1
|
Liu J, Zhang W, Chen L, Wang X, Mao X, Wu Z, Shi H, Qi H, Chen L, Huang Y, Li J, Zhong M, Shi X, Li Q, Wang T. VSIG4 Promotes Tumour-Associated Macrophage M2 Polarization and Immune Escape in Colorectal Cancer via Fatty Acid Oxidation Pathway. Clin Transl Med 2025; 15:e70340. [PMID: 40405491 PMCID: PMC12098961 DOI: 10.1002/ctm2.70340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/26/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND V-set and immunoglobulin domain containing 4 (VSIG4) is a B7-family-related protein almost exclusively expressed on macrophages. The difference in its expression mediates the dynamic transformation of the polarization state of macrophages, but the underlying mechanism is still unclear. We sought to reveal the correlation between VSIG4 and the polarization of tumour-associated macrophages (TAMs) and the immune escape of tumour cells in colorectal cancer (CRC). METHODS THP-1 monocyte-derived macrophages expressing different levels of VSIG4 were used for in vitro investigations. In addition, the co-culture system was used to verify the effect of tumour cells on the expression of VSIG4 in macrophages, and the effect of VSIG4 expression level on tumour cells in turn. Subcutaneous xenograft models evaluated the tumour growth inhibition efficacy of VSIG4 blockade as monotherapy and combined with immune checkpoint inhibitors (ICIs). RESULTS CRC cells secreted lactate to promote VSIG4 expression in macrophages. On the contrary, VSIG4 promoted macrophage M2 polarization and induced malignant progression of tumour cells by promoting M2 macrophage secretion of heparin-bound epidermal growth factor. In vivo experiments confirmed that knockdown VSIG4 inhibited tumour growth and improved the efficacy of ICIs therapy. Mechanistically, lactate secreted by CRC cells promoted its expression by influencing the epigenetic modification of VSIG4 in macrophages. In addition, VSIG4 enhanced the fatty acid oxidation (FAO) of macrophages and upregulated PPAR-γ expression by activating the JAK2/STAT3 pathway, which ultimately induced M2 polarization of macrophages. Downregulation of VSIG4 or blocking of FAO reversed the M2 polarization process of macrophages. CONCLUSIONS Our findings provide a molecular basis for VSIG4 to influence TAMs polarization by regulating the reprogramming of FAO, suggesting that targeting VSIG4 in macrophages could enhance the ICIs efficacy and represent a new combination therapy strategy for immunotherapy of CRC. KEY POINTS Colorectal cancer cells secrete lactate to upregulate VSIG4 in macrophages via the H3K18la-METTL14-m6A axis. VSIG4 promotes fatty acid oxidation of macrophages and drives its M2-type polarization. These VSIG4-expressing M2 macrophages promote tumour progression and an immunosuppressive microenvironment. Inhibition of VSIG4 expression can synergistically enhance the therapeutic effect of anti-PD-1 antibody.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - WenXin Zhang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Lu Chen
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinhai Wang
- Department of Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiang Mao
- Department of Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Zimei Wu
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huanying Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huijie Qi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
| | - Yuxin Huang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiyifan Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Mingkang Zhong
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojin Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Qunyi Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Tianxiao Wang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Shen J, Zhou L, Ye K, Gong J, Wu F, Mo K, Zhu Y, Chen C, Zhan R. The role of SPI1/VSIG4/THBS1 on glioblastoma progression through modulation of the PI3K/AKT pathway. J Adv Res 2025; 71:487-500. [PMID: 38960279 DOI: 10.1016/j.jare.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) poses a significant challenge in terms of treatment due to its high malignancy, necessitating the identification of additional molecular targets. VSIG4, an oncogenic gene participates in tumor growth and migration in various cancer types. Nevertheless, the precise process through which VSIG4 facilitates the malignant progression of glioma remains to be elucidated. OBJECTIVES This research aims to explore the function and molecular mechanism involving VSIG4 in the malignant progression of glioma. METHODS The amount of VSIG4 was measured using qPCR, western blotting, and immunohistochemistry. Lentivirus infections were applied for upregulating or downregulating molecules within glioma cells. The incorporation of 5-ethynyl-20-deoxyuridine, Transwell, cell counting kit-8, and clone formation experiments, were applied to assess the biological functions of molecules on glioma cells. Dual luciferase reporter gene, RNA immunoprecipitation, and chromatin immunoprecipitation assays were used to explore the functional relationship among relevant molecules. RESULTS The upregulation of VSIG4 was observed in GBM tissues, indicating an adverse prognosis. Silencing VSIG4 in glioma cells resulted in a decrease in cell viability, invasion, proliferation, and tumorigenesis, an increase in cell apoptosis, and a stagnation in the cell cycle progression at the G0/G1 phase. Mechanistically, SPI1-mediated upregulation of VSIG4 expression led to binding between VSIG4 and THBS1 protein, ultimately facilitating the malignant progression of glioma cells through the activation of the PI3K/AKT pathway. The inhibited proliferative and invasive capabilities of glioma cells were reversed by overexpressing THBS1 following the knockdown of VSIG4. CONCLUSION Our findings provide evidence for the role of VSIG4 as an oncogene and reveal the previously unidentified contribution of the SPI1/VSIG4/THBS1 axis in the malignant progression of glioma. This signaling cascade enhances tumor growth and invasion by modulating the PI3K/AKT pathway. VSIG4 as a potential biomarker may be a viable strategy in the development of tailored molecular therapies for GBM.
