1
|
Ng D, Cyr D, Khan S, Dossa F, Swallow C, Kazazian K. Molecular mechanisms of metastatic peritoneal dissemination in gastric adenocarcinoma. Cancer Metastasis Rev 2025; 44:50. [PMID: 40317360 PMCID: PMC12049340 DOI: 10.1007/s10555-025-10265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Peritoneal dissemination portends a dismal prognosis in patients with gastric adenocarcinoma in the context of limited effective treatments. The underlying cellular processes that drive gastric peritoneal carcinomatosis remain unclear, limiting the application of novel targeted therapies. In this comprehensive review, we aimed to identify and summarize all existing context-dependent molecular mechanisms that have been implicated in peritoneal dissemination and peritoneal carcinomatosis establishment from primary gastric adenocarcinoma. We applied a multilevel examination including data from in vivo murine models using human gastric cancer cell lines, in vitro technique-based studies, ex vivo models, and genomic/proteomic and molecular profiling analyses to report on various aspects of gastric cancer peritoneal metastasis biology. Mechanisms promoting peritoneal dissemination were grouped into three main functional categories: (1) intrinsic cancer cell biology, (2) cancer cell-peritoneal surface adhesion, and (3) peritoneal tumor microenvironment. We identified significant overlap among the three categories, indicating a complex interplay between multiple molecular mechanisms. By interrupting these pathways, peritoneal-directed therapies have the potential to improve quality and length of life in patients with high-risk primary gastric cancer.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - David Cyr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Shawn Khan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Fahima Dossa
- Complex General Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Swallow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Karineh Kazazian
- Department of Surgery, University of Toronto, Toronto, Canada.
- Department of Surgical Oncology, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 10 Eaton North, Room 219, Toronto, M5G 2 C4, Canada.
| |
Collapse
|
2
|
Miki Y, Yoshii M, Miyauchi R, Kasashima H, Fukuoka T, Tamura T, Shibutani M, Toyokawa T, Lee S, Yashiro M, Maeda K. Prognostic significance of connective tissue growth factor expression in stromal cells in patients with diffuse‑type gastric cancer. Oncol Lett 2024; 27:241. [PMID: 38618645 PMCID: PMC11008098 DOI: 10.3892/ol.2024.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Connective tissue growth factor (CTGF) is a target gene of the Hippo signaling pathway. Its differential role in the histological types of gastric cancer (GC) remains unknown; therefore, the present study aimed to confirm the clinical significance of CTGF expression in cancer and stromal cells in patients with GC depending on the histological type. The present study enrolled 589 patients with GC. Immunohistochemistry was used to analyze CTGF expression in cancer and stromal cells. CTGF mRNA expression data and the corresponding clinical information of GC samples were collected from The Cancer Genome Atlas (TCGA) database. Subsequently, the associations between CTGF expression and several clinicopathological factors were investigated. In the present study, CTGF expression was mainly observed in the cytoplasm of cancer and stromal cells. CTGF expression in stromal cells was significantly associated with CTGF expression in cancer cells (P<0.001). CTGF positivity in stromal cells was also significantly associated with intestinal type, non-scirrhous type, tumor depth (T1-2), lymph node metastasis (negative), lymphatic invasion (negative) and tumor size (<5 cm). Low CTGF expression in stromal cells was independently associated with worse overall survival (OS). Furthermore, the OS of patients with low CTGF expression in stromal cells, especially in patients with diffuse-type GC, was significantly worse than patients with high CTGF expression (P=0.022). This trend was similar to that revealed by TCGA data analysis. In conclusion, low CTGF expression was associated with a significantly worse OS in patients with diffuse-type GC. These data indicated that CTGF, and its control by the Hippo pathway, may be considered potential treatment targets in diffuse-type GC.
Collapse
Affiliation(s)
- Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ryoko Miyauchi
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
3
|
Miskin RP, DiPersio CM. Roles for epithelial integrin α3β1 in regulation of the microenvironment during normal and pathological tissue remodeling. Am J Physiol Cell Physiol 2024; 326:C1308-C1319. [PMID: 38497112 PMCID: PMC11371326 DOI: 10.1152/ajpcell.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3β1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3β1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3β1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3β1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3β1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3β1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3β1 as a clinical target for the treatment of cancer or wound healing.
