1
|
Fukui K, Kondo N, Murakawa T, Baba S, Kumasaka T, Yano T. dUTP pyrophosphatases from hyperthermophilic eubacterium and archaeon: Structural and functional examinations on the suitability for PCR application. Protein Sci 2024; 33:e5185. [PMID: 39440877 PMCID: PMC11497495 DOI: 10.1002/pro.5185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Deoxyuridine triphosphate pyrophosphatase (DUT) suppresses incorporation of uracil into genomic DNA during replication. Thermostable DUTs from hyperthermophilic archaea such as Thermococcus pacificus enhance PCR amplification by preventing misincorporation of dUTP generated by spontaneous deamination of dCTP. However, it is necessary to elucidate whether DUTs do not cause dNTP imbalances during PCR by unwanted side activity. Moreover, it has been unknown what structural features define the thermostability of those DUTs. Here, DUT from a hyperthermophilic eubacterium, Aquifex aeolicus (Aa-DUT), was characterized together with those from T. pacificus (Tp-DUT). Aa-DUT was as thermostable as Tp-DUT up to at least 95°C. The crystal structures of the two thermostable enzymes were determined, which revealed that the structures of Aa-DUT and Tp-DUT resembled those of monofunctional and bifunctional DUTs, respectively. Generally, bifunctional DUTs harbor the dCTP deaminase activity in addition to the DUT activity. However, not only Aa-DUT but also Tp-DUT showed poor activity towards dCTP, indicating both enzymes are monofunctional. We further examined eight types of parameters related to thermostability of protein structure and found that the thermostability of Aa-DUT and Tp-DUT might be accomplished by increased numbers of ion pairs on the protein surface. Finally, we verified that Aa-DUT promoted PCR amplification with Pfu DNA polymerase to the same extent as Tp-DUT. Collectively, we conclude that both DUTs from hyperthermophiles maintain the enzymatic activity at high temperatures without consuming dCTP due to the lack of the deaminate activity.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Naoyuki Kondo
- Department of Molecular GeneticsInstitute of Biomedical Science, Kansai Medical UniversityHirakataOsakaJapan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Seiki Baba
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takashi Kumasaka
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takato Yano
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
2
|
Li Y, Yang X, Gao R. Thermophilic Inorganic Pyrophosphatase Ton1914 from Thermococcus onnurineus NA1 Removes the Inhibitory Effect of Pyrophosphate. Int J Mol Sci 2022; 23:ijms232112735. [PMID: 36361526 PMCID: PMC9653972 DOI: 10.3390/ijms232112735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Pyrophosphate (PPi) is a byproduct of over 120 biosynthetic reactions, and an overabundance of PPi can inhibit industrial synthesis. Pyrophosphatases (PPases) can effectively hydrolyze pyrophosphate to remove the inhibitory effect of pyrophosphate. In the present work, a thermophilic alkaline inorganic pyrophosphatase from Thermococcus onnurineus NA1 was studied. The optimum pH and temperature of Ton1914 were 9.0 and 80 °C, respectively, and the half-life was 52 h at 70 °C and 2.5 h at 90 °C. Ton1914 showed excellent thermal stability, and its relative enzyme activity, when incubated in Tris-HCl 9.0 containing 1.6 mM Mg2+ at 90 °C for 5 h, was still 100%, which was much higher than the control, whose relative activity was only 37%. Real-time quantitative PCR (qPCR) results showed that the promotion of Ton1914 on long-chain DNA was more efficient than that on short-chain DNA when the same concentration of templates was supplemented. The yield of long-chain products was increased by 32-41%, while that of short-chain DNA was only improved by 9.5-15%. Ton1914 also increased the yields of UDP-glucose and UDP-galactose enzymatic synthesis from 40.1% to 84.8% and 20.9% to 35.4%, respectively. These findings suggested that Ton1914 has considerable potential for industrial applications.
