1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Lu J, Zhou X, Zhu H, Zou M, Liu L, Li X, Gu M. POGZ targeted by LINC01355/miR-27b-3p retards thyroid cancer progression via interplaying with MAD2L2. 3 Biotech 2025; 15:79. [PMID: 40071126 PMCID: PMC11890915 DOI: 10.1007/s13205-025-04231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
UNLABELLED Despite the high morbidity of thyroid cancer (THCA), the underlying molecular pathology remains elusive. That autism-associated protein POGZ has recently been involved in tumorigenesis intrigues us exploring its relevant molecular regulatory network in THCA. Clinical characteristics and intermolecular relationships were dissected by bioinformatics. Interaction between POGZ and MAD2L2 was examined by Co-IP assay. Targeting relationships between miR-27b-3p and POGZ/LINC01355 was verified by sequence prediction and dual-luciferase reporter detection. Cellular effects of genes were assessed by CCK-8 assay, clone formation assay, and Transwell assay, and further confirmed by a tumor-bearing nude mice model. Our results demonstrated a decrease in POGZ expression in THCA tissues and cell lines, and an interaction between POGZ and MAD2L2 protein. POGZ inhibited both the proliferation and motility of THCA cells, with these effects being reversed upon MAD2L2 silencing. LINC01355 exhibited low expression level and a positive correlation with POGZ in THCA. Both miR-27b-3p and LINC01355 were identified as regulators of POGZ through targeting. Elevated miR-27b-3p suppressed POGZ expression. LINC01355 promoted POGZ and counteracted the inhibitory effects of miR-27b-3p. Furthermore, miR-27b-3p increased the proliferation and motility of THCA cells, an effect that was blocked by LINC01355. At the animal level, POGZ, LINC01355, and MAD2L2 all attenuated tumor growth in THCA. Collectively, POGZ restrains THCA growth by interacting with MAD2L2 protein, and POGZ modulation involves a complex interplay orchestrated by LINC01355-targeted miR-27b-3p. By reporting the first POGZ-focused ceRNA network involving noncoding RNA in THCA, our study paves the way for exploring POGZ-related pathways and developing new therapeutic strategies in cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-025-04231-7.
Collapse
Affiliation(s)
- Jiancan Lu
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135 China
| | - Xinglu Zhou
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Hongling Zhu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mei Zou
- PharmaLegacy Laboratories, Shanghai, 201201 China
| | - Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Pudong New District, Shanghai, 200125 China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mingjun Gu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| |
Collapse
|
3
|
Hu Y, Liu Z, Qin Y, Wu N, Yang T, Cheng X, Wang C, Wang X. Identification of Pivotal ceRNA Networks Associated with Stanford-A Aortic Dissection via Integrated Bioinformatics Analysis. Int J Gen Med 2025; 18:1509-1527. [PMID: 40123810 PMCID: PMC11927577 DOI: 10.2147/ijgm.s509177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Objective Stanford-A Aortic dissection (TAAD) is a rare and fatal disease, genetic factors remains poorly known. Study has confirmed that lncRNA play an important role in various physiological and pathological processes. This study attempts to elucidate the underlying molecular mechanisms of TAAD through lncRNA-associated competitive endogenous RNA (ceRNA) networks. Methods In this study, aortic vascular of 5 TAAD and 5 control (ischemic heart disease) were subjected to lncRNA and mRNA microarray analysis, and differentially expressed mRNAs (DEGs) and differentially expressed lncRNAs (DELs) were identified. The differentially expressed miRNAs (DEmiR) were screened by GSE98770 dataset. The ceRNA network (lncRNA-miRNA-mRNA) was constructed by bioinformatics analysis. The accuracy of hub genes as biomarkers for predicting TAAD was evaluated by receiver operating characteristic (ROC) curve. Finally, the biomarkers were verified by assessing their mRNA levels using real-time quantitative PCR (RT-qPCR). Results This study revealed 161 DELs, 87 DEmiRs and 103 DEGs between TAAD and control. We constructed ceRNA networks based on the screened 1 lncRNA, 4 miRNAs and 7 mRNAs. We identified three lncRNA-miRNA-mRNA regulatory axes, namely the VCAN axis (LINC01355 - hsa-miR-186-5p / hsa-miR-30a-5p /hsa-miR-30c-5p - VCAN), LOX axis (LINC01355-hsa-miR-145-5p/hsa-miR-186-5p/ hsa-miR-30a-5p / hsa-miR-30c-5p - LOX), and CTSS axis (LINC01355 - hsa-miR-186-5p - CTSS) based on gene ontology, pathway enrichment and protein-protein interaction (PPI) network, which may play an important role in TAAD. The clinical performance of VCAN, CTSS, and LOX in TAAD diagnosis was evaluated, and the AUCs of VCAN, CTSS, and LOX were 0.920 (p<0.001), 0.880 (p=0.002) and 0.840 (p=0.011), respectively. Furthermore, mRNA expression of VCAN in human aortic tissue significantly overexpressed in the TAAD patients (p<0.001). Conclusion This study identifies three ceRNA interaction axes, especially VCAN associated with TAAD pathogenesis, providing fundamentals of bioinformatics for understanding the molecular mechanisms of TAAD pathogenesis and developing potential therapeutic strategies for TAAD.
