1
|
Chhetri G, Jeon JM, Kim HJ, Choi TR, Yang YH, Yoon JJ. Characterization of Streptomyces species with poly(3-hydroxybutyrate) degradation capabilities isolated from rice field soil. Int J Biol Macromol 2025; 307:141795. [PMID: 40054796 DOI: 10.1016/j.ijbiomac.2025.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025]
Abstract
The shift towards sustainable alternatives to petroleum-based polymers has become essential for addressing environmental challenges. Among these alternatives, bio-plastics such as poly(3-hydroxybutyrate) (PHB) have gained considerable attention due to their biodegradability into water and carbon dioxide through microbial activity. PHB is one of the most widely commercialized bio-plastics. However, its excessive accumulation in the environment due to insufficient degradation remains a significant ecological concern. This study focused on isolating and characterizing PHB-degrading bacteria from soil samples collected from rice fields. Screening led to the identification of five PHB-degrading bacterial strains belonging to different genera. Among these, Streptomyces sp. AG7 and Streptomyces sp. RG41 were identified as the most effective PHB degraders. Their PHB-degrading abilities were evaluated in shake-flask cultures using PHB films as substrates. After 20 days of incubation at 37 °C, Streptomyces sp. AG7 and Streptomyces sp. RG41 achieved PHB degradation rates of approximately 74.7 % and 68.5 %, respectively. Additionally, both strains demonstrated the ability to produce indole-3-acetic acid (IAA), a key phytohormone that promotes plant growth, and exhibited phosphate-solubilizing activity, which enhances nutrient availability. Further analysis using scanning electron microscopy (SEM) revealed structural changes in the PHB films, while gel permeation chromatography (GPC) confirmed significant alterations in the polymer's molecular properties. These findings highlight the potential of utilizing soil-derived Streptomyces species for sustainable PHB waste management, in order to promote plant growth, improve soil fertility through phosphate solubilization, and contribute to agricultural sustainability.
Collapse
Affiliation(s)
- Geeta Chhetri
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jong-Min Jeon
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Hyun-Joong Kim
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Tae-Rim Choi
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Jun Yoon
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
| |
Collapse
|
2
|
Ullah M, Ma F, Yu H, Sun S, Xie S. Aromatics valorization to polyhydroxyalkanoate by the ligninolytic bacteria isolated from soil sample. Int J Biol Macromol 2025; 306:141654. [PMID: 40032105 DOI: 10.1016/j.ijbiomac.2025.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Polyhydroxyalkanoates (PHA) are ecofriendly alternatives to conventional plastics due to their biodegradable nature. However, the high production cost limits their applications. Exploring novel bacteria with ligninolytic potential would be crucial to advance cost-effective PHA synthesis. The current study aims to unveil soil bacteria capable of aromatics valorization to PHA. Considering this, six aromatics resistance bacteria from a soil sample were isolated through culture acclimatization strategy and their growth was analyzed in various lignin model compounds. Ralstonia sp. BPSS-1 and Arthrobacter sp. BPSS-3 presented high-cell-densities in 4-hydroxybenzoic acid (4-HBA) and benzoate, respectively. Fluorescence microscopy confirmed the strains to be PHA positive and were subsequently evaluated for PHA synthesis from 4-HBA and benzoate at a concentration of 2 g L-1 in a nitrogen-limited M9 medium. However, applying a co-feeding strategy by the integration of 4-HBA and benzoate further increased the substrates consumption efficiency, biomass and PHA titer compared to single carbon sources. The maximum dry cell weight (DCW) and PHA yield by Ralstonia sp. BPSS-1 through the substrate co-feeding under optimized fermentation conditions was 0.69 ± 0.03, and 0.4 ± 0.02 g L-1, respectively. The draft genome analysis confirmed the genes involved in aromatic degradation. Besides, the proposed metabolic pathway was validated by studying the expression level of key genes, analyzing key intermediates and associated enzymes activities. The FTIR, 1H NMR and GC-MS determined the PHA functional group, chemical structure and monomers analysis, respectively. Overall, the current study highlighted the aromatic valorization potential of newly isolated PHA producing bacteria for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Su Sun
