1
|
Vatanavicharn T, Matjank W, Masrinoul P, Supungul P, Tassanakajon A, Rimphanitchayakit V, Ponprateep S. Antiviral properties of Penaeus monodon cyclophilin A in response to white spot syndrome virus infection in the black tiger shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109299. [PMID: 38104700 DOI: 10.1016/j.fsi.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.
Collapse
Affiliation(s)
- Tipachai Vatanavicharn
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Watchalaya Matjank
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 110120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikwan Ponprateep
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
2
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
4
|
Koiwai K, Kondo H, Hirono I. The immune functions of sessile hemocytes in three organs of kuruma shrimp Marsupenaeus japonicus differ from those of circulating hemocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 78:109-113. [PMID: 29684599 DOI: 10.1016/j.fsi.2018.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Shrimp, as invertebrates, have an open vasculature that allows circulating hemocytes to infiltrate the tissues, where they are referred to as sessile hemocytes. Sessile hemocytes are known to express immune-related genes, but it is not known whether their functions differ from those of circulating hemocytes. To answer this question, we enriched them from suspensions of different tissues using discontinuous density gradient centrifugation and analyzed their transcripts by RNA-seq. The results suggest that circulating hemocytes and sessile hemocytes of the gills are in a state that could react quickly to pathogens, immune-related genes expression of sessile hemocytes differ from circulating hemocytes, and the gills, heart and lymphoid organs have cells that express immune-related genes that are different from hemocytes.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
5
|
Hernández-Palomares MLE, Godoy-Lugo JA, Gómez-Jiménez S, Gámez-Alejo LA, Ortiz RM, Muñoz-Valle JF, Peregrino-Uriarte AB, Yepiz-Plascencia G, Rosas-Rodríguez JA, Soñanez-Organis JG. Regulation of lactate dehydrogenase in response to WSSV infection in the shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 74:401-409. [PMID: 29337249 DOI: 10.1016/j.fsi.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Lactate dehydrogenase (LDH) is key for anaerobic glycolysis. LDH is induced by the hypoxia inducible factor -1 (HIF-1). HIF-1 induces genes involved in glucose metabolism and regulates cellular oxygen homeostasis. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive β-subunit (HIF-1β). The white spot syndrome virus (WSSV) induces anaerobic glycolysis in shrimp hemocytes, associated with lactate accumulation. Although infection and lactate production are associated, the LDH role in WSSV-infected shrimp has not been examined. In this work, the effects of HIF-1 silencing on the expression of two LDH subunits (LDHvan-1 and LDHvan-2) in shrimp infected with the WSSV were studied. HIF-1α transcripts increased in gills, hepatopancreas, and muscle after WSSV infection, while HIF-1β remained constitutively expressed. The expression for both LDH subunits increased in each tissue evaluated during the WSSV infection, translating into increased enzyme activity. Glucose concentration increased in each tissue evaluated, while lactate increased in gills and hepatopancreas, but not in muscle. Silencing of HIF-1α blocked the increase of LDH expression and enzyme activity, along with glucose (all tissues) and lactate (gills and hepatopancreas) concentrations produced by WSSV infection. These results demonstrate that HIF-1 up regulates the expression of LDH subunits during WSSV infection, and that this induction contributes to substrate metabolism in energetically active tissues of infected shrimp.
Collapse
Affiliation(s)
- M L E Hernández-Palomares
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Godoy-Lugo
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - S Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - L A Gámez-Alejo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - R M Ortiz
- School of Natural Sciences, University of California Merced, 5200 N Lake Road, Merced, CA, 95343, USA
| | - J F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - A B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - G Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - J G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|
6
|
Jaturontakul K, Jatuyosporn T, Laohawutthichai P, Kim SY, Mori T, Supungul P, Hakoshima T, Tassanakajon A, Krusong K. Molecular Characterization of Viral Responsive Protein 15 and Its Possible Role in Nuclear Export of Virus in Black Tiger Shrimp Penaeus monodon. Sci Rep 2017; 7:6523. [PMID: 28747797 PMCID: PMC5529560 DOI: 10.1038/s41598-017-06653-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
A viral responsive protein 15 from Penaeus monodon (PmVRP15) has been reported to be important for white spot syndrome virus (WSSV) infection in vivo. This work aims to characterize PmVRP15 and investigate its possible role in nuclear import/export of the virus. Circular dichroism spectra showed that PmVRP15 contains high helical contents (82%). Analytical ultracentrifugation suggested that PmVRP15 could possibly form oligomers in solution. A subcellular fractionation study showed that PmVRP15 was found in heavy and light membrane fractions, indicating that PmVRP15 may be associated with endoplasmic reticulum. Double-stranded RNAi-mediated knockdown of PmVRP15 gene expression in vitro showed no effect on WSSV copy number in whole hemocyte cells. However, PmVRP15 silencing resulted in an accumulation of WSSV DNA in the nucleus of PmVRP15-silenced hemocytes. Immunofluorescence confocal microscopy showed that PmVRP15 knockdown hemocytes had a much lower level of VP28 (WSSV envelope protein), in comparison to that in the control. It is likely that PmVRP15 may play a role in viral nuclear egress.