Collapse
Affiliation(s)
- Yuyuan Hu
- Department of Cardiac Surgery, the First Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, People’s Republic of China
| | - Zhenhao Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Yan Qin
- Department of Science and Technology Education, Shanxi Center for Clinical Laboratory, Taiyuan, 030012, People’s Republic of China
| | - Nan Wu
- Department of Cardiac Surgery, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, People’s Republic of China
| | - Tao Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Xinmeng Cheng
- Department of Cardiovascular Surgery, the Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi, 030000, People’s Republic of China
| | - Chunyan Wang
- Department of Clinical Laboratory, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, People’s Republic of China
| | - Xuening Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| |
Collapse
|
4
|
Elahi MA, Tariq A, Malik A, Zhra M. Role of Hypoxia-Associated Long Noncoding RNAs in Cancer Chemo-Therapy Resistance. Int J Mol Sci 2025; 26:936. [PMID: 39940704 PMCID: PMC11817469 DOI: 10.3390/ijms26030936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Hypoxia is a well-known characteristic of the tumor microenvironment which significantly influences cancer development and is closely linked to unfavorable outcomes. Long noncoding RNAs (lncRNAs), which are part of the noncoding genome, have garnered increasing attention because of their varied functions in tumor metastasis. Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs which are longer than 200 nucleotides, and they regulate diverse cellular processes by modulating gene expression at the transcriptional, post-transcriptional and epigenetic levels. Hypoxia is a well-established environmental factor which enhances the metastasis of solid tumors. Epithelial-mesenchymal transition (EMT) represents one of the key mechanisms triggered by hypoxia which contributes to metastasis. Numerous lncRNAs have been identified as being upregulated by hypoxia. These lncRNAs significantly contribute toward cancer cell migration, invasion and metastasis. Recent studies have identified a crucial role for these hypoxia-induced lncRNAs in chemotherapy resistance. These hypoxia-related lncRNAs can be plausible therapeutic targets for devising effective cancer therapies.
Collapse
Affiliation(s)
- Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Ambrin Malik
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
5
|
Jia X, Tian J, Chen P, Dong J, Li L, Chen D, Zhang J, Liao D, He Z, Luo K. Methylation-modulated PFTK1 regulates gefitinib resistance via Wnt/β-catenin signaling in EGFR mutant non-small-cell lung cancer cells. Commun Biol 2024; 7:1649. [PMID: 39702755 DOI: 10.1038/s42003-024-07339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment. Further study suggests that gefitinib can critically accelerate PFTK1 through suppressing its promoter methylation in a DNMT3B-dependent manner. Gain and loss of function assays demonstrate that desregulation of PFTK1 significantly enhances gefitinib resistance in NSCLC. PFTK1 interacts with LRP6 and activates Wnt/β-catenin signaling to attenuate gefitinib-induced cellular apoptosis. Moreover, FMF-04-159-2, a specific covalent inhibitor of PFTK1, can reverse the effect of PFTK1 on gefitinib resistance in vitro and in vivo. Consequently, these findings shed new light on the mechanism underlying gefitinib resistance, and suggest PFTK1 as a target for gefitinib treatment in NSCLC.
