1
|
Christodoulidis G, Agko SE, Koumarelas KE, Kouliou MN. Therapeutic strategies and prognostic challenges in linitis plastica. World J Exp Med 2025; 15:96318. [PMID: 40115754 PMCID: PMC11718587 DOI: 10.5493/wjem.v15.i1.96318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer ranks fifth as the most common cancer and third as the leading cause of death worldwide. Risk factors include advancing age, low-fiber diets, high salt intake and Helicobacter pylori infection. Diagnosis relies on histological examination following endoscopic biopsy with staging accomplished through various imaging modalities. Early gastric cancer is primarily managed via endoscopic resection, while non-early operable cases typically undergo surgery. Advanced cases are addressed through sequential chemotherapy lines, with initial treatment usually comprising a platinum and fluoropyrimidine combination. Linitis plastica (LP) is a rare, aggressive form of gastric cancer characterized by diffuse infiltration of the gastric wall, resulting in poor outcomes even after curative resection. The absence of a standardized definition contributes to uncertainty regarding the precise incidence of these tumors. LP is often diagnosed at advanced stages, with a reported median survival rate of approximately 4%-29%, despite "curative resection". Its distinctive biological behavior includes perineural invasion, nodal metastasis, and peritoneal dissemination. The bleak prognosis for LP patients partly stems from delayed diagnosis and its aggressive biological nature, posing significant challenges for clinical management. Currently, no specialized treatment strategy exists for LP, and clinical approaches typically align with those used for general gastric cancer treatment. Surgical resection is the primary treatment, but the optimal surgical approach remains contentious. Recent studies have investigated the efficacy of neoadjuvant chemotherapy and radiotherapy in improving survival outcomes for LP patients. However, controversies persist regarding the role of adjuvant chemotherapy and postoperative radiotherapy. LP requires a multidisciplinary approach and personalized treatment strategies tailored to each patient's condition. Further research is needed to elucidate optimal therapeutic interventions and improve outcomes for LP patients.
Collapse
Affiliation(s)
| | - Sara Eirini Agko
- Intensive Care Unit, Asklepios Paulinen Clinic Wiesbaden, Wiesbaden 65197, Germany
| | | | | |
Collapse
|
2
|
Martínez-Ciarpaglini C, Barros R, Caballero C, Boggino H, Alarcón-Molero L, Peleteiro B, Ruiz-García E, Fernandez-Figueroa E, Herrera-Goepfert R, Díaz-Romero C, Ferreira R, Groen-van Schooten TS, Gauna C, Pereira R, Cantero D, Lezcano H, Esteso F, O Connor J, Riquelme A, Owen GI, Garrido M, Roa JC, Ruiz-Pace F, Vivancos A, Diez-García M, Alsina M, Matito J, Martin A, Gómez M, Castillo E, Vila M, Santos-Antunes J, Costa A, Lordick F, Farrés J, Palomar-De Lucas B, Cabeza-Segura M, Villagrasa R, Jimenez-Martí E, Miralles-Marco A, Dienstmann R, Derks S, Figueiredo C, Cervantes A, Carneiro F, Fleitas-Kanonnikoff T. Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression. Gastric Cancer 2025; 28:160-173. [PMID: 39755998 PMCID: PMC11842524 DOI: 10.1007/s10120-024-01578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries. MATERIAL AND METHODS Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries. Formalin-fixed paraffin-embedded primary tumour endoscopic biopsy samples were collected and submitted for central morphological and immunohistochemical characterization and TP53 molecular assessment and Helicobacter pylori infection. RESULTS A total of 259 patients were included in the study: 137 (53%) from LATAM and 122 (47%) from Europe. Significant biological differences were detected between European and LATAM patients. Low representation of chromosomal instability (CIN) and HER2 positive cases were found in LATAM. MUC6 and PD-L1 were more frequently overexpressed in European cases, showing a significant correlation across the entire study population, with this association being especially pronounced in MMRdeficient cases. Both TP53 mutation by next-generation sequencing and p53 immunohistochemical aberrant pattern were linked with features associated with chromosomal instability. No regional differences were observed in H. pylori prevalence or abundance, indicating that the afore mentioned variations cannot be attributed to this factor. CONCLUSION Our findings underscore a need for region-specific approaches in gastroesophageal cancer diagnosis and treatment. MUC6 emerges as a putative immune regulator that needs further investigation. Research tailored to the unique biological profiles in different global regions is crucial to effectively address the observed disparities.