Collapse
Affiliation(s)
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
4
|
Luo Z, Wei Z, Zhang G, Chen H, Li L, Kang X. Achilles' Heel-The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs. Int J Mol Sci 2023; 24:16592. [PMID: 38068915 PMCID: PMC10706299 DOI: 10.3390/ijms242316592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.
Collapse
Affiliation(s)
- Zhangbin Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Ziyan Wei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Haiwei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
5
|
Gogoi RP, Galoforo S, Fox A, Morris C, Ramos H, Gogoi VK, Chehade H, Adzibolosu NK, Shi C, Zhang J, Tedja R, Morris R, Alvero AB, Mor G. A Novel Role of Connective Tissue Growth Factor in the Regulation of the Epithelial Phenotype. Cancers (Basel) 2023; 15:4834. [PMID: 37835529 PMCID: PMC10571845 DOI: 10.3390/cancers15194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a biological process where epithelial cells lose their adhesive properties and gain invasive, metastatic, and mesenchymal properties. Maintaining the balance between the epithelial and mesenchymal stage is essential for tissue homeostasis. Many of the genes promoting mesenchymal transformation have been identified; however, our understanding of the genes responsible for maintaining the epithelial phenotype is limited. Our objective was to identify the genes responsible for maintaining the epithelial phenotype and inhibiting EMT. METHODS RNA seq was performed using an vitro model of EMT. CTGF expression was determined via qPCR and Western blot analysis. The knockout of CTGF was completed using the CTGF sgRNA CRISPR/CAS9. The tumorigenic potential was determined using NCG mice. RESULTS The knockout of CTGF in epithelial ovarian cancer cells leads to the acquisition of functional characteristics associated with the mesenchymal phenotype such as anoikis resistance, cytoskeleton remodeling, increased cell stiffness, and the acquisition of invasion and tumorigenic capacity. CONCLUSIONS We identified CTGF is an important regulator of the epithelial phenotype, and its loss is associated with the early cellular modifications required for EMT. We describe a novel role for CTGF, regulating cytoskeleton and the extracellular matrix interactions necessary for the conservation of epithelial structure and function. These findings provide a new window into understanding the early stages of mesenchymal transformation.
Collapse
Affiliation(s)
- Radhika P. Gogoi
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Sandra Galoforo
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Colton Morris
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Vir K. Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Nicholas K. Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| |
Collapse
|
6
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
7
|
Mari V, Angerilli V, Munari G, Scarpa M, Bao QR, Pucciarelli S, Fassan M, Spolverato G. Molecular Determinants of Peritoneal Dissemination in Gastric Adenocarcinoma. Dig Dis 2022; 41:49-65. [PMID: 35940137 DOI: 10.1159/000526333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peritoneal dissemination represents a poor prognostic indicator in gastric cancer. Despite a comprehensive molecular characterization of this disease, no peritoneal dissemination-specific signature has been identified, limiting the tailoring of the surgical and oncological treatments. In this review, we outline the available literature focusing on the role of the different molecular pathways involved in the acquisition of peritoneal metastatic dissemination. SUMMARY According to our results, several molecular determinants are associated with peritoneal carcinomatosis and are involved in several cellular and molecular carcinogenetic processes. However, a comprehensive understanding of the complex molecular landscape of gastric carcinosis is still lacking. KEY MESSAGES More efforts should be made toward the integration of molecular and histologic data to perform a risk prediction assessment of peritoneal dissemination based on molecular profiling and histological evaluation.