Collapse
Affiliation(s)
- Jie Shen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China; College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Lihui Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China; College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Ke Ye
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China; College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Fan Wu
- College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Kangnan Mo
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| | - Chao Chen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China; College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, PR China.
| |
Collapse
|
3
|
Pan Z, Chen J, Xu T, Cai A, Han B, Li Y, Fang Z, Yu D, Wang S, Zhou J, Gong Y, Che Y, Zou X, Cheng L, Tan Z, Ge M, Huang P. VSIG4 + tumor-associated macrophages mediate neutrophil infiltration and impair antigen-specific immunity in aggressive cancers through epigenetic regulation of SPP1. J Exp Clin Cancer Res 2025; 44:45. [PMID: 39920772 PMCID: PMC11803937 DOI: 10.1186/s13046-025-03303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
V-set and immunoglobulin domain-containing 4 (VSIG4) positive tumor-associated macrophage (VSIG4+ TAM) is an immunosuppressive subpopulation newly identified in aggressive cancers. However, the mechanism how VSIG4+ TAMs mediate immune evasion in aggressive cancers have not been fully elucidated. In our study, we found targeting VSIG4+ TAMs by VSIG4 deficiency or blockade remarkably limited tumor growth and metastasis, especially those derived from anaplastic thyroid cancer (ATC) and pancreatic cancer, two extremely aggressive types. Moreover, the combination of VSIG4 blockade with a BRAF inhibitor synergistically enhanced anti-tumor activity in ATC-tumor bearing mice. VSIG4 deficiency recovered the antigen presentation (B2m, H2-k1, H2-d1) of TAMs and activated antigen-specific CD8+ T cells by promoting their in vivo proliferation and intratumoral infiltration. Notably, loss of VSIG4 in TAMs significantly reduced the production of lactate and histone H3 lysine 18 lactylation, resulting the decreased transcription of SPP1 mediated by STAT3, which collectively disrupted the cell-cell interactions between TAMs and neutrophils. Further combination of VSIG4 with SPP1 blockade synergistically boosted anti-tumor activity. Overall, our studies demonstrate the epigenetic regulation function of VSIG4 confers on TAMs an alternative pattern, beyond the checkpoint role of VSIG4, to shape the immunosuppressive tumor microenvironment and impair antigen-specific immunity against aggressive cancers.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ziwen Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Dingyi Yu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Junyu Zhou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yingying Gong
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Lei Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Luo X, Li C, Qin G. Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC. Hereditas 2025; 162:17. [PMID: 39910672 PMCID: PMC11800565 DOI: 10.1186/s41065-025-00380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis. METHODS We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity. RESULTS CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies. CONCLUSION Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Li
- Department of Otolaryngology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Head and Neck Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Qin
- Department of Otolaryngology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Bo S, You Y, Wang Y, Zhang Y, Bai B, Jiang T, Gao Y. Identification of signatures associated with microsatellite instability and immune characteristics to predict the prognostic risk of colon cancer. Open Med (Wars) 2024; 19:20241056. [PMID: 39726813 PMCID: PMC11669901 DOI: 10.1515/med-2024-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background Microsatellite instability (MSI) significantly impacts treatment response and outcomes in colon cancer; however, its underlying molecular mechanisms remain unclear. This study aimed to identify prognostic biomarkers by comparing MSI and microsatellite stability (MSS). Methods Data from the GSE39582 dataset downloaded from the Gene Expression Omnibus database were analyzed for differentially expressed genes (DEGs) and immune cell infiltration between MSI and MSS. Then, weighted gene co-expression network analysis (WGCNA) was utilized to identify the key modules, and the modules related to immune infiltration phenotypes were considered as the immune-related gene modules, followed by enrichment analysis of immune-related module genes. Prognostic signatures were derived using Cox regression, and their correlation with immune features and clinical features was assessed, followed by a nomogram construction. Results A total of 857 DEGs and 14 differential immune cell infiltration between MSI and MSS were obtained. Then, WGCNA identified two immune-related modules comprising 356 genes, namely MEturquoise and MEbrown. Eight signature genes were identified, namely PLK2, VSIG4, LY75, GZMB, GAS1, LIPG, ANG, and AMACR, followed by prognostic model construction. Both training and validation cohorts revealed that these eight signature genes have prognostic value, and the prognostic model showed superior predictive performance for colon cancer prognosis and distinguished the clinical characteristics of colon cancer patients. Notably, VSIG4 among the signature genes correlated significantly with immune infiltration, human leukocyte antigen expression, and immune pathway enrichment. Finally, the constructed nomogram model could significantly predict the prognosis of colorectal cancer. Conclusion This study identifies eight prognostic signature genes associated with MSI and immune infiltration in colon cancer, suggesting their potential for predicting prognostic risk.