Collapse
Affiliation(s)
- Carolina Martínez-Ciarpaglini
- Department of Pathology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Rita Barros
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal
| | | | - Hugo Boggino
- Department of Pathology, GENPAT, Asunción, Paraguay
| | - Lorena Alarcón-Molero
- Department of Pathology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Valencia, Spain
- Department of Pathology, Hospital General de Valdepeñas, Valdepeñas, Spain
| | - Bárbara Peleteiro
- Hospital Epidemiology Center, University Hospital Center of São João, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Erika Ruiz-García
- Departamento de Tumores de Tubo Digestivo, Instituto Nacional de Cancerología, Mexico City, México
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, México
| | - Edith Fernandez-Figueroa
- Núcleo B de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Mexico City, México
| | | | - Consuelo Díaz-Romero
- Departamento de Oncología Médica, Instituto Nacional de Cancerología, Mexico City, México
| | - Rui Ferreira
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Microbes & Cancer. i3S, Instituto de Investigação e Inovação em Saúde, , Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tessa S Groen-van Schooten
- Department of Medical Oncology, Amsterdam University Medical Center (UMC) Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Cinthia Gauna
- Medical Oncology Department, Instituto de Previsión Social, Asunción, Paraguay
| | - Rita Pereira
- Medical Oncology Department, Instituto de Previsión Social, Asunción, Paraguay
| | - Daniel Cantero
- Department of Gastroenterology, Instituto de Previsión Social, Asunción, Paraguay
| | - Horacio Lezcano
- Pathology Department, Instituto de Previsión Social, Asunción, Paraguay
| | - Federico Esteso
- Medical Oncology Department, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Juan O Connor
- Medical Oncology Department, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Arnoldo Riquelme
- Department of Gastroenterology, Faculty of MedicineCenter for Prevention and Control of Cancer (CECAN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences & Faculty of Medicine, Millennium Institute for Immunology and ImmunotherapyCenter for Prevention and Control of Cancer (CECAN), Advance Center for Chronic Disease (ACCDIS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Garrido
- Centro de Oncología de Precisión, Universidad Mayor, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology. Faculty of Medicine. Pontificia, Universidad Católica de Chile Santiago, Santiago, Chile
| | - Fiorella Ruiz-Pace
- Oncology Data Science, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Marc Diez-García
- Medical Oncology Department, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Alsina
- Medical Oncology Department, Valld`Hebron Institute of Oncology, Barcelona, Spain
- Hospital Universitario de Navarra, Navarrabiomed-IdiSNA, Pamplona, Spain
| | - Judit Matito
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Agatha Martin
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Marina Gómez
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Ester Castillo
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vila
- Cancer Genomics Lab, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - João Santos-Antunes
- Department of Gastroenterology, Unidade Local de Saúde São João, Porto, Portugal
| | - Andreia Costa
- Department of Oncology, Unidade Local de Saúde São João, Porto, Portugal
| | - Florian Lordick
- Department of Medicine (Oncology, Gastroenterology, Hepatology, and Pulmonology), Comprehensive Cancer Center Central Germany (CCCG), University of Leipzig Medical Center, Leipzig, Germany
| | | | - Brenda Palomar-De Lucas
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain
| | - Manuel Cabeza-Segura
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain
| | - Rosanna Villagrasa
- Department of Gastroenterology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Elena Jimenez-Martí
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain
| | - Ana Miralles-Marco
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science, Valld`Hebron Institute of Oncology, Barcelona, Spain
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam University Medical Center (UMC) Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Ceu Figueiredo
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain
- Department of Gastroenterology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- CiberOnc. Carlos III Institute, Madrid, Spain
| | - Fátima Carneiro
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal
| | - Tania Fleitas-Kanonnikoff
- Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
| |
Collapse
|
3
|
Zhang XY, Hong LL, Ling ZQ. MUC16/CA125 in cancer: new advances. Clin Chim Acta 2025; 565:119981. [PMID: 39368688 DOI: 10.1016/j.cca.2024.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
