1
|
Zhu S, Li A, Yang H, Li Y, Wang W, Li J, Liu S, Xing R, Li P, Li K. Immunomodulatory activity of single chitooligosaccharides in LPS-induced RAW264.7 cells and endotoxemia mice. Carbohydr Res 2025; 553:109523. [PMID: 40359661 DOI: 10.1016/j.carres.2025.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Chitooligosaccharides is a green and non-toxic amino sugar, and its immunomodulatory activity has attracted much attention in recent years. However, most of the test samples in the existing chitooligosaccharides activity studies are mixtures, and the immunomodulatory structure-activity relationship is difficult to understand. In the present study, we successfully isolated five single chitooligosaccharides from dimer to hexamer by ion-exchange chromatography, and further investigated the size effects of chitooligosaccharides on its immunomodulatory activity. In vitro experiments showed that chitooligosaccharides with higher degree of polymerization (DP) show stronger inhibitory effect on lipopolysaccharide (LPS)-induced NO release in RAW264.7 macrophages. The high DP chitooligosaccharides were further selected for in vivo experiments. The results suggested that in LPS-induced endotoxemia model mice, chitooligosaccharides tetramer (D4), pentamer (D5) and hexamer (D6) significantly restored serum levels of alanine aminotransferase (ALT) and creatinine (CREA), while concurrently elevating pro-inflammatory cytokines (IL-1β, IFN-γ) and upregulating anti-inflammatory IL-10 expression, revealing bidirectional immunoregulatory capabilities. Moreover, these three high DP chitooligosaccharides were also effective in protecting the intestinal villus structure and attenuating hepatic and renal injuries.
Collapse
Affiliation(s)
- Siqi Zhu
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Sciences College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Anbang Li
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Marine Sciences College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haoyue Yang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yupeng Li
- Marine Life College, Ocean University of China, Qingdao, 266100, China
| | - Wenjie Wang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingwen Li
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Song Liu
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ronge Xing
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Pengcheng Li
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Kecheng Li
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Characterization of effects of chitooligosaccharide monomer addition on immunomodulatory activity in macrophages. Food Res Int 2023; 163:112268. [PMID: 36596179 DOI: 10.1016/j.foodres.2022.112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The present study aimed to investigate the effects of five chitooligosaccharide monomers of different molecular weights on immunomodulatory activity in macrophage-like RAW264.7 cells. The incubation of various chitooligosaccharide monomers enhanced phagocytosis and pinocytosis activity toward Staphylococcus aureus and Escherichia coli in RAW264.7 cells. The incorporation of chitooligosaccharide monomers significantly boosted the generation of reactive oxygen species and reactive nitrogen species, as well as the release of inflammatory cytokines. To further explore the mechanism of inflammation regulated by chitooligosaccharide, the activation inhibitors of NF-кB (CAPE) and TLR-4 (TAK-242) were utilized, the determination data demonstrated that chitobiose suppressed the expression of inflammatory cytokines and NF-кB p65. In addition, the investigation results revealed that the presence of the mannose receptor inhibitor (mannan) suppressed chitohexaose-induced phagocytic activity and inflammatory cytokines. These results suggested that the five distinct chitooligosaccharide monomers had inconsistent effects, the chitobiose and chitohexaose exhibiting the best biological activity in activating RAW264.7 cells, promoting cell proliferation, and increasing non-specific immunity.
Collapse
|
3
|
Sasidharan A, Sabu S, Venugopal V. Marine polymers and their antioxidative perspective. MARINE ANTIOXIDANTS 2023:379-393. [DOI: 10.1016/b978-0-323-95086-2.00031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Ling M, Wu Y, Tian R, Liu Y, Yu W, Tao G, Lv X, Li J, Du G, Amaro RL, Liu L. Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metab Eng 2022; 70:55-66. [PMID: 35033656 DOI: 10.1016/j.ymben.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.
