1
|
Torres-Rodríguez J, Pérez-Camargo RA, Shi Y, Wang K, Jia YG, Zhu XX, Müller AJ. The Hidden Isodimorphic Crystallization of Poly(ε-Caprolactone- Ran-ω-Pentadecalactone) Copolymers. Biomacromolecules 2025. [PMID: 40373241 DOI: 10.1021/acs.biomac.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Poly(ε-caprolactone-ran-ω-pentadecalactone) (PCLx-PPDLy) copolymers were synthesized by using ring-opening polymerization with Candida antarctica lipase B as a catalyst across various compositions. The aim was to study their crystallization behavior and ascertain whether they are isomorphic or isodimorphic. Differential scanning calorimetry, polarized light optical microscopy, in situ wide- and small-angle X-ray scattering, and Fourier-transform infrared spectroscopy were employed to assess the crystallization mode. Various crystallization conditions were used to investigate their influence on the comonomer inclusion/exclusion balance. The copolymers exhibited pseudoeutectic behavior across all compositions, crystallizing in either PPDL-type or PCL-type unit cells and conformations, independent of crystallization conditions. This indicates that they are isodimorphic, contrary to previous reports. Self-nucleation tests showed that the Domain II width decreases with increasing comonomer content, supporting isodimorphism. The pseudoeutectic point was observed at CL contents above 83%, which explains the previously unrecognized isodimorphic character of these copolyesters.
Collapse
Affiliation(s)
- Juan Torres-Rodríguez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A Pérez-Camargo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Yunxiang Shi
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
| | - Kaojin Wang
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - Yong-Guang Jia
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - X X Zhu
- Department of Chemistry, Beijing Normal University, Zhuhai, Guangdong 519085, China
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
2
|
Dębowski M, Kullas M, Czaja K, Sacher-Majewska B, Bączek M, Dranka M, Ostrowski A, Florjańczyk Z. Calcium coordination polymer containing dimethylphosphate ligands and exhibiting nucleating properties towards α and Β crystal polymorphs of isotactic polypropylene. Sci Rep 2025; 15:15447. [PMID: 40316722 PMCID: PMC12048558 DOI: 10.1038/s41598-025-99757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
The synthesis, structure and thermal properties of a one-dimensional coordination polymer based on calcium bis(dimethylphosphate) (CaDMP) are reported. The rod-like particles of CaDMP crystallized from water in a monoclinic space group P21/c, and contained Ca[O2P(OCH3)2]2 polymeric chains consisting of the octahedrally coordinated Ca2+ ions bridged by the tridentate dimethylphosphate ligands. The variable temperature powder X-ray diffraction measurements showed that this structure undergoes anisotropic thermal expansion upon heating, with no polymorphic transitions occurring up to 190 °C. Thermolysis of CaDMP began around 260 °C leading to the formation of calcium condensed phosphates and volatile oxophosphorus species. A detailed differential scanning calorimetry (DSC) analysis, combined with a fitting of the experimental data to the Avrami or Liu-Mo kinetic models, revealed that CaDMP accelerates isothermal and non-isothermal crystallization of isotactic polypropylene (iPP). DSC and wide-angle X-ray scattering measurements confirmed the presence of α-iPP and β-iPP crystal domains in the systems loaded with CaDMP particles. The crystallographic analysis indicated that β-iPP polymorph formed via epitaxial crystallization on the surface of CaDMP crystals. Mechanical tests proved that the CaDMP-containing composites exhibited better ductility and impact strength than neat iPP.