MUC16/CA125 is a common diagnostic marker for many types of cancer. However, due to the widespread expression of MUC16 in cancer, its specificity and sensitivity as a target are poor, which severely limits its clinical application. In recent years, various studies have shown that the clinical application potential of MUC16/CA125 has been greatly improved. The update of detection technology improves the accuracy and range of detection, and improves the early diagnosis rate of cancer. Targeting MUC16/CA125 is an important strategy for tumor therapy. Targeting residual amino acids, n-glycoylation structures or other targets on the surface of MUC16 cells can greatly improve the accuracy of detection and therapy. The new drug delivery method broke through the original technical shackles, targeted MUC16 positive cells more specifically and improved the drug efficacy. In this paper, the technological advances in detecting and identifying MUC16 targets and the great progress in cancer screening and treatment based on MUC16 as a target are described in detail, revealing the great potential of MUC16 as a target in cancer screening and treatment, and illustrating the potential clinical application value of MUC16.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Hashimoto T, Nakamura Y, Mishima S, Nakayama I, Kotani D, Kawazoe A, Kuboki Y, Bando H, Kojima T, Iida N, Shibuki T, Imai M, Fujisawa T, Nagamine M, Sakamoto N, Kuwata T, Yoshino T, Shitara K. Whole-transcriptome sequencing in advanced gastric or gastroesophageal cancer: A deep dive into its clinical potential. Cancer Sci 2024; 115:1622-1633. [PMID: 38429886 DOI: 10.1111/cas.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024] Open
Abstract
Advanced gastric and gastroesophageal junction cancers (GC/GEJCs) harbor diverse molecular signatures, highlighting the need for intricate evaluations to identify potential therapeutic targets. Although whole-transcriptome sequencing (WTS) has emerged as a useful tool for understanding these molecular intricacies, its clinical implications have yet to be fully elucidated. This study evaluated the correlation between immunohistochemistry (IHC) and WTS, compared their clinical significance, and identified potential therapeutic targets undetectable through IHC alone. We enrolled 140 patients with advanced GC/GEJC and assessed them using IHC for six pivotal biomarkers: claudin-18 (CLDN18), human epidermal growth factor receptor 2 (HER2), multiple receptor tyrosine kinases (RTKs), and programmed death ligand 1 (PD-L1). Concurrently, WTS was employed as part of the analyses in MONSTAR-SCREEN-2, a multicenter multiomics study. IHC analysis revealed 16.4% HER2, 39.3% CLDN18 (2+/3 + ≥75%), and 15.8% PD-L1 (combined positive score ≥ 10) positivity, among other molecular markers. Significant correlations were observed between IHC and WTS for all six pivotal biomarkers. Among nineteen HER2 IHC-positive patients treated with anti-HER2 therapeutics, ERBB2 status in WTS was significantly associated with progression-free survival (ERBB2-high vs. -low: median 9.0 vs. 5.6 months, log-rank p = 0.046). IHC-based molecular profiling revealed significantly high expression of CLDN18 in RTK-negative patients, with 78.4% positive for either CLDN18 or PD-L1. Additionally, WTS revealed elevated expression of pivotal biomarkers in patients displaying negative targetable biomarkers via IHC. Our findings highlighted the significant correlation between IHC and WTS, reinforcing the clinical utility of WTS. A subset with IHC-negative but WTS-positive status may benefit from specific biomarker-targeted therapies.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Izuma Nakayama
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Michiko Nagamine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Pathology, Exploratory Oncology Research and Clinical Research Center, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
5
|
Gu Q, Mi L, Lai C, Guan X, Lu N, Zhan T, Wang G, Lu C, Xu L, Gao X, Zhang J. CPXM1 correlates to poor prognosis and immune cell infiltration in gastric cancer. Heliyon 2024; 10:e21909. [PMID: 38314284 PMCID: PMC10837494 DOI: 10.1016/j.heliyon.2023.e21909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 02/06/2024] Open
Abstract