Collapse
Affiliation(s)
- Valentina Mari
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Marco Scarpa
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Gaya Spolverato
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| |
Collapse
|
8
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
9
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
10
|
Hou S, Wang J, Li W, Hao X, Hang Q. Roles of Integrins in Gastrointestinal Cancer Metastasis. Front Mol Biosci 2021; 8:708779. [PMID: 34869579 PMCID: PMC8634653 DOI: 10.3389/fmolb.2021.708779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane receptors which mediate cell adhesion and transmit signals to the cell interior. The mechanistic roles of integrins have long been an enigma in cancer, given its complexity in regulating different cellular behaviors. Recently, however, increasing research is providing new insights into its function and the underlying mechanisms, which collectively include the influences of altered integrin expression on the aberrant signaling pathways and cancer progression. Many studies have also demonstrated the potentiality of integrins as therapeutic targets in cancer treatment. In this review, we have summarized these recent reports and put a particular emphasis on the dysregulated expression of integrins and how they regulate related signaling pathways to facilitate the metastatic progression of gastrointestinal cancer, including gastric cancer (GC) and colorectal cancer (CRC), which will address the crucial roles of integrins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiaxin Wang
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xin Hao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Lou S, Zhang J, Zhai Z, Yin X, Wang Y, Fang T, Xue Y. The landscape of alternative splicing reveals novel events associated with tumorigenesis and the immune microenvironment in gastric cancer. Aging (Albany NY) 2021; 13:4317-4334. [PMID: 33428603 PMCID: PMC7906195 DOI: 10.18632/aging.202393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Alternative splicing (AS), contributing to vast protein diversity from a rather limited number of genes in eukaryotic transcripts, has emerged as an important signature for tumor initiation and progression. However, a systematic understanding of its functional impact and relevance to gastric cancer (GC) tumorigenesis is lacking. Differentially expressed AS (DEAS) was verified among GC-associated AS events based on RNA-seq profiles from the TCGA database. Functional enrichment analysis, unsupervised clustering analysis and prognostic models were used to infer the potential roles of DEAS events and their molecular, clinical and immune features. In total, 12,225 AS events were detected from 5,199 genes, among which 314 AS events were identified as DEAS events in GC. The parental genes of the DEAS events were significantly enriched in the regulation of GC-related processes. The splicing correlation network suggested a significant relationship between DEAS events and splicing factors (SFs). Three clusters of DEAS events were identified to be different in prognosis, cancer-specific signatures and immune features between distinct clusters. Univariate and multivariate analyses regarded 3 DEAS events as independent prognostic indicators. Profiling of the AS landscape in GC elucidated the functional roles of the splicing network in GC and might serve as a novel prognostic indicator and therapeutic target.
Collapse
Affiliation(s)
- Shenghan Lou
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Zhao Zhai
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, China
| |
Collapse
|
13
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
14
|
Forma A, Tyczyńska M, Kędzierawski P, Gietka K, Sitarz M. Gastric carcinogenesis: a comprehensive review of the angiogenic pathways. Clin J Gastroenterol 2020; 14:14-25. [PMID: 33206367 PMCID: PMC7886717 DOI: 10.1007/s12328-020-01295-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is undoubtedly one of the most prevalent malignancies worldwide. Since GC is the second leading cause of cancer-related deaths with nearly one million new diagnoses reported every year, there is a need for the development of new, effective treatment strategies of GC. Gastric carcinogenesis is a complex process that is induced by numerous factors and further stimulated by many pro-oncogenic pathways. Angiogenesis is the process of the new blood vessels formation from the already existing ones and it significantly contributes to the progression of gastric tumorigenesis and the growth of the cancerous tissues. The newly formed vessels provide cancer cells with proper nutrition, growth factors, and oxygen supply that are crucial for tumor growth and progression. Tumor-associated vessels differ from the physiological ones both morphologically and functionally. They are usually inefficient and unevenly distributed due to structural transformations. Thus, the development of the angiogenesis inhibitors that possess therapeutic effects has been the main focus of recent studies. Angiogenesis inhibitors mostly affect the vascular endothelial growth factor (VEGF) pathway since it is a major factor that stimulates the pro-angiogenic pathways. The aim of this review was to describe and summarize other promising molecular pathways that might be crucial in further improvements in GC therapies. This article provides an overview of how a meaningful role in tumor progression the angiogenetic process has. Furthermore, this review includes a description of the most important angiogenic factors as well as pathways and their involvement in gastric carcinogenesis.