Collapse
Affiliation(s)
- Meixi Ling
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens. Poult Sci 2022; 101:101701. [PMID: 35150943 PMCID: PMC8844238 DOI: 10.1016/j.psj.2022.101701] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of chitooligosaccharide (COS) on intestinal barrier, antioxidant capacity, and immunity of lipopolysaccharide (LPS)-challenged laying hens. A total of 360 Hy-line Brown laying hens (80-wk-old) were randomly divided into 5 groups with 6 replicates of 12 birds. Hens were fed a corn-soybean meal basal diet supplemented with different COS levels (0; 5; 10; 15; 20 mg/kg) for 8 wk. The results showed that 15 mg/kg COS administration elevated albumen height and Haugh unit (P < 0.05), and numerically optimized productive performance (P > 0.05), therefore, the dosage of 15 mg/kg was chosen for the subsequent experiment. Thereafter, 12 birds from non-supplemented group were randomly selected and assigned into 2 groups, and birds in each group were administered (1.5 mg/kg BW, i.p.) with saline (control group) or LPS (challenge group). Another 6 hens from 15 mg/kg COS-supplemented group were selected and injected with LPS in the same way. Compared with the control group, LPS-challenged birds exhibited elevated circulating diamine oxidase activity, and reduced jejunal villus height and ratio of villus height to crypt depth, and these indices were reversed to control levels by COS (P < 0.05). Also, LPS increased malondialdehyde accumulation and reduced several antioxidant enzyme activities in the intestinal mucosa (P < 0.05). Additionally, LPS increased jejunal secretory IgA and interferon-γ (IFN-γ), and ileal secretory IgA, IgM, and interleukin-1β (IL-1β) concentrations, whereas COS reduced jejunal IFN-γ and IL-1β, and ileal IgM levels (P < 0.05). Moreover, LPS down-regulated mRNA abundance of jejunal occludin and claudin 2, and upregulated expression of jejunal nuclear factor erythroid-2 related factor 2, superoxide dismutase 1, and IFN-γ as well as ileal IL-1β (P < 0.05). Besides, COS increased jejunal occludin and ileal claudin 2, nuclear factor erythroid-2 related factor 2, and heme oxygenase-1 expression, and decreased jejunal IFN-γ and IL-1β abundance (P < 0.05). These results suggested that COS could alleviate LPS-induced intestinal barrier impairment, and oxidative and immunological stress in laying hens.
Collapse
Affiliation(s)
- Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - R Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
6
|
Dantas JMDM, Araújo NKD, Silva NSD, Torres-Rêgo M, Furtado AA, Assis CFD, Araújo RM, Teixeira JA, Ferreira LDS, Fernandes-Pedrosa MDF, Dos Santos ES. Purification of chitosanases produced by Bacillus toyonensis CCT 7899 and functional oligosaccharides production. Prep Biochem Biotechnol 2021; 52:443-451. [PMID: 34370621 DOI: 10.1080/10826068.2021.1961273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chitooligosaccharides (COS) have a great potential to be used by pharmaceutical industry due to their many biological activities. The use of enzymes to produce them is very advantageous, however it still faces many challenges, such as discovering new strains capable to produce enzymes that are able to generate bioactive oligosaccharides. In the present study a purification protein protocol was performed to purify chitosanases produced by Bacillus toyonensis CCT 7899 for further chitosan hydrolysis. The produced chitooligosaccharides were characterized by mass spectroscopy (MS) and their antiedematogenic effect was investigated through carrageenan-induced paw edema model. The animals were treated previously to inflammation by intragastric route with COS at 30, 300 and 600 mg/kg. The purification protocol showed a good performance for the chitosanases purification using 0.20 M NaCl solution to elute it, with a 9.54-fold purification factor. The treatment with COS promoted a decrease of paw edema at all evaluated times and the AUC0-4h, proving that COS produced showed activity in acute inflammation like commercial anti-inflammatory Dexamethasone (corticosteroid). Therefore, the strategy used to purification was successfully applied and it was possible to generate bioactive oligosaccharides with potential pharmacological use.