Collapse
Affiliation(s)
- Maciej Dębowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Mateusz Kullas
- Institute of Chemistry, University of Opole, Oleska 48, Opole, 45-052, Poland
| | - Krystyna Czaja
- Institute of Chemistry, University of Opole, Oleska 48, Opole, 45-052, Poland
| | | | - Marcin Bączek
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biała, Willowa 2, Bielsko-Biała, 43-309, Poland
| | - Maciej Dranka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Andrzej Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Zbigniew Florjańczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
3
|
Sangroniz L, Olmedo-Martínez JL, Hu W, Jang YJ, Liu G, Hillmyer MA, Müller AJ. Strong Hydrogen Bonds Sustain Even-Odd Effects in Poly(ester amide)s with Long Alkyl Chain Length in the Backbone. Biomacromolecules 2024; 25:7500-7510. [PMID: 39473028 DOI: 10.1021/acs.biomac.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The number of methylene groups between strongly interacting functional groups within polymer repeating units induces even-odd effects on thermal and mechanical properties. However, detailed studies correlating the even-odd effect with structural changes are still lacking. In this work, we establish correlations between the structure and thermal properties of poly(ester amide)s containing long alkyl chain lengths. The even-odd effect impacts the thermal properties, including the melting temperature and crystallinity degree. It influences the spherulitic morphology of poly(ester amide)s, controlling the appearance of banding. We demonstrate that even-odd effects in poly(ester amides)s persist even with 27 CH2 groups within the repeating unit, an effect due to strong hydrogen bonds caused by the amide groups. Our X-ray studies reveal that the even-odd effect originates from changes in the crystalline structure of the materials. This work helps elucidate the role of strong intermolecular interactions (i.e., hydrogen bonding) on the even-odd effect in long-chain poly(ester amides).
Collapse
Affiliation(s)
- Leire Sangroniz
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, United States
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Jorge L Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Wenxian Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, United States
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, United States
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
4
|
Fernández-Tena A, Fernández M, Sandoval AJ, Calafel MI, Aguirre A, Aranburu N, Guerrica-Echevarria G, Di Lorenzo ML, Longo A, Vega JF, Müller AJ. Enhancing melt strength and crystallization kinetics in polylactide: Influence of chain topology. Int J Biol Macromol 2024; 282:136783. [PMID: 39476897 DOI: 10.1016/j.ijbiomac.2024.136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The generation of long-chain branches (LCB) in biobased and biodegradable polylactide (PLA) by adding different amounts of a chain extender is studied. The rheological and calorimetric behavior have been used to determine the effect of LCB presence and their topology on PLA melt strength and crystallization behavior. Rheological modeling of linear and non-linear viscoelastic shear and extensional properties identified several possible branched structures. Moreover, remarkable differences were observed for the different topologies regarding the intrinsic non-linear parameters and the intra-cycle elastic and viscous non-linearities. Differential scanning calorimetry and polarized light optical microscopy measurements revealed a significant increase in the nucleation density and rate of PLA with increasing the amount of LCB, albeit they provoke a decrease in the growth rate due to a reduction in chain diffusion. Nevertheless, overall crystallization rate values revealed a predominant effect of nucleation over crystal growth. The introduction of LCB within the chains is highly beneficial as they increase nucleation, crystallinity, and elongational viscosity, thus improving the properties of biodegradable PLA.
Collapse
Affiliation(s)
- Ainhoa Fernández-Tena
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Aleida J Sandoval
- Laboratorio de Procesamiento de Alimentos, Departamento de Tecnología de Procesos Biológicos y Bioquímicos, Universidad Simón Bolívar, Aptdo. 89000, 1080A Caracas, Venezuela
| | - M Itxaso Calafel
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Amaia Aguirre
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Tolosa hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nora Aranburu
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Gonzalo Guerrica-Echevarria
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Alessandra Longo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Juan Francisco Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia (IEM-CSIC), c/Serrano 113bis, 28006 Madrid, Spain.
| | - Alejandro J Müller
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
5
|
Gerlei M, Pierson H, Ponçot M, Kahn CJF, Linder M. Chemical Composition and Crystallization Behavior of Oil and Fat Blends for Spreadable Fat Applications. Foods 2024; 13:3305. [PMID: 39456367 PMCID: PMC11507071 DOI: 10.3390/foods13203305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
To meet the expectations of European consumers, who prioritize agro-environmental factors and local resources, the substitution of fats (palm, coconut, shea) and achieving a balanced fatty acid profile in spreadable fats are gaining more attention. The crystallization at 4 °C of a lipid blend composed of rapeseed oil, anhydrous dairy fats, and emulsifiers was studied using a multi-scale approach (DSC and X-ray diffraction techniques) to understand the emergence of polymorphic structures. Although the addition of PUFA from rapeseed oil reduces the atherogenicity and thrombogenicity indices in the blend, controlling the cooling kinetics influences the shapes (needles and spherulites) and sizes of the crystalline structures (small crystals form at a cooling rate of 1 °C min-1, while larger crystals form at higher rates of 5 and 10 °C min-1). The crystallization behavior revealed differences in polymorphic forms at 4 °C in the blend, with a transition to different forms occurring more rapidly compared to dairy fat (stop-and-return method). The study shows crystalline coexistence (α, β', and β) in a 2L lamellar structure, with the β' form being predominant. This structure is ideal for formulating a spreadable product, offering good spreadability (SFC < 32% at 10 °C), mouthfeel, and nutritional benefits compared to butter.