Collapse
Affiliation(s)
- Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Magdalena Tyczyńska
- Department of Human Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Paweł Kędzierawski
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Klaudyna Gietka
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
15
|
Song ZB, Yang HP, Xu AQ, Zhan ZM, Song Y, Li ZY. Connective tissue growth factor as an unfavorable prognostic marker promotes the proliferation, migration, and invasion of gliomas. Chin Med J (Engl) 2020; 133:670-678. [PMID: 32197031 PMCID: PMC7190229 DOI: 10.1097/cm9.0000000000000683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In consideration of the difficulty in diagnosing high heterogeneous glioma, valuable prognostic markers are urgent to be investigated. This study aimed to verify that connective tissue growth factor (CTGF) is associated with the clinical prognosis of glioma, also to analyze the effect of CTGF on the biological function. METHODS In this study, glioma and non-tumor tissue samples were obtained in 2012 to 2014 from the Department of Neurosurgery of Nanfang Hospital of Southern Medical University, Guangzhou, China. Based on messenger RNA (mRNA) data from the Cancer Genome Atlas (TCGA) and CCGA dataset, combined with related clinical information, we detected the expression of CTGF mRNA in glioma and assessed its effect on the prognosis of glioma patients. High expression of CTGF mRNA and protein in glioma were verified by reverse transcription-polymerase chain reaction, immunohistochemistry, and Western blotting. The role of CTGF in the proliferation, migration, and invasion of gliomas were respectively identified by methylthiazoletetrazolium assay, Transwell and Boyden assay in vitro. The effect on glioma cell circle was assessed by flow cytometry. For higher expression of CTGF in glioblastoma (GBM), the biological function of CTGF in GBM was investigated by gene ontology (GO) analysis. RESULTS In depth analysis of TCGA data revealed that CTGF mRNA was highly expressed in glioma (GBM, n = 163; lowly proliferative glioma [LGG], n = 518; non-tumor brain tissue, n = 207; LGG, t = 2.410, GBM, t = 2.364, P < 0.05). CTGF mRNA and protein expression in glioma (86%) was significantly higher than that in non-tumor tissues (18%) verified by collected samples. Glioma patients with higher expression of CTGF showed an obviously poorer overall survival (35.4 and 27.0 months compared to 63.3 and 55.1 months in TCGA and Chinese Glioma Genome Atlas (CGGA) databases separately, CGGA: χ = 7.596, P = 0.0059; TCGA: χ = 10.46, P = 0.0012). Inhibiting CTGF expression could significantly suppress the proliferation, migration, and invasion of gliomas. CTGF higher expression had been observed in GBM, and GO analysis demonstrated that the function of CTGF in GBM was mainly associated with metabolism and energy pathways (P < 0.001). CONCLUSIONS CTGF is highly expressed in glioma, especially GBM, as an unfavorable and independent prognostic marker for glioma patients and facilitates the progress of glioma.
Collapse
Affiliation(s)
- Zi-Bin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui-Ping Yang
- The First Clinical Medical Institute of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - An-Qi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zheng-Ming Zhan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Yong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
16
|
Qiao J, Li M, Sun D, Li W, Xin Y. Knockdown of ROS proto-oncogene 1 inhibits migration and invasion in gastric cancer cells by targeting the PI3K/Akt signaling pathway. Onco Targets Ther 2019; 12:8569-8582. [PMID: 31802893 PMCID: PMC6801563 DOI: 10.2147/ott.s213421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Gastric cancer ranks the fourth most common cancer and the third leading cause of cancer mortality in the world. ROS proto-oncogene 1 (ROS1) is an oncogene and ROS1 rearrangement has been reported in many cancers. Our study aimed to investigate the potential function and the precise mechanisms of ROS1 in gastric cancer. Methods In our study, the analysis of ROS1 expression and clinical pathologic factors of gastric cancer in gastric cancer using TCGA database demonstrated that ROS1 expression was elevated in gastric cancer and related to T, N, M and TNM staging. High expression of ROS1 predicted poor survival in patients with gastric cancer. Then, we measured ROS1 expression in four human gastric cancer cell lines and knocked down ROS1 expression in BGC-823 and SGC-7901 cells by specific shRNA transfection via Lipofectamine 2000. The effect of ROS1 knockdown on cell proliferation, cell cycle distribution, cell apoptosis and metastasis in vitro was evaluated by MTT, colony formation, flow cytometric analysis, wound healing and Transwell invasion assays. The levels of apoptosis-related proteins, EMT markers and the PI3K/Akt signaling pathway members were measured by Western blotting. Results We demonstrated that shROS1 transfection markedly downregulated ROS1 expression in BGC-823 and SGC-7901 cells. Knockdown of ROS1 inhibited cell survival, clonogenic growth, migration, invasion and epithelial–mesenchymal transition (EMT), as well as induced cell cycle arrest and apoptosis in gastric cancer cells. Furthermore, ROS1 knockdown inhibited the phosphorylation of PI3K and Akt. Conclusion Collectively, our data suggest that ROS1 may serve as a promising therapeutic target in gastric cancer treatment.