Collapse
Affiliation(s)
- Xiaoting Jia
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jingjie Tian
- Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| | - Pingping Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jing Dong
- Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Lei Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Danyang Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Jianlei Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Dongjiang Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| | - Zhimin He
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| | - Kai Luo
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Li Y, Zeng J, Yu C, Shen W, Xi Y. Uncovering key genes and molecular mechanisms of dendritic cell dysfunction in Esophageal Cancer: implications for Novel Diagnostic and therapeutic strategies. Discov Oncol 2024; 15:790. [PMID: 39692816 DOI: 10.1007/s12672-024-01620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Dendritic cells play a crucial role in initiating and regulating immune responses, and their dysfunction is strongly associated with esophageal cancer. In this study, we aimed to develop a predictive signature and identify key genes linked to dendritic cell dysfunction in esophageal cancer. Through bioinformatics analysis of gene expression data from the TCGA database, we identified a set of 603 genes significantly associated with dendritic cell function. Further analysis using Cox regression and LASSO regression revealed six genes (GDF15, GPT, KRTAP5-5, MMP12, SLC5A1, and C5orf52) that were strongly correlated with overall survival. The prognostic signature constructed from these genes demonstrated that patients in the high-risk group had poorer survival outcomes compared to those in the low-risk group. Immune infiltration analysis indicated a higher abundance of macrophages in the high-risk group, and correlation studies showed a strong positive association between the risk score and the expression of immune checkpoint markers PD1 and PD-L1. Drug sensitivity analysis suggested that Metformin, Gefitinib, and Lapatinib may be more effective in the low-risk group, while Pyrimethamine, Axitinib, and Rapamycin may be more beneficial for high-risk patients. In summary, we identified a 6-gene signature related to dendritic cell dysfunction that can predict prognosis in esophageal cancer, offering valuable insights for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yanqiang Li
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Jing Zeng
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Chaoqun Yu
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Li Y, Cui Y, Wang Z, Wang L, Yu Y, Xiong Y. Development and validation of a hypoxia- and mitochondrial dysfunction- related prognostic model based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. Front Immunol 2024; 15:1419133. [PMID: 39165353 PMCID: PMC11333257 DOI: 10.3389/fimmu.2024.1419133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Gastric cancer (GC) remains a major global health threat ranking as the fifth most prevalent cancer. Hypoxia, a characteristic feature of solid tumors, significantly contributes to the malignant progression of GC. Mitochondria are the major target of hypoxic injury that promotes mitochondrial dysfunction during the development of cancers including GC. However, the gene signature and prognostic model based on hypoxia- and mitochondrial dysfunction-related genes (HMDRGs) in the prediction of GC prognosis have not yet been established. Methods The gene expression profile datasets of stomach cancer patients were retrieved from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Prognostic genes were selected using Least Absolute Shrinkage and Selection Operator Cox (LASSO-Cox) regression analysis to construct a prognostic model. Immune infiltration was evaluated through ESTIMATE, CIBERSORT, and ssGSEA analyses. Tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) were utilized to explore implications for immunotherapy. Furthermore, in vitro experiments were conducted to validate the functional roles of HMDRGs in GC cell malignancy. Results In this study, five HMDRGs (ZFP36, SERPINE1, DUSP1, CAV1, and AKAP12) were identified for developing a prognostic model in GC. This model stratifies GC patients into high- and low-risk groups based on median risk scores. A nomogram predicting overall survival (OS) was constructed and showed consistent results with observed OS. Immune infiltration analysis indicated that individuals in the high-risk group tend to exhibit increased immune cell infiltration. Additionally, analysis of cancer immunotherapy responses revealed that high-risk group patients exhibit poorer responses to cancer immunotherapy compared to the low-risk group. Immunohistochemistry (IHC) staining indicated that the expression levels of HMDRGs were remarkably correlated with GC, of which, SERPINE1 displayed the most pronounced up-regulation, while ZFP36 exhibited the most notable down-regulation in GC patients. Furthermore, in vitro investigation validated that SERPINE1 and ZFP36 contribute to the malignant processes of GC cells correlated with mitochondrial dysfunction. Conclusions This study presents a novel and efficient approach to evaluate GC prognosis and immunotherapy efficacy, and also provides insights into understanding the pathogenesis of GC.
Collapse
Affiliation(s)
- Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhen Wang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Liwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi Yu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
9
|