Collapse
Affiliation(s)
- Maureen Gerlei
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France; (M.G.); (C.J.F.K.)
| | - Hugo Pierson
- Institut Jean Lamour CNRS, Université de Lorraine, F-54000 Nancy, France; (H.P.); (M.P.)
| | - Marc Ponçot
- Institut Jean Lamour CNRS, Université de Lorraine, F-54000 Nancy, France; (H.P.); (M.P.)
| | - Cyril J. F. Kahn
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France; (M.G.); (C.J.F.K.)
| | - Michel Linder
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France; (M.G.); (C.J.F.K.)
| |
Collapse
|
6
|
Matxinandiarena E, Peñas MI, Curole BJ, Król M, Polo Fonseca L, Ruokolainen J, Grayson SM, Sangroniz L, Müller AJ. Crystallization-Induced Self-Assembly of Poly(ethylene glycol) Side Chains in Dithiol-yne-Based Comb Polymers: Side Chain Spacing and Molecular Weight Effects. Macromolecules 2024; 57:4906-4917. [PMID: 38827961 PMCID: PMC11140754 DOI: 10.1021/acs.macromol.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The chain architecture and topology of macromolecules impact their physical properties and final performance, including their crystallization process. In this work, comb polymers constituted by poly(ethylene glycol), PEG, side chains, and a dithiol-yne-based ring polymer backbone have been studied, focusing on the micro- and nanostructures of the system, thermal behavior, and crystallization kinetics. The designed comb system allows us to investigate the role of a ring backbone, the impact of varying the distance between two neighboring side chains, and the effect of the molecular weight of the side chain. The results reflect that the governing factor in the crystalline properties is the molar mass of the side chains and that the tethering of PEG chains to the ring backbone brings important constraints to the crystallization process, reducing the crystallinity degree and slowing down the crystallization kinetics in comparison to analogue PEG homopolymers. We demonstrate that the effect of spatial hindrance in the comb-like PEG polymers drives the morphology toward highly ordered, self-assembled, semicrystalline superstructures with either extended interdigitated chain crystals or novel (for comb polymers) interdigitated folded chain lamellar crystals. These structures depend on PEG molecular weight, the distance between neighboring tethered PEG chains, and the crystallization conditions (nonisothermal versus isothermal). This work sheds light on the role of chain architecture and topology in the structure of comb-like semicrystalline polymers.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Brennan J. Curole
- Department
of Chemistry, Tulane University, 6400 Freret Street, 2015 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Monika Król
- Department
of Applied Physics, School of Science, Aalto
University, FIN-00076 Espoo, Finland
| | - Lucas Polo Fonseca
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FIN-00076 Espoo, Finland
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, 6400 Freret Street, 2015 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Leire Sangroniz
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Olmedo-Martínez J, Del Olmo R, Gallastegui A, Villaluenga I, Forsyth M, Müller AJ, Mecerreyes D. All-Polymer Nanocomposite as Salt-Free Solid Electrolyte for Lithium Metal Batteries. ACS POLYMERS AU 2024; 4:77-85. [PMID: 38371727 PMCID: PMC10870747 DOI: 10.1021/acspolymersau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
Solid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20-30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10-5 S cm-1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg-1 with a current density of 0.05 mA cm-2 was achieved.