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Vega-Celedón P, Castillo-Novales D, Bravo G, Cárdenas F, Romero-Silva MJ, Seeger M. Synthesis and Degradation of the Phytohormone Indole-3-Acetic Acid by the Versatile Bacterium Paraburkholderia xenovorans LB400 and Its Growth Promotion of Nicotiana tabacum Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:3533. [PMID: 39771231 PMCID: PMC11676955 DOI: 10.3390/plants13243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400, and its growth promotion of the Nicotiana tabacum plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed. RT-PCR analysis indicates that under these conditions, strain LB400 expressed the ipdC gene, which encodes indole-3-pyruvate decarboxylase, suggesting that IAA biosynthesis proceeds through the indole-3-pyruvate pathway. In addition, strain LB400 degraded IAA and grew on IAA as a sole carbon and energy source. Strain LB400 expressed the iacC and catA genes, which encode the α subunit of the aromatic-ring-hydroxylating dioxygenase in the IAA catabolic pathway and the catechol 1,2-dioxygenase, respectively, which may suggest a peripheral IAA pathway leading to the central catechol pathway. Notably, P. xenovorans LB400 promoted the growth of tobacco seedlings, increasing the number and the length of the roots. In conclusion, this study indicates that the versatile bacterium P. xenovorans LB400 is a PGPB.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Franco Cárdenas
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - María José Romero-Silva
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
4
|
Ahuja V, Singh PK, Mahata C, Jeon JM, Kumar G, Yang YH, Bhatia SK. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater. Microb Cell Fact 2024; 23:187. [PMID: 38951813 PMCID: PMC11218116 DOI: 10.1186/s12934-024-02430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Chandan Mahata
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana- Champaign, 1304 W. Pennsylvania Avenue, Urbana, 61801, USA
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600, Forus, Stavanger, 4036, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Chhetri G, Kim I, Kim J, So Y, Park S, Jung Y, Seo T. Paraburkholderia tagetis sp. nov., a novel species isolated from roots of Tagetes patula enhances the growth and yield of Solanum lycopersicum L. (tomato). Front Microbiol 2023; 14:1140484. [PMID: 37082173 PMCID: PMC10110911 DOI: 10.3389/fmicb.2023.1140484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
A multifunctional, Gram-stain-negative, aerobic, motile by flagella, short-rod shaped bacteria, designated strain RG36T was isolated from roots of marigold plant (Tagetes patula) sampled at Dongguk University, Republic of Korea. A 16S rRNA sequences indicated that the closest phylogenetic neighbors were Paraburkholderia acidiphila 7Q-K02T (99.0%) and Paraburkholderia sacchari IPT101T (98.9%) of the family Burkholderiaceae. The draft genome size was 8.52 Mb (63.7% GC). The genome contained 7,381 coding sequences. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of strain RG36T with its most closely related species were only 83.1-88.7 and 27.6-36.7%, respectively. Strain RG36T contained Q-8 as the major respiratory quinone and its main fatty acids (>10%) were C16:0, C17:0 cyclo, C19:0 cyclo ω8c, and summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c). Strain RG36T accumulates polyhydroxybutyrates (PHB) and exhibits multiple plant growth-promoting properties including production of indole-3-acetic acid (IAA), siderophores, protease, phosphate solubilization, and harboring gene clusters for its multifunctional properties. A pot experiment was conducted to evaluate the effect of PGPR on the growth of Solanum lycopersicum L. (Tomato). Result also confirmed the ability of strain RG36T to promote tomato plant growth, especially it increases the yield of tomatoes. Structural assessment of the bioplastic by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and GC-MS spectroscopy, which confirmed the structure of the polymer as PHB. Our study revealed the potential of strain RG36T to promote the growth of tomato plant and fruit yield by stimulating the various phytohormones, which could be use as bio-fertilizers to reduce the use of chemical fertilizers and promotes sustainable agricultural production. The phenotypic, chemotaxonomic and phylogenetic data, and genome analysis showed that strain RG36T represents a novel species of the genus Paraburkholderia, for which the name Paraburkholderia tagetis sp. nov. is proposed. The type strain is RG36T (=KACC 22685T = TBRC 15696T).