Collapse
Affiliation(s)
| | | | | | - Manoela Torres-Rêgo
- Department of Phamarcy, Federal University of Rio Grande do Norte, Natal, Brazil.,Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Everaldo Silvino Dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Hao W, Li K, Ma Y, Li R, Xing R, Yu H, Li P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar Drugs 2021; 19:md19070366. [PMID: 34201994 PMCID: PMC8305433 DOI: 10.3390/md19070366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
As a popular marine saccharide, chitooligosaccharides (COS) has been proven to have good antioxidant activity. Its antioxidant effect is closely related to its degree of polymerization, degree of acetylation and sequence. However, the specific structure-activity relationship remains unclear. In this study, three chitosan dimers with different sequences were obtained by the separation and enzymatic method, and the antioxidant activity of all four chitosan dimers were studied. The effect of COS sequence on its antioxidant activity was revealed for the first time. The amino group at the reducing end plays a vital role in scavenging superoxide radicals and in the reducing power of the chitosan dimer. At the same time, we found that the fully deacetylated chitosan dimer DD showed the strongest DPPH scavenging activity. When the amino groups of the chitosan dimer were acetylated, it showed better activity in scavenging hydroxyl radicals. Research on COS sequences opens up a new path for the study of COS, and is more conducive to the investigation of its mechanism.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Yuzhen Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
9
|
da Silva NS, Araújo NK, Daniele-Silva A, Oliveira JWDF, de Medeiros JM, Araújo RM, Ferreira LDS, Rocha HAO, Silva-Junior AA, Silva MS, Fernandes-Pedrosa MDF. Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Mar Drugs 2021; 19:md19020110. [PMID: 33673266 PMCID: PMC7917997 DOI: 10.3390/md19020110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise of infectious disease outbreaks and the progression of microbial resistance reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan, chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicrobial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still scarce. The objectives of this study were the enzymatic production, characterization, and in vitro evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition, COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibition. Scanning electron microscopy images indicated a parasite aggregation ability of COSs. Thus, the broad biological effect of COSs makes them a promising molecule for the biomedical industry.
Collapse
Affiliation(s)
- Nayara Sousa da Silva
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Nathália Kelly Araújo
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Alessandra Daniele-Silva
- Postgraduate Program in Development and Technological Innovation in Medicines, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | | | - Júlia Maria de Medeiros
- Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Renata Mendonça Araújo
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | | | - Arnóbio Antônio Silva-Junior
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
| | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, University of Nova Lisboa, 1099-085 Lisbon, Portugal
| | - Matheus de Freitas Fernandes-Pedrosa
- Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (N.K.A.); (L.D.S.F.); (A.A.S.-J.)
- Correspondence: ; Tel.: +55-84-3342-9820
| |
Collapse
|
10
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
11
|
Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Biotechnol Lett 2020; 42:2453-2466. [DOI: 10.1007/s10529-020-02982-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/08/2020] [Indexed: 01/25/2023]
|
12
|
Ivanova DG, Yaneva ZL. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. Biores Open Access 2020; 9:64-72. [PMID: 32219012 PMCID: PMC7097683 DOI: 10.1089/biores.2019.0028] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many studies have shown that mitochondrial metabolism has a fundamental role in induction of carcinogenesis due to the influence of increased levels of reactive oxygen species (ROS) generation in all steps of oncogene transformation and cancer progression. It is widely accepted that the anticancer effect of conventional anticancer drugs is due to induction of oxidative stress and elevated intracellular levels of ROS, which alter the redox homeostasis of cancer cells. On the other hand, the harmful side effects of conventional anticancer chemotherapeutics are also due to increased production of ROS and disruption of redox homeostasis of normal cells and tissues. Therefore, there is a growing interest toward the development of natural antioxidant compounds from various sources, which could impact the redox state of cancer and normal cells by different pathways and could prevent damage from oxidant-mediated reactions. It is known that chitosan exhibits versatile biological properties, including biodegradability, biocompatibility, and a less toxic nature. Because of its antioxidant, antibacterial, anticancer, anti-inflammatory, and immunostimulatory activities, the biopolymer has been used in a wide variety of pharmaceutical, biomedical, food industry, health, and agricultural applications and has been classified as a new physiologically bioactive material.
Collapse
Affiliation(s)
- Donika G. Ivanova
- Department of Pharmacology, Animal Physiology and Physiology Chemistry, Trakia University, Stara Zagora, Bulgaria
| | - Zvezdelina L. Yaneva
- Department of Pharmacology, Animal Physiology and Physiology Chemistry, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
13
|
Ma C, Li X, Yang K, Li S. Characterization of a New Chitosanase from a Marine Bacillus sp. and the Anti-Oxidant Activity of Its Hydrolysate. Mar Drugs 2020; 18:md18020126. [PMID: 32092959 PMCID: PMC7073567 DOI: 10.3390/md18020126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.