Collapse
Affiliation(s)
- Jingjing Qiao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116027, People's Republic of China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116027, People's Republic of China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| |
Collapse
|
17
|
Alberto M, Brandl A, Garg PK, Gül-Klein S, Dahlmann M, Stein U, Rau B. Pressurized intraperitoneal aerosol chemotherapy and its effect on gastric-cancer-derived peritoneal metastases: an overview. Clin Exp Metastasis 2019; 36:1-14. [PMID: 30715654 DOI: 10.1007/s10585-019-09955-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
This manuscript aspires to portray a review of the current literature focusing on manifest peritoneal metastasis (PM) derived from gastric cancer and its treatment options. Despite the development of chemotherapy and multimodal treatment options during the last decades, mortality remains high worldwide. After refreshing important epidemiological considerations, the molecular mechanisms currently accepted through which PM occurs are revised. Palliative chemotherapy is the only recommended treatment option for patients with PM of gastric cancer according to the National Comprehensive Cancer Network guidelines, although cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy demonstrated promising results in selected patients with regional PM and localized intraabdominal tumor spread. A novel treatment named pressurized intraperitoneal aerosol chemotherapy may have a promising future in improving overall survival with an acceptable postoperative complication rate and stabilizing quality of life during treatment. Additionally, the procedure has been proved to be safe for the patient and medical personnel and a feasible, repeatable method to deter metastatic proliferation. This overview comprehensively addresses this novel and promising treatment in the context of a scientifically and clinically challenging disease.
Collapse
Affiliation(s)
- Miguel Alberto
- Department of Surgery, Campus Virchow Klinikum - Campus Mitte, Charité - University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Brandl
- Department of Surgery, Campus Virchow Klinikum - Campus Mitte, Charité - University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pankaj Kumar Garg
- Department of Surgery, Guru Teg Bahadur Hospital, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Safak Gül-Klein
- Department of Surgery, Campus Virchow Klinikum - Campus Mitte, Charité - University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité University Hospital Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité University Hospital Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Beate Rau
- Department of Surgery, Campus Virchow Klinikum - Campus Mitte, Charité - University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
18
|
Machlowska J, Maciejewski R, Sitarz R. The Pattern of Signatures in Gastric Cancer Prognosis. Int J Mol Sci 2018; 19:1658. [PMID: 29867026 PMCID: PMC6032410 DOI: 10.3390/ijms19061658] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide and it is a fourth leading cause of cancer-related death. Carcinogenesis is a multistage disease process specified by the gradual procurement of mutations and epigenetic alterations in the expression of different genes, which finally lead to the occurrence of a malignancy. These genes have diversified roles regarding cancer development. Intracellular pathways are assigned to the expression of different genes, signal transduction, cell-cycle supervision, genomic stability, DNA repair, and cell-fate destination, like apoptosis, senescence. Extracellular pathways embrace tumour invasion, metastasis, angiogenesis. Altered expression patterns, leading the different clinical responses. This review highlights the list of molecular biomarkers that can be used for prognostic purposes and provide information on the likely outcome of the cancer disease in an untreated individual.