Liu P, Ding P, Yang J, Wu H, Wu J, Guo H, Yang P, Tian Y, Meng L, Zhao Q. MicroRNA-431-5p inhibits angiogenesis, lymphangiogenesis, and lymph node metastasis by affecting TGF-β1/SMAD2/3 signaling via ZEB1 in gastric cancer. Mol Carcinog 2024; 63:1378-1391. [PMID: 38656643 DOI: 10.1002/mc.23731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Accumulating evidence suggests that lymphangiogenesis plays a crucial role in lymphatic metastasis, leading to tumor immune tolerance. However, the specific mechanism remains unclear. In this study, miR-431-5p was markedly downregulated in both gastric cancer (GC) tissues and plasma exosomes, and its expression were correlated negatively with LN metastasis and poor prognosis. Mechanistically, miR-431-5p weakens the TGF-β1/SMAD2/3 signaling pathway by targeting ZEB1, thereby suppressing the secretion of VEGF-A and ANG2, which in turn hinders angiogenesis, lymphangiogenesis, and lymph node (LN) metastasis in GC. Experiments using a popliteal LN metastasis model in BALB/c nude mice demonstrated that miR-431-5p significantly reduced popliteal LN metastasis. Additionally, miR-431-5p enhances the efficacy of anti-PD1 treatment, particularly when combined with galunisertib, anti-PD1 treatment showing a synergistic effect in inhibiting GC progression in C57BL/6 mice. Collectively, these findings suggest that miR-431-5p may modulate the TGF-β1/SMAD2/3 pathways by targeting ZEB1 to impede GC progression, angiogenesis, and lymphangiogenesis, making it a promising therapeutic target for GC management.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxuan Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Halabi N, Thomas B, Chidiac O, Robay A, AbiNahed J, Jayyousi A, Al Suwaidi J, Bradic M, Abi Khalil C. Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease. Cardiovasc Diabetol 2024; 23:196. [PMID: 38849833 PMCID: PMC11161966 DOI: 10.1186/s12933-024-02292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Monocytes play a central role in the pathophysiology of cardiovascular complications in type 2 diabetes (T2D) patients through different mechanisms. We investigated diabetes-induced changes in lncRNA genes from T2D patients with cardiovascular disease (CVD), long-duration diabetes, and poor glycemic control. METHODS We performed paired-end RNA sequencing of monocytes from 37 non-diabetes controls and 120 patients with T2D, of whom 86 had either macro or microvascular disease or both. Monocytes were sorted from peripheral blood using flow cytometry; their RNA was purified and sequenced. Alignments and gene counts were obtained with STAR to reference GRCh38 using Gencode (v41) annotations followed by batch correction with CombatSeq. Differential expression analysis was performed with EdgeR and pathway analysis with IPA software focusing on differentially expressed genes (DEGs) with a p-value < 0.05. Additionally, differential co-expression analysis was done with csdR to identify lncRNAs highly associated with diabetes-related expression networks with network centrality scores computed with Igraph and network visualization with Cytoscape. RESULTS Comparing T2D vs. non-T2D, we found two significantly upregulated lncRNAs (ENSG00000287255, FDR = 0.017 and ENSG00000289424, FDR = 0.048) and one significantly downregulated lncRNA (ENSG00000276603, FDR = 0.017). Pathway analysis on DEGs revealed networks affecting cellular movement, growth, and development. Co-expression analysis revealed ENSG00000225822 (UBXN7-AS1) as the highest-scoring diabetes network-associated lncRNA. Analysis within T2D patients and CVD revealed one lncRNA upregulated in monocytes from patients with microvascular disease without clinically documented macrovascular disease. (ENSG00000261654, FDR = 0.046). Pathway analysis revealed DEGs involved in networks affecting metabolic and cardiovascular pathologies. Co-expression analysis identified lncRNAs strongly associated with diabetes networks, including ENSG0000028654, ENSG00000261326 (LINC01355), ENSG00000260135 (MMP2-AS1), ENSG00000262097, and ENSG00000241560 (ZBTB20-AS1) when we combined the results from all patients with CVD. Similarly, we identified from co-expression analysis of diabetes patients with a duration ≥ 10 years vs. <10 years two lncRNAs: ENSG00000269019 (HOMER3-AS10) and ENSG00000212719 (LINC02693). The comparison of patients with good vs. poor glycemic control also identified two lncRNAs: ENSG00000245164 (LINC00861) and ENSG00000286313. CONCLUSION We identified dysregulated diabetes-related genes and pathways in monocytes of diabetes patients with cardiovascular complications, including lncRNA genes of unknown function strongly associated with networks of known diabetes genes.
Collapse
Affiliation(s)
- Najeeb Halabi
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Binitha Thomas
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Omar Chidiac
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
| | - Julien AbiNahed
- Technology Innovation Unit, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Marie-Josée & Henry R.Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Lab, Department of Genetic Medicine, Weill Cornell Medicine - Qatar, PO box 24144, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA.
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar.
- Joan and Sanford I.Weill Department of Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
11
|
Jin W, Jia J, Si Y, Liu J, Li H, Zhu H, Wu Z, Zuo Y, Yu L. Identification of Key lncRNAs Associated with Immune Infiltration and Prognosis in Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10801-w. [PMID: 38658494 DOI: 10.1007/s10528-024-10801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Long non-coding RNAs (lncRNAs), as promising novel biomarkers for cancer treatment and prognosis, can function as tumor suppressors and oncogenes in the occurrence and development of many types of cancer, including gastric cancer (GC). However, little is known about the complex regulatory system of lncRNAs in GC. In this study, we systematically analyzed lncRNA and miRNA transcriptomic profiles of GC based on bioinformatics methods and experimental validation. An lncRNA-miRNA interaction network related to GC was constructed, and the nine crucial lncRNAs were identified. These 9 lncRNAs were found to be associated with the prognosis of GC patients by Cox proportional hazards regression analysis. Among them, the expression of lncRNA SNHG14 can affect the survival of GC patients as a potential prognostic marker. Moreover, it was shown that SNHG14 was involved in immune-related pathways and significantly correlated with immune cell infiltration in GC. Meanwhile, we found that SNHG14 affected immune function in many cancers, such as breast cancer and esophageal carcinoma. Such information revealed that SNHG14 may serve as a potential target for cancer immunotherapy. As well, our study could provide practical and theoretical guiding significance for clinical application of non-coding RNAs.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yangming Si
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Jianli Liu
- School of Water Resource and Environment Engineering, China University of Geosciences, Beijing, 100083, China
| | - Hanshuang Li
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hao Zhu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhouying Wu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yongchun Zuo
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot, 010010, China.
- Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China.
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China.
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
12
|
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Rev 2024; 43:5-27. [PMID: 37552389 DOI: 10.1007/s10555-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.
Collapse
Affiliation(s)
- Sabrean Farhan Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences, University of Cairo, Giza, 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India.
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| | | |
Collapse
|
13
|
Xiao L, Zhang Y, Luo Q, Guo C, Chen Z, Lai C. DHRS4-AS1 regulate gastric cancer apoptosis and cell proliferation by destabilizing DHX9 and inhibited the association between DHX9 and ILF3. Cancer Cell Int 2023; 23:304. [PMID: 38041141 PMCID: PMC10693172 DOI: 10.1186/s12935-023-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
Gastric cancer (GC) causes millions of cancer-related deaths due to anti-apoptosis and rapid proliferation. However, the molecular mechanisms underlying GC cell proliferation and anti-apoptosis remain unclear. The expression levels of DHRS4-AS1 in GC were analyzed based on GEO database and recruited GC patients in our institution. We found that DHRS4-AS1 was significantly downregulated in GC. The expression of DHRS4-AS1 in GC tissues showed a significant correlation with tumor size, advanced pathological stage, and vascular invasion. Moreover, DHRS4-AS1 levels in GC tissues were significantly associated with prognosis. DHRS4-AS1 markedly inhibited GC cell proliferation and promotes apoptosis in vitro and in vivo assays. Mechanically, We found that DHRS4-AS1 bound to pro-oncogenic DHX9 (DExH-box helicase 9) and recruit the E3 ligase MDM2 that contributed to DHX9 degradation. We also confirmed that DHRS4-AS1 inhibited DHX9-mediated cell proliferation and promotes apoptosis. Furthermore, we found DHX9 interact with ILF3 (Interleukin enhancer Binding Factor 3) and activate NF-kB Signaling in a ILF3-dependent Manner. Moreover, DHRS4-AS1 can also inhibit the association between DHX9 and ILF3 thereby interfered the activation of the signaling pathway. Our results reveal new insights into mechanisms underlying GC progression and indicate that LncRNA DHRS4-AS1 could be a future therapeutic target and a biomarker for GC diagnosis.
Collapse
Affiliation(s)
- Lei Xiao
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Zhang
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan Province, China
| | - Cao Guo
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Yang Q, Tian H, Guo Z, Ma Z, Wang G. The role of noncoding RNAs in the tumor microenvironment of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1697-1706. [PMID: 37867435 PMCID: PMC10686793 DOI: 10.3724/abbs.2023231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.
Collapse
Affiliation(s)
- Qianqian Yang
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Tian
- Department of GeriatricsZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyi Guo
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Guangzhi Wang
- School of Medical ImagingWeifang Medical UniversityWeifang261053China
- Department of Medical Imaging CenterAffiliated Hospital of Weifang Medical UniversityWeifang261053China
| |
Collapse
|
15
|
Zhang Z, Wang X. Roles of long non-coding RNAs in digestive tract cancer and their clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:451-459. [PMID: 37643979 PMCID: PMC10495243 DOI: 10.3724/zdxbyxb-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) are strongly related to the occurrence and development of digestive tract cancer in human. Firstly, lncRNAs target and regulate the expression of downstream cancer genes to affect the growth, metastasis, apoptosis, metabolism and immune escape of cancer cells. Secondly, lncRNAs are considered to be important regulating factors for lipid metabolism in cancer, which is related to signaling pathways of adipogenesis and involved in the occurrence and development of digestive tract cancer. Finally, lncRNAs have application value in the diagnosis and treatment of digestive tract cancer. For example, lncRNAMALAT1 has been reported as a target for diagnosis and treatment of hepatocellular carcinoma. This article reviews current progress on the regulatory role of lncRNAs in digestive tract cancer, to provide references for the research and clinical application in the prevention and treatment of digestive tract cancer.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Medicine, Xizang Minzu University, Key Laboratory of High Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang 712082, Shaanxi Province, China.
| | - Xiaoping Wang
- School of Medicine, Xizang Minzu University, Key Laboratory of High Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xianyang 712082, Shaanxi Province, China.