Collapse
|
14
|
Wang Q, Jiang Y, Luo X, Wang C, Wang N, He H, Zhang T, Chen L. Chitooligosaccharides Modulate Glucose-Lipid Metabolism by Suppressing SMYD3 Pathways and Regulating Gut Microflora. Mar Drugs 2020; 18:md18010069. [PMID: 31968646 PMCID: PMC7024377 DOI: 10.3390/md18010069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Chitooligosaccharides (COS) have a variety of biological activities due to their positively charged amino groups. Studies have shown that COS have antidiabetic effects, but their molecular mechanism has not been fully elucidated. The present study confirmed that COS can reduce hyperglycemia and hyperlipidemia, prevent obesity, and enhance histological changes in the livers of mice with type 2 diabetes mellitus (T2DM). Additionally, treatment with COS can modulate the composition of the gut microbiota in the colon by altering the abundance of Firmicutes, Bacteroidetes, and Proteobacteria. Furthermore, in T2DM mice, treatment with COS can upregulate the cholesterol-degrading enzymes cholesterol 7-alpha-hydroxylase (CYP7A1) and incretin glucagon-like peptide 1 (GLP-1) while specifically inhibiting the transcription and expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the key enzyme in cholesterol synthesis. Furthermore, using an oleic acid-induced hepatocyte steatosis model, we found that HMGCR can be directly transactivated by SET and MYND domain containing 3 (SMYD3), a transcriptional regulator, via 5'-CCCTCC-3' element in the promoter. Overexpression of SMYD3 can suppress the inhibitory effect of COS on HMGCR, and COS might regulate HMGCR by inhibiting SMYD3, thereby exerting hypolipidemic functions. To the best of our knowledge, this study is the first to illustrate that COS mediate glucose and lipid metabolism disorders by regulating gut microbiota and SMYD3-mediated signaling pathways.
Collapse
Affiliation(s)
- Qiutong Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yajie Jiang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuegang Luo
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
- Correspondence: (X.L.); (L.C.); Tel.: +86-22-60601104 (X.L.); +86-15382999119 (L.C.)
| | - Chang Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Nan Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Hongpeng He
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tongcun Zhang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.W.); (Y.J.); (C.W.); (N.W.); (H.H.); (T.Z.)
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Liehuan Chen
- College of Animal Sciences and Technology, Zhongkai Agricultural Engineering College, Guangzhou 510225, China
- Guangzhou Youlan Marine Biological Technology Co., Ltd., Guangzhou 510530, China
- Correspondence: (X.L.); (L.C.); Tel.: +86-22-60601104 (X.L.); +86-15382999119 (L.C.)
| |
Collapse
|
15
|
Dietary Supplementation with Chitosan Oligosaccharides Alleviates Oxidative Stress in Rats Challenged with Hydrogen Peroxide. Animals (Basel) 2019; 10:ani10010055. [PMID: 31888046 PMCID: PMC7022516 DOI: 10.3390/ani10010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Oxidative stress adversely affects animal health and performance. Feed additives with antioxidant abilities supplementation can alleviate oxidative stress. The aim of this study was to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The results shown that COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA), increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, as well as decreasing MDA level in serum, liver, spleen, and kidney. Our results indicated that COS can protect Sprague Dawley rats from H2O2 challenge by reducing lipid peroxidation and restoring antioxidant capacity. Abstract Oxidative stress is induced by excessive oxidative radicals, which directly react with biomolecules, and damage lipids, proteins and DNA, leading to cell or organ injury. Supplementation of antioxidants to animals can be an effective way to modulate the antioxidant system. Chitosan oligosaccharides (COS) are the degraded products of chitosan or chitin, which has strong antioxidant, anti-inflammatory, and immune-enhancing competency. Therefore, the current study was conducted to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The rats were randomly divided into three groups: CON, control group, in which rats were fed a basal diet with normal drinking water; AS, H2O2 group, in which rats were fed the basal diet and 0.1% H2O2 in the drinking water; ASC, AS + COS group, in which rats were fed the basal diet with 200 mg/kg COS, and with 0.1% H2O2 in the drinking water. In vitro, COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA). In vivo, dietary supplementation with COS alleviated the H2O2-induced oxidative damage, evidenced by comparatively increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, and comparatively decreasing level of MDA in serum, liver, spleen, and kidney. COS also comparatively alleviated the H2O2-induced inflammation. In conclusion, COS supplementation reduced lipid peroxidation and restored antioxidant capacity in Sprague Dawley rats, which were challenged with H2O2.