Collapse
Affiliation(s)
- Julita Machlowska
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
- Department of Surgery, St. John's Cancer Center, 20-090 Lublin, Poland.
| |
Collapse
|
19
|
Sitarz R, Polkowski WP, Maciejewski R, Offerhaus GJA. Risk of peritoneal dissemination in stomach cancer. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2017; 30:184-186. [DOI: 10.1515/cipms-2017-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
With regard to gastric cancer, an important disease and a public health problem, it is expected that understanding the molecular make up of carcinomas will provide us with more precise targets for therapy. Indeed advanced molecular technology has made it possible to classify according to genotype instead of phenotype. For advanced stomach cancer, however, surgery is still the only option for cure. Yet, also after surgery, more than 50% of the patients will die of peritoneal dissemination of their disease. This review looks at the molecular mechanism of peritoneal spread of stomach cancer in order to arrive at a risk profile that enables medical personnel to raise the index of suspicion for peritoneal carcinomatosis. The peritoneal cancer index (PCI) provides a scoring system to measure the extent of peritoneal spread during laparoscopic staging. A recently developed device called the ‘MacSpec pen’ maybe of use to confirm the presence of tumor when there is doubt about the diagnosis. Treatment of peritoneal dissemination consists of cytoreduction, combined with hyperthermic peritoneal chemotherapy (HIPEC).
Collapse
Affiliation(s)
- Robert Sitarz
- Department of Pathology , University Medical Center Utrecht , The Netherlands
- Department of Anatomy , Medical University of Lublin , Jaczewskiego 4, 20-090 Lublin , Poland
| | | | - Ryszard Maciejewski
- Department of Anatomy , Medical University of Lublin , Jaczewskiego 4, 20-090 Lublin , Poland
| | - G Johan A Offerhaus
- Department of Pathology , University Medical Center Utrecht , The Netherlands
| |
Collapse
|
20
|
Zeng R, Li B, Huang J, Zhong M, Li L, Duan C, Zeng S, Huang J, Liu W, Lu J, Tang Y, Zhou L, Liu Y, Li J, He Z, Wang Q, Dai Y. Lysophosphatidic Acid is a Biomarker for Peritoneal Carcinomatosis of Gastric Cancer and Correlates with Poor Prognosis. Genet Test Mol Biomarkers 2017; 21:641-648. [PMID: 28910191 DOI: 10.1089/gtmb.2017.0060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chaojun Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingchen Lu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingming Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhuang Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youyi Dai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, Lobos-González L, Riquelme I, Carrasco-Avino G, Bizama C, Norero E, Owen GI, Roa JC, Corvalán AH. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 2017; 9:114. [PMID: 29075357 PMCID: PMC5645854 DOI: 10.1186/s13148-017-0413-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities. Results Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3′UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96, p = 0.029). DNA methylation, evaluated by methylation-specific PCR assay, was found in plasma from 23 (56.1%) out of 41 gastric cancer patients but in only 9 (30%) out of 30 healthy donors (p = 0.029, Pearson’s correlation). Taken in consideration, our results of the association with depth of invasion, lymph node metastasis, and poor prognosis together with functional assays on cell migration, invasion, and tumorigenicity are in accordance with the downregulation of miR-335 in gastric cancer. Conclusions Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer. Electronic supplementary material The online version of this article (10.1186/s13148-017-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Química, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Parque Biotecnológico, Santiago, Chile
| | - Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Bizama
- Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr. Sótero del Río, Santiago, Chile.,Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
van Baal J, Van de Vijver K, Nieuwland R, van Noorden C, van Driel W, Sturk A, Kenter G, Rikkert L, Lok C. The histophysiology and pathophysiology of the peritoneum. Tissue Cell 2017; 49:95-105. [DOI: 10.1016/j.tice.2016.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
24
|
Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res 2016; 348:75-86. [PMID: 27619333 DOI: 10.1016/j.yexcr.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Hatem O Kaseb
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Helene Fohrer-Ting
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America
| | - Eric Lagasse
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, United States of America
| |
Collapse
|
25
|
Kanda M, Kodera Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J Gastroenterol 2016; 22:6829-6840. [PMID: 27570420 PMCID: PMC4974582 DOI: 10.3748/wjg.v22.i30.6829] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Peritoneal dissemination represents a devastating form of gastric cancer (GC) progression with a dismal prognosis. There is no effective therapy for this condition. The 5-year survival rate of patients with peritoneal dissemination is 2%, even including patients with only microscopic free cancer cells without macroscopic peritoneal nodules. The mechanism of peritoneal dissemination of GC involves several steps: detachment of cancer cells from the primary tumor, survival in the free abdominal cavity, attachment to the distant peritoneum, invasion into the subperitoneal space and proliferation with angiogenesis. These steps are not mutually exclusive, and combinations of different molecular mechanisms can occur in each process of peritoneal dissemination. A comprehensive understanding of the molecular events involved in peritoneal dissemination is important and should be systematically pursued. It is crucial to identify novel strategies for the prevention of this condition and for identification of markers of prognosis and the development of molecular-targeted therapies. In this review, we provide an overview of recently published articles addressing the molecular mechanisms of peritoneal dissemination of GC to provide an update on what is currently known in this field and to propose novel promising candidates for use in diagnosis and as therapeutic targets.