Collapse
Affiliation(s)
- Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yan Zhang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| |
Collapse
|
6
|
Zheng X, Tong T, Duan L, Ma Y, Lan Y, Shao Y, Liu H, Chen W, Yang T, Yang L. VSIG4 induces the immunosuppressive microenvironment by promoting the infiltration of M2 macrophage and Tregs in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 142:113105. [PMID: 39260310 DOI: 10.1016/j.intimp.2024.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and has a poor prognosis. Despite the impressive advancements in treating ccRCC using immune checkpoint (IC) blockade, such as PD-1/PD-L1 inhibitors, a considerable number of ccRCC patients experience adaptive resistance. Therefore, exploring new targetable ICs will provide additional treatment options for ccRCC patients. We comprehensively analyzed multi-omics data and performed functional experiments, such as pathologic review, bulk transcriptome data, single-cell sequencing data, Western blotting, immunohistochemistry and in vitro/in vivo experiments, to explore novel immunotherapeutic targets in ccRCC. It was found that immune-related genes VSIG4, SAA1, CD7, FOXP3, IL21, TNFSF13B, BATF, CD72, MZB1, LTB, CCL25 and KLRK1 were significantly upregulated in ccRCC (Student's t test and p-value < 0.05; 36 normal and 267 ccRCC tissues in raining cohort; 36 normal and 266 ccRCC tissues in validation cohort) and correlated with the poor prognosis of ccRCC patients (Wald test and p-value < 0.05 in univariate cox analysis; log-rank test and p-value < 0.05 in Kaplan-Meier method; 267 patients in training cohort and 266 in validation cohort). In particular, we found the novel IC target VSIG4 was specifically expressed in inhibitory immune cells M2-biased tumor-associated macrophages (TAMs), conventional dendritic cell 2 (cDC2) cells, and cycling myeloid cells in ccRCC microenvironment. Moreover, VSIG4 showed a closely relation with resistance of Ipilimumab/Nivolumab immunotherapy in ccRCC. Furthermore, VSIG4 promoted the infiltration of M2 macrophages, Tregs, and cDC2 in ccRCC tissues. VSIG4+ TAMs and VSIG4+ cDC2s may be a kind of immune cell subtypes related to immunosuppression. VSIG4 may play similar roles with other IC ligands, as it is highly expressed on the surface of antigen-presenting cells and ccRCC cells to inhibit T cells activity and facilitate immune escape. Targeting IC gene VSIG4 may provide a novel immunotherapeutic strategy to ccRCC patients with resistance to existing targeted therapy options.
Collapse
Affiliation(s)
- Xiwang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tong Tong
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Yanjie Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Lan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Hangfeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Wenjing Chen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| | - Lijun Yang
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
7
|
Sun Q, Li T, Wei Z, Ye Z, Zhao X, Jing J. Integrating transcriptomic data and digital pathology for NRG-based prediction of prognosis and therapy response in gastric cancer. Ann Med 2024; 56:2426758. [PMID: 39527470 PMCID: PMC11556273 DOI: 10.1080/07853890.2024.2426758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cancer is characterized by its ability to resist cell death, and emerging evidence suggests a potential correlation between non-apoptotic regulated cell death (RCD), tumor progression, and therapy response. However, the prognostic significance of non-apoptotic RCD-related genes (NRGs) and their relationships with immune response in gastric cancer (GC) remain unclear. METHODS In this study, RNA-seq gene expression and clinical information of GC patients were acquired from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Cox and LASSO regression analyses were used to construct the NRG signature. Moreover, we developed a deep learning model based on ResNet50 to predict the NRG signature from digital pathology slides. The expression of signature hub genes was validated using real-time quantitative PCR and single-cell RNA sequencing data. RESULTS We identified 13 NRGs as signature genes for predicting the prognosis of patients with GC. The high-risk group, characterized by higher NRG scores, demonstrated a shorter overall survival rate, increased immunosuppressive cell infiltration, and immune dysfunction. Moreover, associations were observed between the NRG signature and chemotherapeutic drug responsiveness, as well as immunotherapy effectiveness in GC patients. Furthermore, the deep learning model effectively stratified GC patients based on the NRG signature by leveraging morphological variances, showing promising results for the classification of GC patients. Validation experiments demonstrated that the expression level of SERPINE1 was significantly upregulated in GC, while the expression levels of GPX3 and APOD were significantly downregulated. CONCLUSION The NRG signature and its deep learning model have significant clinical implications, highlighting the importance of individualized treatment strategies based on GC subtyping. These findings provide valuable insights for guiding clinical decision-making and treatment approaches for GC.