Collapse
|
16
|
Metabolic engineering for the production of chitooligosaccharides: advances and perspectives. Emerg Top Life Sci 2018; 2:377-388. [DOI: 10.1042/etls20180009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022]
Abstract
Chitin oligosaccharides (CTOs) and its related compounds chitosan oligosaccharides (CSOs), collectively known as chitooligosaccharides (COs), exhibit numerous biological activities in applications in the nutraceutical, cosmetics, agriculture, and pharmaceutical industries. COs are currently produced by acid hydrolysis of chitin or chitosan, or enzymatic techniques with uncontrollable polymerization. Microbial fermentation by recombinant Escherichia coli, as an alternative method for the production of COs, shows new potential because it can produce a well-defined COs mixture and is an environmentally friendly process. In addition, Bacillus subtilis, a nonpathogenic, endotoxin-free, GRAS status bacterium, presents a new opportunity as a platform to produce COs. Here, we review the applications of COs and differences between CTOs and CSOs, summarize the current preparation approaches of COs, and discuss the future research potentials and challenges in the production of well-defined COs in B. subtilis by metabolic engineering.
Collapse
|
17
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
18
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
19
|
Xu Q, Wang W, Yang W, Du Y, Song L. Chitosan oligosaccharide inhibits EGF-induced cell growth possibly through blockade of epidermal growth factor receptor/mitogen-activated protein kinase pathway. Int J Biol Macromol 2017; 98:502-505. [DOI: 10.1016/j.ijbiomac.2017.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023]
|
20
|
Yang JW, Tian G, Chen DW, Yao Y, He J, Zheng P, Mao XB, Yu J, Huang ZQ, Yu B. Involvement of PKA signalling in anti-inflammatory effects of chitosan oligosaccharides in IPEC-J2 porcine epithelial cells. J Anim Physiol Anim Nutr (Berl) 2017; 102:252-259. [PMID: 28299836 DOI: 10.1111/jpn.12686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022]
Abstract
Weaning is characterized by intestinal inflammation, which is a big challenge in pig industry. Control of intestinal inflammation is important for improvement of growth performance and health. Therefore, the study was focused on the anti-inflammatory activity of low-molecular-weight chitosan oligosaccharide (LCOS) in a porcine small intestinal epithelial cell line (IPEC-J2). The results showed that TNF-α, as inflammation inducer, significantly upregulated the mRNA expression of IL-8 and MCP-1. Afterwards, LCOS significantly attenuated mRNA expression of IL-8 and MCP-1 induced by TNF-α in the cells. Mannose (MAN), as ligand of mannose receptor, had no effect on the anti-inflammatory activity of LCOS, which suggested that mannose receptor may not involve in the anti-inflammatory activity of LCOS in IPEC-J2 cells. Interestingly, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl hydrate (H89), as PKA (protein kinase A)-specific inhibitor, reversed the mRNA expression of IL-8 when co-cultured with LCOS. Furthermore, LCOS concentration dependent downregulated the mRNA expression of claudin-1 compared with TNF-α treatment. However, the trans-epithelial electric resistance (TEER) was not affected by LCOS when co-cultured with TNF-α in 3 hr. In conclusion, LCOS have a potent anti-inflammatory activity, and as a feed additives, may be useful for the inhibition of inflammatory process in weaning period of pigs with intestinal inflammation occurring.