| |
Collapse
|
16
|
Zhang M, Kan D, Zhang B, Chen X, Wang C, Chen S, Gao W, Yang Z, Li Y, Chen Y, Zhu S, Wen S, Niu Y, Shang Z. P300/SP1 complex mediating elevated METTL1 regulates CDK14 mRNA stability via internal m7G modification in CRPC. J Exp Clin Cancer Res 2023; 42:215. [PMID: 37599359 PMCID: PMC10440916 DOI: 10.1186/s13046-023-02777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) modification is, a more common epigenetic modification in addition to m6A modification, mainly found in mRNA capsids, mRNA interiors, transfer RNA (tRNA), pri-miRNA, and ribosomal RNA (rRNA). It has been found that m7G modifications play an important role in mRNA transcription, tRNA stability, rRNA processing maturation, and miRNA biosynthesis. However, the role of m7G modifications within mRNA and its "writer" methyltransferase 1(METTL1) in tumors, particularly prostate cancer (PCa), has not been revealed. METHODS The differential expression level of METTL1 between hormone-sensitive prostate cancer (HSPC) and castrate-resistant prostate cancer (CRPC) was evaluated via RNA-seq and in vitro experiments. The effects of METTL1 on CRPC progression were investigated through in vitro and in vivo assays. The upstream molecular mechanism of METTL1 expression upregulation and the downstream mechanism of its action were explored via Chromatin Immunoprecipitation quantitative reverse transcription polymerase chain reaction (CHIP-qPCR), Co-immunoprecipitation (Co-IP), luciferase reporter assay, transcriptome-sequencing, m7G AlkAniline-Seq, and mRNA degradation experiments, etc. RESULTS AND CONCLUSION: Here, we found that METTL1 was elevated in CRPC and that patients with METTL1 elevation tended to have a poor prognosis. Functionally, the knockdown of METTL1 in CRPC cells significantly limited cell proliferation and invasive capacity. Mechanistically, we unveiled that P300 can form a complex with SP1 and bind to the promoter region of the METTL1 gene via SP1, thereby mediating METTL1 transcriptional upregulation in CRPC. Subsequently, our findings indicated that METTL1 leads to enhanced mRNA stability of CDK14 by adding m7G modifications inside its mRNA, ultimately promoting CRPC progression.
Collapse
Affiliation(s)
- Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Duo Kan
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Bone and Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Xueqiao Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chun Wang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Songmao Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenlong Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhao Yang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutong Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Simeng Wen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
17
|
Akhavanfar R, Shafagh SG, Mohammadpour B, Farahmand Y, Lotfalizadeh MH, Kookli K, Adili A, Siri G, Eshagh Hosseini SM. A comprehensive insight into the correlation between ncRNAs and the Wnt/β-catenin signalling pathway in gastric cancer pathogenesis. Cell Commun Signal 2023; 21:166. [PMID: 37386429 PMCID: PMC10308667 DOI: 10.1186/s12964-023-01092-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/26/2023] [Indexed: 07/01/2023] Open
Abstract
During the past decades, gastric cancer (GC) has emerged as one of the most frequent malignancies with a growing rate of prevalence around the world. Despite considerable advances in therapeutic methods, the prognosis and management of patients with gastric cancer (GC) continue to be poor. As one of the candidate molecular targets in the treatment of many types of cancer, the Wnt/β-catenin pathway includes a family of proteins that have important functions in adult tissue homeostasis and embryonic development. The aberrant regulation of Wnt/β-catenin signaling is strongly correlated with the initiation and development of numerous cancers, including GC. Therefore, Wnt/β-catenin signaling has been identified as one of the main targets for extending therapeutic approaches for GC patients. Non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, are important components of epigenetic mechanisms in gene regulation. They play vital roles in various molecular and cellular processes and regulate many signaling pathways, such as Wnt/β-catenin pathways. Insights into these regulatory molecules involved in GC development may lead to the identification of potential targets for overcoming the limitations of current therapeutic approaches. Consequently, this review aimed to provide a comprehensive overview of ncRNAs interactions involved in Wnt/β-catenin pathway function in GC with diagnostic and therapeutic perspectives. Video Abstract.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
18
|
Zhong C, Wu C, Lin Y, Lin D. Refined expression quantitative trait locus analysis on adenocarcinoma at the gastroesophageal junction reveals susceptibility and prognostic markers. Front Genet 2023; 14:1180500. [PMID: 37265963 PMCID: PMC10230079 DOI: 10.3389/fgene.2023.1180500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Objectives: This study aimed to explore cell type level expression quantitative trait loci (eQTL) in adenocarcinoma at the gastroesophageal junction (ACGEJ) and identify susceptibility and prognosis markers. Methods: Whole-genome sequencing (WGS) was performed on 120 paired samples from Chinese ACGEJ patients. Germline mutations were detected by GATK tools. RNA sequencing (RNA-seq) data on ACGEJ samples were taken from our previous studies. Public single-cell RNA sequencing (scRNA-seq) data were used to produce the proportion of epithelial cells. Matrix eQTL and a linear mixed model were used to identify condition-specific cis-eQTLs. The R package coloc was used to perform co-localization analysis with the public data of genome-wide association studies (GWASs). Log-rank and Cox regression tests were used to identify survival-associated eQTL and genes. Functions of candidate risk loci were explored by experimental validation. Results: Refined eQTL analyses of paired ACGEJ samples were performed and 2,036 potential ACGEJ-specific eQTLs with East Asian specificity were identified in total. ACGEJ-gain eQTLs were enriched at promoter regions more than ACGEJ-loss eQTLs. rs658524 was identified as the top eQTL close to the transcription start site of its paired gene (CTSW). rs2240191-RASAL1, rs4236599-FOXP2, rs4947311-PSORS1C1, rs13134812-LOC391674, and rs17508585-CDK13-DT were identified as ACGEJ-specific susceptibility eQTLs. rs309483-LINC01355 was associated with the overall survival of ACGEJ patients. We explored functions of candidate eQTLs such as rs658524, rs309483, rs2240191, and rs4947311 by experimental validation. Conclusion: This study provides new risk loci for ACGEJ susceptibility and effective disease prognosis biomarkers.