Collapse
Affiliation(s)
- Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Zheng Wei
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhiyi Ye
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Zhu J, Yuan J, Arya S, Du Z, Liu X, Jia J. Exploring the immune microenvironment of osteosarcoma through T cell exhaustion-associated gene expression: a study on prognosis prediction. Front Immunol 2023; 14:1265098. [PMID: 38169731 PMCID: PMC10758463 DOI: 10.3389/fimmu.2023.1265098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Osteosarcoma is a highly aggressive type of bone cancer with a poor prognosis. In the tumor immune microenvironment, T-cell exhaustion can occur due to various factors, leading to reduced tumor-killing ability. The purpose of this study was to construct a prognostic model based on T-cell exhaustion-associated genes in osteosarcoma. Methods Patient data for osteosarcoma were retrieved from the TARGET and GEO databases. Consensus clustering was employed to identify two novel molecular subgroups. The dissimilarities in the tumor immune microenvironment between these subgroups were evaluated using the "xCell" algorithm. GO and KEGG analyses were conducted to elucidate the underlying mechanisms of gene expression. Predictive risk models were constructed using the least absolute shrinkage and selection operator algorithm and Cox regression analysis. To validate the prognostic significance of the risk gene expression model at the protein level, immunohistochemistry assays were performed on osteosarcoma patient samples. Subsequently, functional analysis of the key risk gene was carried out through in vitro experimentation. Results Four gene expression signatures (PLEKHO2, GBP2, MPP1, and VSIG4) linked to osteosarcoma prognosis were identified within the TARGET-osteosarcoma cohort, categorizing patients into two subgroups. The resulting prognostic model showed strong predictive capability, with area under the receiver operating characteristic curve (AUC) values of 0.728/0.740, 0.781/0.658, and 0.788/0.642 for 1, 3, and 5-year survival in both training and validation datasets. Notably, patients in the low-risk group had significantly higher stromal, immune, and ESTIMATE scores compared to high-risk counterparts. Additionally, a nomogram was developed, exhibiting high accuracy in predicting the survival outcome of osteosarcoma patients. Immunohistochemistry, Kaplan-Meier, and time-dependent AUC analyses consistently supported the prognostic value of the risk model within our osteosarcoma patient cohort. In vitro experiments provided additional validation by demonstrating that the downregulation of GBP2 promoted the proliferation, migration, and invasion of osteosarcoma cells while inhibiting apoptosis. Conclusion The current study established a prognostic signature associated with TEX-related genes and elucidated the impact of the pivotal gene GBP2 on osteosarcoma cells via in vitro experiments. Consequently, it introduces a fresh outlook for clinical prognosis prediction and sets the groundwork for targeted therapy investigations in osteosarcoma.
Collapse
Affiliation(s)
- Junchao Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shahrzad Arya
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhi Du
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Lu C, Sun Q, Guo Y, Han X, Zhang M, Liu J, Wang Y, Mou Y, Li Y, Song X. Construction and validation of a prognostic nine-gene signature associated with radiosensitivity in head and neck squamous cell carcinoma. Clin Transl Radiat Oncol 2023; 43:100686. [PMID: 37854672 PMCID: PMC10579965 DOI: 10.1016/j.ctro.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Background Radiotherapy is an effective treatment for head and neck squamous cell carcinoma (HNSCC), however how to predict the prognosis is not clear. Methods Here we collected 262 radiosensitivity-associated genes, screened and constructed a prognostic nine-gene risk model through univariate COX, lasso regression, stepwise regression and multivariate COX analysis for transcriptome and clinical information of HNSCC patients obtained from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. Results The reliability and robustness of the risk model were verified by receiver operating characteristic (ROC) curves, risk maps, and Kaplan-Meier (KM) curves analysis. Differences in immune cell infiltration and immune-related pathway enrichment between high-risk and low-risk subgroups were determined by multiple immune infiltration analyses. Meanwhile, the mutation map and the responses to immunotherapy were also differentiated by the prognostic nine-gene signature associated with radiosensitivity. These nine genes expression in HNSCC was verified in the Human Protein Atlas (HPA) database. After that, these nine genes expression was verified to be related to radiation resistance through in-vitro cell experiments. Conclusions All results showed that the nine-gene signature associated with radiosensitivity is a potential prognostic indicator for HNSCC patients after radiotherapy and provides potential gene targets for enhancing the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Congxian Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Mingjun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, China
| |
Collapse
|
11
|
Ebstein SY, Rafique A, Zhou Y, Krasco A, Montalvo-Ortiz W, Yu L, Custodio L, Adam RC, Bloch N, Lee K, Adewale F, Vergata D, Luz A, Coquery S, Daniel B, Ullman E, Franklin MC, Hermann A, Huang T, Olson W, Davis S, Murphy AJ, Sleeman MA, Wei J, Skokos D. VSIG4 interaction with heparan sulfates inhibits VSIG4-complement binding. Glycobiology 2023; 33:591-604. [PMID: 37341346 PMCID: PMC10426322 DOI: 10.1093/glycob/cwad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive. Here, we identify cell surface and soluble glycosaminoglycans, specifically heparan sulfates, as novel binding partners of VSIG4. We demonstrate that genetic deletion of heparan sulfate synthesis enzymes or cleavage of cell-surface heparan sulfates reduced VSIG4 binding to the cell surface. Furthermore, binding studies demonstrate that VSIG4 interacts directly with heparan sulfates, with a preference for highly sulfated moieties and longer glycosaminoglycan chains. To assess the impact on VSIG4 biology, we show that heparan sulfates compete with known VSIG4 binding partners C3b and iC3b. Furthermore, mutagenesis studies indicate that this competition occurs through overlapping binding epitopes for heparan sulfates and complement on VSIG4. Together these data suggest a novel role for heparan sulfates in VSIG4-dependent immune modulation.