Collapse
|
26
|
Bhandari S, Bakke I, Kumar J, Beisvag V, Sandvik AK, Thommesen L, Varro A, Nørsett KG. Connective tissue growth factor is activated by gastrin and involved in gastrin-induced migration and invasion. Biochem Biophys Res Commun 2016; 475:119-24. [PMID: 27179776 DOI: 10.1016/j.bbrc.2016.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Abstract
Connective tissue growth factor (CTGF) has been reported in gastric adenocarcinoma and in carcinoid tumors. The aim of this study was to explore a possible link between CTGF and gastrin in gastric epithelial cells and to study the role of CTGF in gastrin induced migration and invasion of AGS-GR cells. The effects of gastrin were studied using RT-qPCR, Western blot and assays for migration and invasion. We report an association between serum gastrin concentrations and CTGF abundancy in the gastric corpus mucosa of hypergastrinemic subjects and mice. We found a higher expression of CTGF in gastric mucosa tissue adjacent to tumor compared to normal control tissue. We showed that gastrin induced expression of CTGF in gastric epithelial AGS-GR cells via MEK, PKC and PKB/AKT pathways. CTGF inhibited gastrin induced migration and invasion of AGS-GR cells. We conclude that CTGF expression is stimulated by gastrin and involved in remodeling of the gastric epithelium.
Collapse
Affiliation(s)
- Sabin Bhandari
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - J Kumar
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrea Varro
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kristin G Nørsett
- Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Central Norway Regional Health Authority (RHA), Stjørdal, Norway.
| |
Collapse
|
27
|
Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Araki N, Tan P, Baba H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer 2015; 138:1207-19. [PMID: 26414794 DOI: 10.1002/ijc.29864] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co-culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF-573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF-573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Takamori
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
28
|
The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers (Basel) 2015; 7:1994-2011. [PMID: 26426054 PMCID: PMC4695872 DOI: 10.3390/cancers7040872] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
Solid tumors are complex and unstructured organs that, in addition to cancer cells, also contain other cell types. Carcinoma-associated fibroblasts (CAFs) represent an important population in the tumor microenviroment and participate in several stages of tumor progression, including cancer cell migration/invasion and metastasis. During peritoneal metastasis, cancer cells detach from the primary tumor, such as ovarian or gastrointestinal, disseminate through the peritoneal fluid and colonize the peritoneum. Tumor cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity, then colonizing the submesothelial compact zone where CAFs accumulate. CAFs may derive from different sources depending on the surrounding metastatic niche. In peritoneal metastasis, a sizeable subpopulation of CAFs originates from MCs through a mesothelial-to-mesenchymal transition (MMT), which promotes adhesion, invasion, vascularization and subsequent tumor growth. The bidirectional communication between cancer cells and MC-derived CAFs via secretion of a wide range of cytokines, growth factors and extracellular matrix components seems to be crucial for the establishment and progression of the metastasis in the peritoneum. This manuscript provides a comprehensive review of novel advances in understanding how peritoneal CAFs provide cancer cells with a supportive microenvironment, as well as the development of future therapeutic approaches by interfering with the MMT in the peritoneum.
Collapse
|