Collapse
Affiliation(s)
- J W Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - D W Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Y Yao
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - J He
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - P Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - X B Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - J Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Z Q Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - B Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
21
|
Qi G, Mi Y, Fan R, Li R, Wang Y, Li X, Huang S, Liu X. Tea polyphenols ameliorate hydrogen peroxide- and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver. RSC Adv 2017. [DOI: 10.1039/c7ra05000c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tea polyphenols alleviate oxidative stressviamodulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and the liver of mice kept in constant darkness.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Runnan Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yiwen Wang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xingyu Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Shuxian Huang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
22
|
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2016; 170:80-97. [PMID: 27773783 DOI: 10.1016/j.pharmthera.2016.10.013] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan oligosaccharide (COS) is an oligomer of β-(1➔4)-linked d-glucosamine. COS can be prepared from the deacetylation and hydrolysis of chitin, which is commonly found in the exoskeletons of arthropods and insects and the cell walls of fungi. COS is water soluble, non-cytotoxic, readily absorbed through the intestine and mainly excreted in the urine. Of particular importance, COS and its derivatives have been demonstrated to possess several biological activities including anti-inflammation, immunostimulation, anti-tumor, anti-obesity, anti-hypertension, anti-Alzheimer's disease, tissue regeneration promotion, drug and DNA delivery enhancement, anti-microbial, anti-oxidation and calcium-absorption enhancement. The mechanisms of actions of COS have been found to involve the modulation of several important pathways including the suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) and the activation of AMP-activated protein kinase (AMPK). This review summarizes the current knowledge of the preparation methods, pharmacokinetic profiles, biological activities, potential therapeutic applications and safety profiles of COS and its derivatives. In addition, future research directions are discussed.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Varanuj Chatsudthipong
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
24
|
|
25
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
26
|
Hwang E, Park SY, Sun ZW, Shin HS, Lee DG, Yi TH. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:361-70. [PMID: 24142195 DOI: 10.1007/s10126-013-9554-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/25/2013] [Indexed: 05/18/2023]
Abstract
Exposure to ultraviolet (UV) light causes matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging. The activation of MMP is related to increased interlukin-6 (IL-6) and type I procollagen production, which is regulated by transforming growth factor-β1 (TGF-β1). Activator protein-1 (AP-1) activation induces MMP-1 production and reduces type I procollagen secretion. Fucosterol, which is extracted and purified from the brown algae Hizikia fusiformis, is a phytosterol. We assessed the effects of fucosterol on photodamage and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts by using enzyme-linked immunosorbent assay, Western blot analysis, and reverse transcription-polymerase chain reaction. Our results showed that fucosterol significantly decreased the UVB-induced expression of MMP-1, IL-6, p-c-Jun, and p-c-Fos. Additionally, fucosterol markedly increased the UVB-induced production of type I procollagen and TGF-β1. Our results indicate that fucosterol regulates MMP-1 and type I procollagen expression by modulating AP-1 and TGF-β1 signaling and that MMP-1 activation is correlated with IL-6. These data suggest that fucosterol is a promising botanical agent to protect against skin photodamage.
Collapse
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggido, 446-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Ngo DH, Kim SK. Antioxidant effects of chitin, chitosan, and their derivatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 73:15-31. [PMID: 25300540 DOI: 10.1016/b978-0-12-800268-1.00002-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Chitin, chitosan, and their derivatives are considered to promote diverse activities, including antioxidant, antihypertensive, anti-inflammatory, anticoagulant, antitumor and anticancer, antimicrobial, hypocholesterolemic, and antidiabetic effects, one of the most crucial of which is the antioxidant effect. By modulating and improving physiological functions, chitin, chitosan, and their derivatives may provide novel therapeutic applications for the prevention or treatment of chronic diseases. Antioxidant activity of chitin, chitosan, and their derivatives can be attributed to in vitro and in vivo free radical-scavenging activities. Antioxidant effect of chitin, chitosan, and their derivatives may be used as functional ingredients in food formulations to promote consumer health and to improve the shelf life of food products. This chapter presents an overview of the antioxidant activity of chitin, chitosan, and their derivatives with the potential utilization in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dai-Hung Ngo
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea; Department of Chemistry, Pukyong National University, Busan, South Korea.