Collapse
Affiliation(s)
- Sarah Y Ebstein
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ashique Rafique
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Yi Zhou
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Amanda Krasco
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Welby Montalvo-Ortiz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Lola Yu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Luisaidy Custodio
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Rene C Adam
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ken Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Funmilola Adewale
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Dominic Vergata
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Antonio Luz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Sebastien Coquery
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Benjamin Daniel
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica Ullman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Aynur Hermann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Samuel Davis
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Joyce Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
12
|
Jiang Y, Han L, Yang J, Yang M, Zhang J, Xue M, Zhu Y, Xiong C, Shi M, Zhao S, Shen B, Xu Z, Jiang L, Chen H. Identification of a novel immune checkpoint molecule V-set immunoglobulin domain-containing 4 that leads to impaired immunity infiltration in pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03438-y. [PMID: 37097516 PMCID: PMC10361881 DOI: 10.1007/s00262-023-03438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Medical Department Health Services Section, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shiwei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
13
|
Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, Yuan S, Gong T, Huang W. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Lett 2023; 553:215996. [PMID: 36343787 DOI: 10.1016/j.canlet.2022.215996] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Bei Liu
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China
| | - Li Cheng
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Honghao Gao
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02021, USA
| | - Shunzong Yuan
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China.
| | - Wenrong Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
14
|
Jiang HZ, Yang B, Jiang YL, Liu X, Chen DL, Long FX, Yang Z, Tang DX. Development and validation of prognostic models for colon adenocarcinoma based on combined immune-and metabolism-related genes. Front Oncol 2022; 12:1025397. [PMID: 36387195 PMCID: PMC9661394 DOI: 10.3389/fonc.2022.1025397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The heterogeneity of tumor tissue is one of the reasons for the poor effect of tumor treatment, which is mainly affected by the tumor immune microenvironment and metabolic reprogramming. But more research is needed to find out how the tumor microenvironment (TME) and metabolic features of colon adenocarcinoma (COAD) are related. METHODS We obtained the transcriptomic and clinical data information of COAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus clustering analysis was used to identify different molecular subtypes, identify differentially expressed genes (DEGs) associated with immune-and metabolism-related genes (IMRGs) prognosis. Univariate and multivariable Cox regression analysis and Lasso regression analysis were applied to construct the prognostic models based on the IMRG risk score. The correlations between risk scores and TME, immune cell infiltration, and immune checkpoint genes were investigated. Lastly, potential appropriate drugs related to the risk score were screened by drug sensitivity analysis. RESULTS By consensus clustering analysis, we identified two distinct molecular subtypes. It was also found that the multilayered IMRG subtypes were associated with the patient's clinicopathological characteristics, prognosis, and TME cell infiltration characteristics. Meanwhile, a prognostic model based on the risk score of IMRGs was constructed and its predictive power was verified internally and externally. Clinicopathological analysis and nomogram give it better clinical guidance. The IMRG risk score plays a key role in immune microenvironment infiltration. Patients in the high-risk groups of microsatellite instability (MSI) and tumor mutational burden (TMB) were found to, although with poor prognosis, actively respond to immunotherapy. Furthermore, IMRG risk scores were significantly associated with immune checkpoint gene expression. The potential drug sensitivity study helps come up with and choose a chemotherapy treatment plan. CONCLUSION Our comprehensive analysis of IMRG signatures revealed a broad range of regulatory mechanisms affecting the tumor immune microenvironment (TIME), immune landscape, clinicopathological features, and prognosis. And to explore the potential drugs for immunotherapy. It will help to better understand the molecular mechanisms of COAD and provide new directions for disease treatment.