Collapse
|
6
|
Sanz D, Díaz E. Genetic characterization of the cyclohexane carboxylate degradation pathway in the denitrifying bacterium Aromatoleum sp. CIB. Environ Microbiol 2022; 24:4987-5004. [PMID: 35768954 PMCID: PMC9795900 DOI: 10.1111/1462-2920.16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
The alicyclic compound cyclohexane carboxylate (CHC) is anaerobically degraded through a peripheral pathway that converges with the central benzoyl-CoA degradation pathway of aromatic compounds in Rhodopseudomonas palustris (bad pathway) and some strictly anaerobic bacteria. Here we show that in denitrifying bacteria, e.g. Aromatoleum sp. CIB strain, CHC is degraded through a bad-ali pathway similar to that reported in R. palustris but that does not share common intermediates with the benzoyl-CoA degradation pathway (bzd pathway) of this bacterium. The bad-ali genes are also involved in the aerobic degradation of CHC in strain CIB, and orthologous bad-ali clusters have been identified in the genomes of a wide variety of bacteria. Expression of bad-ali genes in strain CIB is under control of the BadR transcriptional repressor, which was shown to recognize CHC-CoA, the first intermediate of the pathway, as effector, and whose operator region (CAAN4 TTG) was conserved in bad-ali clusters from Gram-negative bacteria. The bad-ali and bzd pathways generate pimelyl-CoA and 3-hydroxypimelyl-CoA, respectively, that are metabolized through a common aab pathway whose genetic determinants form a supraoperonic clustering with the bad-ali genes. A synthetic bad-ali-aab catabolic module was engineered and it was shown to confer CHC degradation abilities to different bacterial hosts.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
7
|
Méndez V, Rodríguez-Castro L, Durán RE, Padrón G, Seeger M. The OxyR and SoxR transcriptional regulators are involved in a broad oxidative stress response in Paraburkholderia xenovorans LB400. Biol Res 2022; 55:7. [PMID: 35184754 PMCID: PMC8859910 DOI: 10.1186/s40659-022-00373-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H2O2. Methods Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZoxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H2O2. The effects of these oxidants on gene expression (qRT-PCR) and the proteome (LC–MS/MS) were quantified. Results P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR, ahpC, ahpF, kat, trxB, dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli. The LB400 genome also harbors the soxR, fumC, acnA, sodB, fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli. The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa ΔsoxR. Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR, ahpC1, katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR, fumC, ahpC1, sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR-regulated antioxidant response. Conclusions This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00373-7.
Collapse
|
8
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
9
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
10
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
11
|
Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech 2020; 10:549. [PMID: 33269183 DOI: 10.1007/s13205-020-02550-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) is the most promising solution to major ecological problem of plastic accumulation. The biodegradable and biocompatible properties of PHA make it highly demanding in the biomedical and agricultural field. The limited market share of PHA industries despite having tremendous demand as concerned with environment has led to knock the doors of scientific research for finding ways for the economic production of PHA. Therefore, new methods of its production have been applied such as using a wide variety of feedstock like organic wastes and modifying PHA synthesizing enzyme at molecular level. Modifying metabolic pathways for PHA production using new emerging techniques like CRISPR/Cas9 technology has simplified the process spending less amount of time. Using green solvents under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants and even digestion of non-PHA biomass by animals are some novel strategies for PHA recovery which play an important role in sustainable production of PHA. Hence, this review provides a view of recent applications, significance of PHA and new methods used for its production which are missing in the available literature.
Collapse
|
12
|
Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111091. [DOI: 10.1016/j.msec.2020.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
|
13
|
Sanhueza C, Diaz-Rodriguez P, Villegas P, González Á, Seeger M, Suárez-González J, Concheiro A, Alvarez-Lorenzo C, Acevedo F. Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. Int J Biol Macromol 2020; 152:11-20. [DOI: 10.1016/j.ijbiomac.2020.02.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
|
14
|
Poly hydroxyalkanoates (PHA): Role in bone scaffolds. J Oral Biol Craniofac Res 2019; 10:389-392. [PMID: 31754599 DOI: 10.1016/j.jobcr.2019.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are prokaryotic macromolecules accumulated within the cytoplasm as granules. Due to their suitable mechanical properties, biocompatibility, degradation time, ability to be blended, surface modified, and form copolymers, it is widely used in medical devices and as scaffolds in bone tissue engineering. This review describes in brief the production and extraction sources, physico-chemical characteristic, mechanical properties, degradation rate and applications of various PHAs and its copolymers with special emphasis to its role as scaffolds in bone tissue engineering.
Collapse
|
15
|
Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 2019; 124:102-110. [DOI: 10.1016/j.ijbiomac.2018.11.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
|