Collapse
Affiliation(s)
| | | | - Renjun Gao
- Correspondence: ; Tel.: +86-186-0431-3058
| |
Collapse
|
3
|
Guo J, Chen Q, Lam CWK, Wang C, Wong VKW, Xu F, Jiang Z, Zhang W. Application of artificial neural network to investigate the effects of 5-fluorouracil on ribonucleotides and deoxyribonucleotides in HepG2 cells. Sci Rep 2015; 5:16861. [PMID: 26578061 PMCID: PMC4649619 DOI: 10.1038/srep16861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022] Open
Abstract
Endogenous ribonucleotides and deoxyribonucleotides are essential metabolites that play important roles in a broad range of key cellular functions. Their intracellular levels could also reflect the action of nucleoside analogues. We investigated the effects of 5-fluorouracil (5-FU) on ribonucleotide and deoxyribonucleotide pool sizes in cells upon exposure to 5-FU for different durations. Unsupervised and supervised artificial neural networks were compared for comprehensive analysis of global responses to 5-FU. As expected, deoxyuridine monophosphate (dUMP) increased after 5-FU incubation due to the inhibition of thymine monophosphate (TMP) synthesis. Interestingly, the accumulation of dUMP could not lead to increased levels of deoxyuridine triphosphate (dUTP) and deoxyuridine diphosphate (dUDP). After the initial fall in intracellular deoxythymidine triphosphate (TTP) concentration, its level recovered and increased from 48 h exposure to 5-FU, although deoxythymidine diphosphate (TDP) and TMP continued to decrease compared with the control group. These findings suggest 5-FU treatment caused unexpected changes in intracellular purine polls, such as increases in deoxyadenosine triphosphate (dATP), adenosine-triphosphate (ATP), guanosine triphosphate (GTP) pools. Further elucidation of the mechanism of action of 5-FU in causing these changes should enhance development of strategies that will increase the anticancer activity of 5-FU while decreasing its resistance.
Collapse
Affiliation(s)
- Jianru Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - QianQian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China
| | - ZhiHong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
4
|
Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR. Biotechnol Lett 2013; 36:985-92. [DOI: 10.1007/s10529-013-1441-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
5
|
Cho SS, Sun Y, Yu M, Kwon SH, Kwon ST. Characterization and PCR applications of dUTPase from the hyperthermophilic euryarchaeon Thermococcus pacificus. Enzyme Microb Technol 2012; 51:342-7. [DOI: 10.1016/j.enzmictec.2012.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
|
6
|
Hileman TH, Santangelo TJ. Genetics Techniques for Thermococcus kodakarensis. Front Microbiol 2012; 3:195. [PMID: 22701112 PMCID: PMC3370424 DOI: 10.3389/fmicb.2012.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is derived largely from the natural competence of T. kodakarensis and the comprehensive, rapid, and facile techniques available for manipulation of the T. kodakarensis genome. These genetic capacities are complemented by robust planktonic growth, simple selections, and screens, defined in vitro transcription and translation systems, replicative expression plasmids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory mechanisms underlying T. kodakarensis metabolism. Here we review the existing techniques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a universal platform to generate the first comprehensive deletion and epitope/affinity tagged archaeal strain libraries.
Collapse
Affiliation(s)
- Travis H Hileman
- Department of Microbiology, Center for RNA Biology, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
7
|
Structure and activity of the Saccharomyces cerevisiae dUTP pyrophosphatase DUT1, an essential housekeeping enzyme. Biochem J 2011; 437:243-53. [PMID: 21548881 DOI: 10.1042/bj20110304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genomes of all free-living organisms encode the enzyme dUTPase (dUTP pyrophosphatase), which plays a key role in preventing uracil incorporation into DNA. In the present paper, we describe the biochemical and structural characterization of DUT1 (Saccharomyces cerevisiae dUTPase). The hydrolysis of dUTP by DUT1 was strictly dependent on a bivalent metal cation with significant activity observed in the presence of Mg2+, Co2+, Mn2+, Ni2+ or Zn2+. In addition, DUT1 showed a significant activity against another potentially mutagenic nucleotide: dITP. With both substrates, DUT1 demonstrated a sigmoidal saturation curve, suggesting a positive co-operativity between the subunits. The crystal structure of DUT1 was solved at 2 Å resolution (1 Å=0.1 nm) in an apo state and in complex with the non-hydrolysable substrate α,β-imido dUTP or dUMP product. Alanine-replacement mutagenesis of the active-site residues revealed seven residues important for activity including the conserved triad Asp87/Arg137/Asp85. The Y88A mutant protein was equally active against both dUTP and UTP, indicating that this conserved tyrosine residue is responsible for discrimination against ribonucleotides. The structure of DUT1 and site-directed mutagenesis support a role of the conserved Phe142 in the interaction with the uracil base. Our work provides further insight into the molecular mechanisms of substrate selectivity and catalysis of dUTPases.
Collapse
|
8
|
Facilitation of polymerase chain reaction with thermostable inorganic pyrophosphatase from hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 2009; 85:807-12. [DOI: 10.1007/s00253-009-2314-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/11/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
9
|
Characterization of a dITPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in PCR amplification. Appl Microbiol Biotechnol 2008; 79:571-8. [PMID: 18438658 DOI: 10.1007/s00253-008-1467-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/19/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
Abstract
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.
Collapse
|