Collapse
Affiliation(s)
- Hui-zhong Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bing Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ya-li Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xun Liu
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Da-lin Chen
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Feng-xi Long
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhu Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dong-xin Tang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
15
|
Wang Y, Ding J, Song H, Teng Y, Fang X. VSIG4 regulates macrophages polarization and alleviates inflammation through activating PI3K/AKT and inhibiting TLR4/NF-κB pathway in myocardial ischemia-reperfusion injury rats. Physiol Int 2022. [PMID: 36057104 DOI: 10.1556/2060.2022.00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/15/2022] [Indexed: 02/18/2024]
Abstract
Background Myocardial infarction is the primary cause of high disability and mortality in patients with cardiovascular disease worldwide. The pathological process of myocardial ischemia/reperfusion (I/R) may trigger harmful inflammatory response and ultimately lead to serious cardiac dysfunction. The mechanism of myocardial repair post myocardial infarction has not been fully elucidated. The present study speculated that VSIG4 is related to the regulation of heart injury. Methods The myocardial I/R injury model was established in Sprague-Dawley (SD) rats. Before I/R operation, the viral solution containing AAV-NC or AAV-VSIG4 was intravenously injected into rats. Cardiac function indicators, mRNA expression, the apoptosis ratio of cardiomyocytes, myocardial infarct area, phenotype polarization of macrophage, and the protein expression of apoptosis or macrophage phenotype were measured. Results Myocardial I/R injury decreased the expression of VSIG4 and subsequently triggered myocardial apoptosis. The induction of AAV-VSIG4 produced a protective effect on general cardiac function and attenuated the I/R-induced cellular apoptosis in rats. Moreover, VSIG4 signaling might potentially modulate macrophage M1/M2-related inflammatory disorders via activation of PI3K/AKT and inhibition of TLR4/NF-κB expression. Conclusion In summary, the present study provided evidence that VSIG4 had cardiac protective role in myocardial I/R injury. More importantly, enhanced VSIG4 expression inhibited M1 polarization of macrophages by blocking TLR4/NF-κB activation, subsequently suppressing cardiomyocyte apoptosis. This finding provides vital insights into the role of VSIG4 in I/R injury and may provide a new target for I/R therapy.
Collapse
Affiliation(s)
- Yanan Wang
- 1 Department of Cardiac Function, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, 222000 China
| | - Jie Ding
- 1 Department of Cardiac Function, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, 222000 China
| | - Hejian Song
- 2 Department of Cardiovasology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222000 China
| | - Yanling Teng
- 1 Department of Cardiac Function, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, 222000 China
| | - Xiaoling Fang
- 1 Department of Cardiac Function, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The First People's Hospital of Lianyungang), Lianyungang, Jiangsu, 222000 China
| |
Collapse
|
16
|
Jung K, Jeon YK, Jeong DH, Byun JM, Bogen B, Choi I. VSIG4-expressing tumor-associated macrophages impair anti-tumor immunity. Biochem Biophys Res Commun 2022; 628:18-24. [DOI: 10.1016/j.bbrc.2022.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
17
|
Widyagarini A, Nishii N, Kawano Y, Zhang C, Azuma M. VSIG4/CRIg directly regulates early CD8 + T cell activation through its counter-receptor in a narrow window. Biochem Biophys Res Commun 2022; 614:100-106. [PMID: 35576680 DOI: 10.1016/j.bbrc.2022.04.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
T-cell responses are fine-tuned by positive and negative co-signal molecules expressed on immune cells and adjacent tissues. VSIG4 is a newly identified member of the B7 family of ligands, which negatively regulates innate inflammatory and CD4+ T cell-mediated responses. However, little is known about the direct effects of VSIG4, which are exerted through an unidentified counter-receptor on CD8+ T cells. We investigated the binding of the VSIG4-Ig fusion protein during CD8+ T cell activation, and the functional involvement of VSIG4 pathway, using VSIG4-Ig and VSIG4-transfectants. VSIG4-Ig binding to CD8+ T cells was temporally observed in the CD44high phenotype during initial activation. VSIG4-Ig binding was observed earlier than the induction of PD-1, LAG3, and TIM-3, which are immune checkpoint receptors for exhausted CD8+ T cells. Immobilized VSIG4-Ig inhibited anti-CD3/CD28 mAb-induced CD8+ T cell activation, as indicated by proliferation and IFN-γ production, similar to the downregulation of T-bet and Eomesodermin transcription factors. VSIG4 on FcγR+ P815 or specific antigen-presenting E.G7 cells inhibited the generation of effector CD8+ T cells, as indicated by proliferation, IFN-γ and TNF-α expression, and granule degradation, compared to parental cells. However, the window for the regulatory function of VSIG4 was narrow and dependent on the strength of TCR (and CD28)-mediated signals. Our results suggested that VSIG4 directly delivers co-inhibitory signals via an as-yet unidentified counter-receptor on activated CD8+ T cells. VSIG4-mediated CD8+ T cell tolerance might contribute to the steady-state maintenance of homeostasis.