Collapse
Affiliation(s)
- Jorge
L. Olmedo-Martínez
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Rafael Del Olmo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Antonela Gallastegui
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Irune Villaluenga
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Forsyth
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Institute
for Frontier Materials and Industry Training Transformation Centre
for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood 3125, Victoria, Australia
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - David Mecerreyes
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Caputo M, Shi C, Tang X, Sardon H, Chen EYX, Müller AJ. Tailoring the Nucleation and Crystallization Rate of Polyhydroxybutyrate by Copolymerization. Biomacromolecules 2023; 24:5328-5341. [PMID: 37782027 PMCID: PMC10646943 DOI: 10.1021/acs.biomac.3c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Indexed: 10/03/2023]
Abstract
In the polyester family, the biopolymer with the greatest industrial potential could be poly(3-hydroxybutyrate) (PHB), which can be produced nowadays biologically or chemically. The scarce commercial use of PHB derives from its poor mechanical properties, which can be improved by incorporating a flexible aliphatic polyester with good mechanical performance, such as poly(ε-caprolactone) (PCL), while retaining its biodegradability. This work studies the structural, thermal, and morphological properties of block and random copolymers of PHB and PCL. The presence of a comonomer influences the thermal parameters following nonisothermal crystallization and the kinetics of isothermal crystallization. Specifically, the copolymers exhibit lower melting and crystallization temperatures and present lower overall crystallization kinetics than neat homopolymers. The nucleation rates of the PHB components are greatly enhanced in the copolymers, reducing spherulitic sizes and promoting transparency with respect to neat PHB. However, their spherulitic growth rates are depressed so much that superstructural growth becomes the dominating factor that reduces the overall crystallization kinetics of the PHB component in the copolymers. The block and random copolymers analyzed here also display important differences in the structure, morphology, and crystallization that were examined in detail. Our results show that copolymerization can tailor the thermal properties, morphology (spherulitic size), and crystallization kinetics of PHB, potentially improving the processing, optical, and mechanical properties of PHB.
Collapse
Affiliation(s)
- Maria
Rosaria Caputo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
9
|
Virat G, Maiti KK, Amal Raj RB, Gowd EB. Impact of polymer chain packing and crystallization on the emission behavior of curcumin-embedded poly(L-lactide)s. SOFT MATTER 2023; 19:6671-6682. [PMID: 37609667 DOI: 10.1039/d3sm00853c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The development of biodegradable and biocompatible fluorescent materials with tunable emission in the solid state has become increasingly relevant for smart packaging and biomedical applications. Molecular packing and conformations play a critical role in tuning the solid-state photophysical properties of fluorescent materials. In this work, tunable emission of bioactive curcumin was achieved through the manipulation of the crystallization conditions and the polymorphic form of covalently linked poly(L-lactide) in the curcumin-embedded poly(L-lactide) (curcumin-PLLA). In the melt-crystallized curcumin-PLLA, with the increase in the isothermal crystallization temperature, a bathochromic shift in the fluorescence of curcumin-PLLA was observed due to the change in the intramolecular conjugation length of curcumin. The change in the isothermal crystallization temperature of curcumin-PLLA resulted in the rotation of the terminal phenyl rings of curcumin with respect to the central keto-enol group due to the covalently linked helical PLLA chains. In addition, solvent-induced single crystals and a gel of curcumin-PLLA were prepared and the influence of the polymorphic form of PLLA on the emission behavior of curcumin-PLLA was investigated. The results suggest that the polymer chain packing, crystallization conditions, morphology, and polymorphic form could play an influential role in dictating the fluorescence properties of fluorophore-embedded polymers.