Collapse
Affiliation(s)
- Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
20
|
Ghafouri-Fard S, Hussen BM, Shoorei H, Abak A, Poornajaf Y, Taheri M, Samadian M. Interactions between non-coding RNAs and HIF-1α in the context of cancer. Eur J Pharmacol 2023; 943:175535. [PMID: 36731723 DOI: 10.1016/j.ejphar.2023.175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a subunit of the HIF-1 transcription factor which is encoded by the HIF1A gene. This transcription factor is the main modulator of the cell response to hypoxia. Hypoxia-induced up-regulation of HIF-1α is involved in the pathogenesis of cancer. Recently, the interactions of several long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with HIF-1α have been reported. These ncRNAs regulate the expression of HIF-1α through different mechanisms. The regulatory roles of ncRNAs on HIF-1α are involved in the response of cancer cells to a wide range of anticancer drugs such as sorafenib, cisplatin, propofol, doxorubicin, and paclitaxel. Therefore, identification of the complex network between ncRNAs and HIF-1α not only facilitates the design of novel therapies but also promotes the efficacy of conventional anticancer treatments. This review aims to explain the interactions between these classes of ncRNAs and HIF-1α in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
22
|
Single-cell characterization revealed hypoxia-induced metabolic reprogramming of gastric cancer. Heliyon 2022; 8:e11866. [DOI: 10.1016/j.heliyon.2022.e11866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
|
23
|
Construction and Characterization of n6-Methyladenosine-Related lncRNA Prognostic Signature and Immune Cell Infiltration in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7495183. [PMID: 36213821 PMCID: PMC9536954 DOI: 10.1155/2022/7495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We extracted standard mRNA-sequencing and clinical data from the TCGA database. The prognostic risk model was obtained by Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases. Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for each patient and we divided all KIRC samples into high-risk and low-risk groups. Then, high- and low-risk subtypes were established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the entire sampled data set. The reliability of the prognostic model was confirmed by receiver operating characteristic curve analysis. Results. We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
The signature showed a better predictive ability than other clinical indicators, including tumor node metastasis classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages, mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related lncRNA prognostic signature.
Collapse
|
24
|
Wang Z, Liang X, Zhang H, Wang Z, Zhang X, Dai Z, Liu Z, Zhang J, Luo P, Li J, Cheng Q. Identification of a Hypoxia-Angiogenesis lncRNA Signature Participating in Immunosuppression in Gastric Cancer. J Immunol Res 2022; 2022:5209607. [PMID: 36052279 PMCID: PMC9427269 DOI: 10.1155/2022/5209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Hypoxia and angiogenesis are the leading causes of tumor progression, and their strong correlation has been discovered in many cancers. However, their collective function's prognostic and biological roles were not reported in gastric cancer. Hence, we aimed to investigate the effects of hypoxia and angiogenesis on gastric cancer via sequencing data. This study used weighted gene coexpression network analysis and random forest regression to build a hypoxia-angiogenesis-related model (HARM) via the TCGA-STAD lncRNA data. It estimated the HARM's correlation with clinical features and its accuracy for survival prediction. Sequential functional analyses were conducted to investigate its biological role, and we next sought the immune landscape status and immunological function variation by ESTIMATE score calculation and GSVA, respectively. Seven different algorithms were conducted to assess the immunocyte infiltration, and TIDE score and immune checkpoint levels were compared between the high- and low-HARM groups. As a result, we found that HARM predicted patient survival with high accuracy and was correlated with higher stages of gastric cancer. Various cancer-associated pathways and macrophage-related regulations were upregulated in the high-HRAM group. The high-HARM group harbored higher immune levels, and M2 macrophages and cancer-associated fibroblasts were particularly highly unfiltered. Furthermore, globally upregulated immune checkpoints and higher TIDE scores were observed in the high-HARM group. Finally, we filtered eight drugs with lower IC50 in the high-HARM group as potential drugs for the HARM-targeted therapy. We believe this study opens up novel perspectives into the interaction between hypoxia-angiogenesis and immunosuppression and will provide novel insights for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Zicheng Wang
- Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jiarong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
25
|