Collapse
Affiliation(s)
- Amrita Widyagarini
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoto Nishii
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Kawano
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenyang Zhang
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
18
|
Xie R, Yuan M, Jiang Y. The Pan-Cancer Crosstalk Between the EFNA Family and Tumor Microenvironment for Prognosis and Immunotherapy of Gastric Cancer. Front Cell Dev Biol 2022; 10:790947. [PMID: 35309935 PMCID: PMC8924469 DOI: 10.3389/fcell.2022.790947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: EFNA1-5 have important physiological functions in regulating tumorigenesis and metastasis. However, correlating EFNA genes in the tumor immune microenvironment (TIME), and the prognosis of patients with gastric cancer remains to be determined. Methods: Using public databases, the expression of EFNA1-5 in pan-cancer and gastric cancer was comprehensively analyzed using UCSC Xena, the Oncomine dataset and UALCAN. We further completed survival analysis by Kaplan-Meier plotter to evaluate the prognosis of the high and low expression groups of the EFNAs gene in patients with gastric cancer. The TIMER tool was used to reveal the correlation between immune cell infiltration and genes of interest. Spearman correlation was used to find an association between the EFNA genes and tumor stem cells, TIME, microsatellite instability (MSI) or tumor mutational burden (TMB). We also used cBioportal, GeneMANIA and STRINGS to explore the types of changes in these genes and the protein interactions. Finally, we described the TIME based on QUANTISEQ algorithm, predicted the relationship between the EFNA genes and half-maximal inhibitory concentration (IC50), and analyzed the relationship between the EFNA family genes and immune checkpoints. Results: The expression of EFNA1, EFNA3, EFNA4, and EFNA5 was elevated in pan-cancer. Compared with normal adjacent tissues, EFNA1, EFNA3, and EFNA4 were up-regulated in gastric cancer. In terms of the influence on the survival of patients, the expression of EFNA3 and EFNA4 were related to overall survival (OS) and disease-free survival (DFS) for patients with gastric cancer. High expression of EFNA5 often predicted poor OS and DFS. In gastric cancer, the expression of EFNA3 and EFNA4 showed a significant negative correlation with B cells. The higher the expression of EFNA5, the higher the abundance of B cells, CD4+T cells and macrophages. CD8+T cells, dendritic cells infiltration and EFNA1-4 expression were negatively correlated. The infiltration of CD4+T cells, macrophages and neutrophils was negatively correlated with the expression of EFNA1, EFNA3, and EFNA4. TMB and MSI were positively correlated with EFNA3/EFNA4 expression. In the tumor microenvironment and drug sensitivity, EFNA3/4/5 also showed a significant correlation. In addition, we explored the relationship between the EFNA family genes and the immune microenvironment (B cells, M2 macrophages, monocytes, CD8+ T cells, regulatory T cells, myeloid dendritic cells, natural killer cells, non-regulatory CD4+ T cells), immune checkpoint (PDCD1, PDCD1LG2, CD274, CTLA4), and IC50 of common chemotherapeutic drugs for gastric cancer (5-fluorouracil, cisplatin, docetaxel and gemcitabine). Conclusions: Our study provides new ideas for tumor treatment and prognosis from the perspective of TIME, and nominates EFNA1-5 to become potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Rongrong Xie
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Liang L, Li J, Yu J, Liu J, Xiu L, Zeng J, Wang T, Li N, Wu L. Establishment and validation of a novel invasion-related gene signature for predicting the prognosis of ovarian cancer. Cancer Cell Int 2022; 22:118. [PMID: 35292033 PMCID: PMC8922755 DOI: 10.1186/s12935-022-02502-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is an invasive gynaecologic cancer with a high cancer-related death rate. The purpose of this study was to establish an invasion-related multigene signature to predict the prognostic risk of OC. METHODS We extracted 97 invasion-related genes from The Cancer Genome Atlas (TCGA) database. Then, the ConsensusClusterPlus and limma packages were used to calculate differentially expressed genes (DEGs). To calculate the immune scores of the molecular subtypes, we used ESTIMATE to evaluate the stromal score, immune score and ESTIMATE score. MCP-counter and the GSVA package ssgsea were used to evaluate the types of infiltrating immune cells. Survival and nomogram analyses were performed to explore the prognostic value of the signature. Finally, qPCR, immunohistochemistry staining and functional assays were used to evaluate the expression and biological abilities of the signature genes in OC. RESULTS Based on the consistent clustering of invasion-related genes, cases in the OC datasets were divided into two subtypes. A significant difference was observed in prognosis between the two subtypes. Most genes were highly expressed in the C1 group. Based on the C1 group genes, we constructed an invasion-related 6-gene prognostic risk model. Furthermore, to verify the signature, we used the TCGA-test and GSE32062 and GSE17260 chip datasets for testing and finally obtained a good risk prediction effect in those datasets. Moreover, the results of the qPCR and immunohistochemistry staining assays revealed that KIF26B, VSIG4 and COL6A6 were upregulated and that FOXJ1, MXRA5 and CXCL9 were downregulated in OC tissues. The functional study showed that the expression of KIF26B, VSIG4, COL6A6, FOXJ1, MXRA5 and CXCL9 can regulate the migration and invasion abilities of OC cells. CONCLUSION We developed a 6-gene prognostic stratification system (FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and COL6A6) that is independent of clinical features. These results suggest that the signature could potentially be used to evaluate the prognostic risk of OC patients.