Collapse
Affiliation(s)
- G Virat
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R B Amal Raj
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - E Bhoje Gowd
- Materials Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
10
|
Liu L, Yang W, Chen X, Zhao Y, Dong X, Müller AJ, Wang D. Ethylene Comonomer-Directed Epitaxial Nucleation and Growth of β-Nucleated Isotactic Polypropylene. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Liyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhong Yang
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Xinyan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xia Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao 48009, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Influence of self-nucleation on phase transition in poly(1-butene). POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Ohira M, Nakagawa S, Sampei R, Noritomi T, Sakai T, Shibayama M, Li X. Effects of network junctions and defects on the crystallization of model poly(ethylene glycol) networks. SOFT MATTER 2023; 19:1653-1663. [PMID: 36756772 DOI: 10.1039/d2sm01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer crystallization drastically changes the physical properties of polymeric materials. However, the crystallization in polymer networks has been little explored. This study investigated the crystallization behavior of a series of poly(ethylene glycol) (PEG) networks consisting of well-defined branched precursors. The PEG networks were prepared by drying gels synthesized at various conditions. The PEG networks showed slower crystallization with lower final crystallinity than uncrosslinked PEGs with amine end groups. Surprisingly, the effect of network formation was not as significant as that of the relatively bulky end-groups introduced in the uncrosslinked polymer. The molecular weight of the precursor PEG, or equivalently the chain length between neighboring junctions, was the primary parameter that affected the crystallization of the PEG networks. Shorter network chains led to lower crystallization rates and final crystallinity. This effect became less significant as the network chain length increased. On the other hand, the spatial and topological defects formed in the gel synthesis process did not affect the crystallization in the polymer networks at all. The crystallization in the polymer networks seems insensitive to these mesoscopic defects and can be solely controlled by the chain length between junctions.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryotaro Sampei
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takako Noritomi
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuhiro Shibayama
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
13
|
Schmarsow RN, Casado U, Ceolín M, Zucchi IA, Müller AJ, Schroeder WF. Supramolecular Networks Obtained by Block Copolymer Self-Assembly in a Polymer Matrix: Crystallization Behavior and Its Effect on the Mechanical Response. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Ruth N. Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Ulises Casado
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CONICET, CC 16-Suc. 4, 1900 La Plata, Argentina
| | - Ileana A. Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Walter F. Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| |
Collapse
|
14
|
Wang Z, Wang J, Pang Y, Yan M, Shao W, Zhu J, Zheng W. To Effectively Tune the Cell Structure of Poly(ethylene 2,5-furandicarboxylate- co-ethylene terephthalate) Copolyester Foams via Conducting a Prior Isothermal Melt Crystallization. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhijun Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
- Faculty of Material Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000Jiangxi Province, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Yongyan Pang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Ming Yan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Weiwei Shao
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Wenge Zheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| |
Collapse
|
15
|
Pirela V, Campoy-Quiles M, Müller AJ, Martín J. Unraveling the Influence of the Preexisting Molecular Order on the Crystallization of Semiconducting Semicrystalline Poly(9,9-di- n-octylfluorenyl-2,7-diyl (PFO). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10744-10751. [PMID: 36530941 PMCID: PMC9754006 DOI: 10.1021/acs.chemmater.2c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Understanding the complex crystallization process of semiconducting polymers is key for the advance of organic electronic technologies as the optoelectronic properties of these materials are intimately connected to their solid-state microstructure. These polymers often have semirigid backbones and flexible side chains, which results in a strong tendency to organize/order in the liquid state. Therefore, crystallization of these materials frequently occurs from liquid states that exhibit-at least partial-molecular order. However, the impact of the preexisting molecular order on the crystallization process of semiconducting polymers- indeed, of any polymer-remained hitherto unknown. This study uses fast scanning calorimetry (FSC) to probe the crystallization kinetics of poly(9,9-di-n-octylfluorenyl-2,7-diyl (PFO) from both an isotropic disordered melt state (ISO state) and a liquid-crystalline ordered state (NEM state). Our results demonstrate that the preexisting molecular order has a profound impact on the crystallization of PFO. More specifically, it favors the formation of effective crystal nucleation centers, speeding up the crystallization kinetics at the early stages of phase transformation. However, samples crystallized from the NEM state require longer times to reach full crystallization (during the secondary crystallization stage) compared to those crystallized from the ISO state, likely suggesting that the preexisting molecular order slows down the advance in the latest stages of the crystallization, that is, those governed by molecular diffusion. The fitting of the data with the Avrami model reveals different crystallization mechanisms, which ultimately result in a distinct semicrystalline morphology and photoluminescence properties. Therefore, this work highlights the importance of understanding the interrelationships between processing, structure, and properties of polymer semiconductors and opens the door for performing fundamental investigations via newly developed FSC methodologies of such materials that otherwise are not possible with conventional techniques.