Luo Y, Li T, Zhao H, Chen A. A novel 7‑hypoxia‑related long non‑coding RNA signature associated with prognosis and proliferation in melanoma. Mol Med Rep 2022; 26:255. [PMID: 35703357 PMCID: PMC9218734 DOI: 10.3892/mmr.2022.12771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia‑related long non‑coding RNAs (lncRNAs) are important indicators of the poor prognosis of cancers. The present study aimed to explore the potential relationship between melanoma and hypoxia‑related lncRNAs. The transcriptome and clinical data of patients with melanoma were downloaded from The Cancer Genome Atlas database. The prognostic hypoxia‑related lncRNAs were screened out using Pearson's correlation test and univariate Cox analysis. As a result, a hypoxia‑related‑lncRNA signature based on the expression of 7 lncRNAs was constructed, with one unfavourable [MIR205 host gene (MIR205HG)] and six favourable (T cell receptor β variable 11‑2, HLA‑DQB1 antisense RNA 1, AL365361.1, AC004847.1, ubiquitin specific peptidase 30 antisense RNA 1 and AC022706.1) lncRNAs as prognostic factors for melanoma. Patients with melanoma were divided into high‑ and low‑risk groups based on the risk score obtained. Survival analyses were performed to assess the prognostic value of the present risk model. Potential tumour‑associated biological pathways associated with the present signature were explored using gene set enrichment analysis. The CIBERSORT algorithm demonstrated the important role of the hypoxia‑related lncRNAs in regulating tumour‑infiltrating immune cells. Clinical samples collected from our center partly confirmed our findings. Cell Counting Kit‑8 and flow cytometry assays indicated the suppression of proliferation of melanoma cells following inhibition of MIR205HG expression. Indicators of the canonical Wnt/β‑catenin signalling pathway were detected by western blotting. The present study demonstrated that MIR205HG could promote melanoma cell proliferation partly via the canonical Wnt/β‑catenin signalling pathway. These findings indicated a 7‑hypoxia‑related‑lncRNA signature that can serve as a novel predictor of melanoma prognosis.
Collapse
Affiliation(s)
- Yi Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hengguang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|
27
|
Jiang Y, Li X, Yang Y, Luo J, Ren X, Yuan J, Tong Q. LncRNA HOXC-AS1 Sponges miR-99a-3p and Upregulates MMP8, Ultimately Promoting Gastric Cancer. Cancers (Basel) 2022; 14:cancers14143534. [PMID: 35884594 PMCID: PMC9321533 DOI: 10.3390/cancers14143534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Long noncoding RNAs, including the HOXC Cluster Antisense RNA 1 (HOXC-AS1), are reported to be critical during the occurrence and progression of gastric cancer. We examined cells and tissues for the expression of HOXC-AS1 and correlated the expression levels with the disease specific survival of the gastric cancer patients. We also identified the interaction between HOXC-AS1 and miR-99a-3p, as well as matrix metalloproteinase 8 (MMP8) by dual-luciferase reporter gene assays. Western blot and qRT-PCR were conducted to verify the alteration in expression levels, while Cell Counting Kit-8 assay and colony formation assay were performed to explore the influences on gastric cancer cells. Overexpression of HOXC-AS1 would accordingly sponge greater quantities of miR-99a-3p, leading to the upregulation of MMP8, eventually facilitating the progress of gastric cancer. Abstract Gastric cancer (GC) is among the most lethal tumors worldwide. Long noncoding RNAs (lncRNAs) are reported to be critical during the occurrence and progression of malignancies. The HOXC cluster antisense RNA 1 (HOXC-AS1) has been suggested to participate in the genesis and development of GC. Therefore, we examined GC cells and tissues for the expression of HOXC-AS1 and correlated the expression levels with the disease specific survival of the patients, finding that HOXC-AS1 was overexpressed and probably had a tendency of leading to a poor prognosis. The Cell Counting Kit-8 assay and colony formation assay were then performed under knockdown of HOXC-AS1, revealing that cell proliferation of GC was distinctly decreased. Afterwards, miR-99a-3p was predicted to bind with HOXC-AS1 by DIANA tools. We carried out dual-luciferase reporter gene assays to identify the interaction between them. After knockdown of HOXC-AS1, miR-99a-3p was clearly overexpressed in GC cells. In addition, matrix metalloproteinase 8 (MMP8) was shown to be combined with miR-99a-3p using TargetScan. Similar experiments, along with western blot, were conducted to validate the correlation between miR-99a-3p and MMP8. Finally, rescue experiments for CCK-8 were completed, disclosing that HOXC-AS1 promoted cell progression of GC through sponging miR-99a-3p followed by subsequent upregulation of MMP8.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Yu Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Jiajun Luo
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
- Correspondence:
| |
Collapse
|
28
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|