Collapse
Affiliation(s)
- Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Yu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Xiu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiantian Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
He Z, Li J, Gong S, Xing L, Sun Y, Wang J, Li T, Ning N, Zhang L, Yu W, Luo D, Wang H. B7 Family Molecule VSIG4 Regulates Intestinal Anti- Enterohemorrhagic Escherichia coli Immunity by Altering Gut Flora Diversity. Microorganisms 2021; 9:microorganisms9081769. [PMID: 34442848 PMCID: PMC8398431 DOI: 10.3390/microorganisms9081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
As an essential member of the B7 family, V-set and immunoglobulin domain-containing 4 (VSIG4) is expressed explicitly in tissue-resident macrophages (TRMs) and plays an essential role in maintaining the homeostasis of the environmental immune system. Here, we demonstrate that gene-targeted VSIG4-deficient mice infected with Enterohemorrhagic Escherichia coli (EHEC) display reduced bacterial burden. To reveal the role of VSIG4 in the fight against EHEC infection, we collected mice feces and used high-throughput 16S rRNA gene amplicons to detect changes in the flora. A total of 657330 sequences were sequenced on the PacBio platform, with an average length of 1498 bp. We found that VSIG4 deficiency could alter the gut microbiota by increasing diversity and shifting community composition. In particular, G_Akkermansia and G_Oscillo spiraceae increased significantly. These findings expand upon a prior observation that VSIG4 deficiency reduced EHEC colonization by changing the gut microbiota diversity and shifting community composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Deyan Luo
- Correspondence: (D.L.); (H.W.); Tel.: +86-10-66948549 (H.W.)
| | - Hui Wang
- Correspondence: (D.L.); (H.W.); Tel.: +86-10-66948549 (H.W.)
| |
Collapse
|
21
|
Yang H, Li L, Liu X, Zhao Y. High Expression of the Component 3a Receptor 1 (C3AR1) Gene in Stomach Adenocarcinomas Infers a Poor Prognosis and High Immune-Infiltration Levels. Med Sci Monit 2021; 27:e927977. [PMID: 33539329 PMCID: PMC7871482 DOI: 10.12659/msm.927977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed to explore the incompletely investigated role of the complement component 3a receptor 1 (C3AR1) in the prognosis of stomach adenocarcinomas (STAD). Material/Methods Using bioinformatic methods, we systematically determined the expression and prognosis value of C3AR1 in various cancers by using the TIMER (Tumor Immune Estimation Resource) database, UALCAN platform, GEPIA (Gene Expression Profiling Interactive Analysis) server, and the OncoLnc tool. The biological processes influenced by C3AR1 were determined using the GSEA (Gene Set Enrichment Analysis) software (Copyright 2004–2020 Broad Institute, Inc., Massachusetts Institute of Technology, and Regents of the University of California). The correlation between C3AR1 expression and the immune-infiltrating cells as well as the correlation analysis between C3AR1 expression and the corresponding immune-marker sets were conducted using the TIMER and GEPIA databases. Results The expression of C3AR1 was significantly (P<0.001) differentially expressed on several tumor types, while its prognosis value could only be determined on STAD, with a high expression of C3AR1 closely correlated with a poor prognosis. The GSEA analysis revealed that the differential expression of C3AR1 profoundly affected the immune-related biological processes. The expression of C3AR1 was strongly and positively correlated with the infiltration of monocytes, tumor-associated macrophages, M2 macrophages, dendritic cells, and exhausted T cells. Conclusions Our results have revealed that a high expression of C3AR1 is positively correlated with a poor prognosis and increased tumor-immune infiltration. C3AR1 can promote the polarization of M2 macrophages and T cell exhaustion, leading to the immune escape of STAD. These findings suggest that C3AR1 could be used as a prognostic and immune-infiltration marker in the pathogenesis of STAD.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lin Li
- Department of Pharmacy, Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, Sichuan, China (mainland)
| | - Xiaoyu Liu
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|