Collapse
Affiliation(s)
- Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
| | - Mariano Campoy-Quiles
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra08193, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
| | - Jaime Martín
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao48009, Spain
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol15403, Spain
| |
Collapse
|
16
|
Coba-Daza S, Carmeli E, Otaegi I, Aranburu N, Guerrica-Echevarria G, Kahlen S, Cavallo D, Tranchida D, Müller AJ. Effect of compatibilizer addition on the surface nucleation of dispersed polyethylene droplets in a self-nucleated polypropylene matrix. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Fenni SE, Müller AJ, Cavallo D. Understanding polymer nucleation by studying droplets crystallization in immiscible polymer blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lu Y, Wang B, Jia N, Chen J, Shen C, Zhang B. Crystallization studies on heterogeneous melts of polybutene-1. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Caputo M, Tang X, Westlie AH, Sardon H, Chen EYX, Müller AJ. Effect of Chain Stereoconfiguration on Poly(3-hydroxybutyrate) Crystallization Kinetics. Biomacromolecules 2022; 23:3847-3859. [PMID: 35929661 PMCID: PMC9472230 DOI: 10.1021/acs.biomac.2c00682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB) is naturally accumulated by bacteria but can also be synthesized chemically. Its processability is limited, as it tends to degrade at temperatures above its melting temperature; hence, investigation into crystallization kinetics and morphology of PHB materials of both natural and synthetic origins is of great need and interest to get a better understanding of structure-property relationship. Accordingly, this contribution reports a first study of the crystallization and morphology of synthetic PHB materials of different molecular weights. These synthetic PHBs are racemic mixtures (50/50 mol %) of R and S chain configurations and are compared with an enantiopure bacterial R-PHB. Nonisothermal and isothermal crystallization studies show that R and S chains of PHB can cocrystallize in the same unit cell as the R-PHB. Most significantly, the results show that the presence of S chains decreases the overall crystallization rate, which could enhance the processability and industrialization of PHB-based materials.
Collapse
Affiliation(s)
- Maria
Rosaria Caputo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Andrea H. Westlie
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Effect of the TrFE Content on the Crystallization and SSA Thermal Fractionation of P(VDF-co-TrFE) Copolymers. Int J Mol Sci 2022; 23:ijms231810365. [PMID: 36142274 PMCID: PMC9499170 DOI: 10.3390/ijms231810365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
In this contribution, we study the effect of trifluoro ethylene (TrFE) comonomer content (samples with 80/20, 75/25, and 70/30 VDF/TrFE molar ratios were used) on the crystallization in P(VDF-co-TrFE) in comparison with a PVDF (Poly(vinylidene fluoride)) homopolymer. Employing Polarized Light Optical Microscopy (PLOM), the growth rates of spherulites or axialites were determined. Differential Scanning Calorimetry (DSC) was used to determine overall crystallization rates, self-nucleation, and Successive Self-nucleation and Annealing (SSA) thermal fractionation. The ferroelectric character of the samples was explored by polarization measurements. The results indicate that TrFE inclusion can limit the overall crystallization of the copolymer samples, especially for the ones with 20 and 25% TrFE. Self-nucleation measurements in PVDF indicate that the homopolymer can be self-nucleated, exhibiting the classic three Domains. However, the increased nucleation capacity in the copolymers provokes the absence of the self-nucleation Domain II. The PVDF displays a monomodal distribution of thermal fractions after SSA, but the P(VDF-co-TrFE) copolymers do not experience thermal fractionation, apparently due to TrFE incorporation in the PVDF crystals. Finally, the maximum and remnant polarization increases with increasing TrFE content up to a maximum of 25% TrFE content, after which it starts to decrease due to the lower dipole moment of the TrFE defect inclusion within the PVDF crystals.
Collapse
|
21
|
Biodegradable binary blends of poly (butylene succinate) or poly (ε-caprolactone) with poly (butylene succinate-ran-ε-caprolactone)copolymers: Crystallization behavior. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Taverna ME, Altorbaq AS, Kumar SK, Olmedo-Martínez JL, Busatto CA, Zubitur M, Mugica A, Nicolau VV, Estenoz DA, Müller AJ. Supernucleation Dominates Lignin/Poly(ethylene oxide) Crystallization Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María E. Taverna
- INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
| | - Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jorge L. Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | | | - Manuela Zubitur
- Chemical and Environmental Engineering Department, Polytechnic School, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Agurtzane Mugica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | - Verónica V. Nicolau
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, Argentina
| | | | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|