emulsion contracts and forms microspheres when the copolymer concentrations exceed > 0.5 wt%, resulting in the formation of nano polymer vesicles. Conversely, the copolymer spontaneously forms micro polymer vesicles and micelles through vesicle budding at lower concentrations. The spontaneous production of vesicles and micelles can be induced by modifying the copolymer concentration in the emulsion. Our discoveries have a significant impact relative to the development of copolymer membranes and contribute to an enhanced comprehension of the mass manufacturing of polymer vesicles from single emulsions.
Collapse
Affiliation(s)
| | | | | | | | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| |
Collapse
|
2
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|
3
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Shen Y, Wei Y, Zhu C, Cao J, Han DM. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Self-assembly behavior of disaccharide-containing supra-amphiphiles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ren S, Zhang G, Shi W, Li W, Jia X. Fabrication of pH/H 2O 2-responsive polyhedral oligomeric silsesquioxane self-assembled fluorescent vesicles for enhanced in vivo anti-tumor efficacy. Nanomedicine (Lond) 2022; 17:671-682. [PMID: 35475381 DOI: 10.2217/nnm-2021-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The rational design of a fluorescence imaging-guided, highly efficient multiresponsive delivery system is important for improving drug delivery efficiency. Materials and methods: Herein, pH/H2O2-responsive polyhedral oligomeric silsesquioxane (POSS) molecule functionalized 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)amino)benzaldehyde (OTB) copolymer (PEG-POSS-OTB) was synthesized to encapsulate doxorubicin (DOX) for precise drug delivery. Results: The self-assembly fluorescent vesicles exhibited excellent pH/H2O2-responsive drug release properties under physiological conditions and efficient drug-targeting ability. In vitro, compared with the DOX group, PEG-POSS-OTB fluorescent vesicles exhibited improved drug delivery and reduced toxicity. Importantly, we performed a proof-of-concept study demonstrating that PEG-POSS-OTB fluorescent vesicles were a high-efficiency nanoassembly drug-delivery platform for improving drug delivery efficiency. In vivo studies demonstrated that PEG-POSS-OTB vesicles with enhanced stability could be used in targeted drug delivery and controlled intelligent release.
Collapse
Affiliation(s)
- Shuxian Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wanling Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizhi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Zhu Y, Hu Y, Zeng J, Chen C, Li S, Jiang Y. Rapidly SO2-responsive vesicles with intrinsic fluorescent indicators for membrane structure evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang N, Fan Y, Chen H, Trépout S, Brûlet A, Li MH. Polymersomes with a smectic liquid crystal structure and AIE fluorescence. Polym Chem 2022. [DOI: 10.1039/d1py01686e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent smectic polymersomes with aggregation-induced emission are prepared from an amphiphilic block copolymer containing a liquid crystal hydrophobic block and a tetraphenylethene-bearing unit between hydrophilic and hydrophobic blocks.
Collapse
Affiliation(s)
- Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Yujiao Fan
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 ORSAY Cedex, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR12 CEA-CNRS, CEA Saclay, 91191 Gif sur Yvette cedex, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Huang P, Qi M, Chen C, Xu F, Li S, Xu Q, Pan H, Wang Y, Yu C, Zhang S, Zhou Y. Asymmetric Vesicles Self-Assembled by Amphiphilic Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:894-900. [PMID: 35549185 DOI: 10.1021/acsmacrolett.1c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The asymmetric distribution of lipids on the inner and outer membranes of a cell plays a pivotal role in the physiological and immunological activities of life. It has inspired the elaboration of synthetic asymmetric vesicles for the discovery of advanced materials and functions. The asymmetric vesicles were generally prepared by amphiphilic block copolymers. We herein report on the formation of asymmetric vesicles self-assembled by amphiphilic sequence-controlled polymers with two hydrophilic segments SU and TEO. We also developed an efficient fluorescence titration method with europium(III) ions (Eu3+) to determine the uneven distribution of SU and TEO. SU units are preferentially located on the outer membrane and TEO on the inner membrane of the resulting vesicles, which is facilitated by the electrostatic repulsion of SU and the U-shaped folding of the hydrophobic backbone of the resulting polymers. This work shows that sequence-controlled polymers with alternating monomer sequence provide a powerful toolbox for the elaboration of important yet challenging self-assembled structures for emerging functions and properties.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Yang YY, Chen LS, Sun M, Wang CY, Fan Z, Du JZ. Biodegradable Polypeptide-based Vesicles with Intrinsic Blue Fluorescence for Antibacterial Visualization. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2593-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9512-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Zhang D, Fan Y, Chen H, Trépout S, Li MH. CO 2 -Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. Angew Chem Int Ed Engl 2019; 58:10260-10265. [PMID: 31145525 DOI: 10.1002/anie.201905089] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Indexed: 11/05/2022]
Abstract
Fluorescent polymersomes with both aggregation-induced emission (AIE) and CO2 -responsive properties were developed from amphiphilic block copolymer PEG-b-P(DEAEMA-co-TPEMA) in which the hydrophobic block was a copolymer made of tetraphenylethene functionalized methacrylate (TPEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) with unspecified sequence arrangement. Four block copolymers with different DEAEMA/TPEMA and hydrophilic/hydrophobic ratios were synthesized, and bright AIE polymersomes were prepared by nanoprecipitation in THF/water and dioxane/water systems. Polymersomes of PEG45 -b-P(DEAEMA36 -co-TPEMA6 ) were chosen to study the CO2 -responsive property. Upon CO2 bubbling vesicles transformed to small spherical micelles, and upon Ar bubbling micelles returned to vesicles with the presence of a few intermediate morphologies. These polymersomes might have promising applications as sensors, nanoreactors, or controlled release systems.
Collapse
Affiliation(s)
- Dapeng Zhang
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Yujiao Fan
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | | | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Zhang D, Fan Y, Chen H, Trépout S, Li M. CO
2
‐Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dapeng Zhang
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | - Yujiao Fan
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | - Hui Chen
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | | | - Min‐Hui Li
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|