| |
Collapse
|
28
|
Microbial biotransformation of gentiopicroside by the endophytic fungus Penicillium crustosum 2T01Y01. Appl Environ Microbiol 2013; 80:184-92. [PMID: 24141132 DOI: 10.1128/aem.02309-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endophytic fungi are symbiotic with plants and possess multienzyme systems showing promising metabolite potency with region selectivity and stereoselectivity. The aim of this study was to use these special microorganisms as an in vitro model to mimic the potential mammalian metabolites of a natural iridoid gentiopicroside (GPS, compound 1). The fungi isolated from a medicinal plant, Dendrobium candidum Wall. ex Lindl., were screened for their biotransformation abilities with GPS as the substrate, and one strain with high converting potency was identified as Penicillium crustosum 2T01Y01 on the basis of the sequence of the internal transcribed spacer of the ribosomal DNA region. Upon the optimized incubation of P. crustosum 2T01Y01 with the substrate, seven deglycosylated metabolites were detected by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Preparative-scale biotransformation with whole cells of the endophytic fungus resulted in the production of five metabolites, including three novel ones, 5α-(hydroxymethyl)-6β-methyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-1(8H)-one (compound 2), (Z)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 3), and (E)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 4), along with two known ones, 5α-(hydroxymethyl)-6β-methyl-1H,3H-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 5) and 5α-(hydroxymethyl)-6α-methyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 6), aided by nuclear magnetic resonance and high-resolution mass spectral analyses. The other two metabolites were tentatively identified by online UPLC/Q-TOF MS as 5-hydroxymethyl-5,6-dihydroisochromen-1-one (compound 7) and 5-hydroxymethyl-3,4,5,6-tetrahydroisochromen-1-one (compound 8), and compound 8 is a new metabolite. To test the metabolic mechanism, the β-glucosidase activity of the fungus P. crustosum 2T01Y01 was assayed with ρ-nitrophenyl-β-d-glucopyranoside as a probe substrate, and the pathway of GPS biotransformation by strain 2T01Y01 is proposed. In addition, the hepatoprotective activities of GPS and metabolite compounds 2, 5, and 6 against human hepatocyte line HL-7702 injury induced by hydrogen peroxide were evaluated.
Collapse
|
29
|
Isoorientin protects BRL-3A rat liver cell against hydrogen peroxide-induced apoptosis by inhibiting mitochondrial dysfunction, inactivating MAPKs, activating Akt and scavenging ROS and NO. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.biomag.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zeng W, Han H, Tao Y, Yang L, Wang Z, Chen K. Identification of bio-active metabolites of gentiopicroside by UPLC/Q-TOF MS and NMR. Biomed Chromatogr 2013; 27:1129-36. [DOI: 10.1002/bmc.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - Han Han
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; 201210; China
| | - Yanyan Tao
- Institute of Liver Diseases; ShuGuang Hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai; 201203; China
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; 201210; China
| | - Zhengtao Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; 201210; China
| | - Kaixian Chen
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; 201210; China
| |
Collapse
|
31
|
Wu S, Du Y, Hu Y, Shi X, Zhang L. Antioxidant and antimicrobial activity of xylan–chitooligomer–zinc complex. Food Chem 2013; 138:1312-9. [DOI: 10.1016/j.foodchem.2012.10.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
|
32
|
Production of Enzymes by Paenibacillus chitinolyticus and Paenibacillus ehimensis to Obtain Chitooligosaccharides. Appl Biochem Biotechnol 2013; 170:292-300. [DOI: 10.1007/s12010-013-0143-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
|
33
|
Recombinant expression of chitosanase from Bacillus subtilis HD145 in Pichia pastoris. Carbohydr Res 2012; 352:37-43. [DOI: 10.1016/j.carres.2012.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 11/22/2022]
|
34
|
Chitooligosaccharides antagonize the cytotoxic effect of glucosamine. World J Microbiol Biotechnol 2011; 28:1097-105. [DOI: 10.1007/s11274-011-0910-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
35
|
Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 2011; 11:121-7. [PMID: 21059391 DOI: 10.1016/j.intimp.2010.10.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 12/30/2022]
|
36
|
Park BK, Kim MM. Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 2010; 11:5152-64. [PMID: 21614199 PMCID: PMC3100826 DOI: 10.3390/ijms11125152] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 02/07/2023] Open
Abstract
Chitin and its derivatives-as a potential resource as well as multiple functional substrates-have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS) are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Bae Keun Park
- Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea; E-Mail:
| | | |
Collapse
|