Background Gastric cancer (GC) is the fourth most common cause of cancer-related death and the fifth most frequent malignant cancer, especially advanced GC. Carboxypeptidase X member 1 (CPXM1) is an epigenetic factor involved in many physiological processes, including osteoclast differentiation and adipogenesis. Several studies have shown the association of CPXM1 with multiple tumors; however, the mechanism of CPXM1 involvement in the progression of GC is yet to be characterized. Method CPXM1 expression data were obtained from the Tumor Immune Estimation Resource. The Cancer Genome Atlas and the Gene Expression Omnibus databases were used to obtain patient-matched clinicopathological information, and the Kaplan-Meier plot database was utilized for the prognosis analysis of GC patients. The Catalog of Somatic Mutations in Cancer and cBioportal databases were adopted to study CPXM1 mutations in tumors. Next, we utilized the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis for mechanism research. Furthermore, we performed tumor microenvironment and immune infiltration analysis based on CPXM1. Finally, we predicted sensitivity to several targeted drugs in GC patients based on CPXM1.CPXM1 is upregulated in GC and is correlated with poor prognosis, gender, and tumor stage in GC patients. Gene enrichment analysis suggested that CPXM1 may regulate the occurrence and progression of GC via the PI3K-AKT and TGF-β pathway. Moreover, CPXM1 expression results in an increase in the proportion of immune and stromal cells. Additionally, the proportion of plasma cells was inversely related to the expression of CPXM1, whereas macrophage M2 expression was proportionate to CPXM1 expression. Finally, six small-molecule drugs that showed notable variations in IC50 between two groups were screened. Conclusion These results suggested that CPXM1 regulates the progression of GC and may represent a novel target for the detection and treatment of GC.
Collapse
Affiliation(s)
- Qiou Gu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Lei Mi
- Department of Oncology, Yancheng First Hospital, Affilital Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, 66 Renmin South Road, Yancheng, Jiangsu, 210009, PR China
| | - Chuilin Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
6
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Samara M, Thodou E, Zacharoulis D. The Genomic Signatures of Linitis Plastica Signal the Entrance into a New Era: Novel Approaches for Diagnosis and Treatment. Int J Mol Sci 2023; 24:14680. [PMID: 37834127 PMCID: PMC10572839 DOI: 10.3390/ijms241914680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Linitis Plastica (LP) is a rare and aggressive tumor with a distinctive development pattern, leading to the infiltration of the gastric wall, the thickening of the gastric folds and a "leather bottle appearance". LP is an extremely heterogeneous tumor caused by mutations in oncogenic and tumor suppressive genes, as well as molecular pathways, along with mutations in stromal cells and proteins related to tight junctions. Elucidating the molecular background of tumorigenesis and clarifying the correlation between cancerous cells and stromal cells are crucial steps toward discovering novel diagnostic methods, biomarkers and therapeutic targets/agents. Surgery plays a pivotal role in LP management, serving both as a palliative and curative procedure. In this comprehensive review, we aim to present all recent data on the molecular background of LP and the novel approaches to its management.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (K.E.K.); (M.N.K.); (D.Z.)
| | - Konstantinos Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (K.E.K.); (M.N.K.); (D.Z.)
| | - Marina Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (K.E.K.); (M.N.K.); (D.Z.)
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (M.S.); (E.T.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (M.S.); (E.T.)
| | - Dimitris Zacharoulis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (K.E.K.); (M.N.K.); (D.Z.)
| |
Collapse
|
7
|
Wang Y, Wang P, Zhang Z, Zhou J, Fan J, Sun Y. Dissecting the tumor ecosystem of liver cancers in the single-cell era. Hepatol Commun 2023; 7:e0248. [PMID: 37639704 PMCID: PMC10461950 DOI: 10.1097/hc9.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023] Open
Abstract
Primary liver cancers (PLCs) are a broad class of malignancies that include HCC, intrahepatic cholangiocarcinoma, and combined hepatocellular and intrahepatic cholangiocarcinoma. PLCs are often associated with a poor prognosis due to their high relapse and low therapeutic response rates. Importantly, PLCs exist within a dynamic and complex tumor ecosystem, which includes malignant, immune, and stromal cells. It is critical to dissect the PLC tumor ecosystem to uncover the underlying mechanisms associated with tumorigenesis, relapse, and treatment resistance to facilitate the discovery of novel therapeutic targets. Single-cell and spatial multi-omics sequencing techniques offer an unprecedented opportunity to elucidate spatiotemporal interactions among heterogeneous cell types within the complex tumor ecosystem. In this review, we describe the latest advances in single-cell and spatial technologies and review their applications with respect to dissecting liver cancer tumor ecosystems.
Collapse
|
8
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|