Collapse
Affiliation(s)
- Krisadaporn Jaturontakul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thapanan Jatuyosporn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sun-Yong Kim
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Tian Y, Jiang Y, Shang Y, Zhang YP, Geng CF, Wang LQ, Chang YQ. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus). FISH & SHELLFISH IMMUNOLOGY 2017; 65:71-79. [PMID: 28359949 DOI: 10.1016/j.fsi.2017.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K+ and Cl- concentration after lysozyme RNAi injection was lower than in the PC and NC group.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China.
| | - Yanan Jiang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yanpeng Shang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yu-Peng Zhang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Chen-Fan Geng
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Li-Qiang Wang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
8
|
Koiwai K, Alenton RRR, Shiomi R, Nozaki R, Kondo H, Hirono I. Two hemocyte sub-populations of kuruma shrimp Marsupenaeus japonicus. Mol Immunol 2017; 85:1-8. [PMID: 28167202 DOI: 10.1016/j.molimm.2017.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Hemocytes in the circulating hemolymph play important roles for immune responses in shrimp. Previous studies on immune responses by hemocytes in penaeid shrimp were based on gene expression analyses of the entire population of hemocytes and thus may have missed different immune responses of different hemocyte sub-populations. In this study, we separated hemocytes into two sub-populations by Percoll gradient centrifugation, morphological characteristics of each population were then analyzed by May-Giemsa staining, flow cytometry, and FACSCalibur. Results showed hemocytes were divided into an upper layer basophilic, and lower layer of eosinophilic hemocytes. Basophilic hemocytes were larger in size compared to eosinophilic hemocytes, which were more granulated than the basophilic hemocytes. Transcriptome analysis was then conducted through RNA-seq analysis by Miseq, which revealed 16 differentially-expressed transcripts between the two sub-populations. In the upper-layer, the highly expressed transcripts that were homologous to immune-related genes that suggest hemocytes from this layer may play as the regulator of immune system and control the action of other cells to eliminate pathogen. On the other hand, transcripts that were highly expressed in the lower-layer were homologous to the antimicrobial peptide (AMP) crustin, which supports that hemocytes on this layer have granules as crustins are normally secreted from hemocyte granules. The high expression of crustin in the lower-layer also provides insight on the mechanism of the anti-microbial function, where hemocytes produce and store AMPs in its granules. These differentially expressed genes are potential hemocyte molecular markers, and among them we identified one of the highly expressed genes in the hemocytes from the upper-layer (c11736_g1) to be a promising candidate molecular marker predicted to be a surface molecule, which is a common characteristic for molecular markers.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Rod Russel R Alenton
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reina Shiomi
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
9
|
Peepim T, Phiwsaiya K, Charoensapsri W, Khunrae P, Senapin S, Rattanarojpong T. Knockdown of Litopenaeus vannamei HtrA2, an up-regulated gene in response to WSSV infection, leading to delayed shrimp mortality. J Biotechnol 2015; 219:48-56. [PMID: 26712477 DOI: 10.1016/j.jbiotec.2015.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
HtrA2 is an apoptosis-activating gene that enhances the apoptotic process by preventing the formation of the IAP-caspase complex, thereby freeing caspase to trigger the apoptosis pathway. In this study, we presented the full-length cDNA sequence of HtrA2 from Litopenaeus vannamei (LvHtrA2). The full-length LvHtrA2 was 1335 bp, encoding 444 amino acids. This deduced amino acid sequence contained five conserved domains: a mitochondrial targeting signal (MTS), a transmembrane (TM) domain, an IAP-binding motif (IBM), a trimerization motif, a serine protease domain, and a PDZ domain normally found in the HtrA2 proteins of other organisms. A phylogenetic analysis revealed that LvHtrA2 clustered with the HtrA2 from other invertebrates and was closely related to Penaeus monodon HtrA2 (PmHtrA2). RT-PCR with RNA extracts from L. vannamei revealed that LvHtrA2 expression was found in several tissues, including the lymphoid organs, the haemocytes, the hepatopancreas, the gill, and the stomach, with different expression levels. When determining the role of LvHtrA2 in WSSV infection, it was found that LvHtrA2 transcription was early up-regulated in the WSSV-infected shrimp at 8h post-infection (p.i.) and expression still remained high at 48 h p.i.. It also demonstrated that dsRNA specific to LvHtrA2 reduced the cumulative mortality in the WSSV-infected shrimp compared with the control group. Additionally, depletion of the LvHtrA2 transcripts reduced expression levels for caspase-3 (Cap-3) gene in shrimp. This result could suggest that LvHtrA2 may involved in apoptosis mediated mortality rather than providing immune protection during WSSV infection.
Collapse
Affiliation(s)
- Termsri Peepim
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Kornsunee Phiwsaiya
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Walaiporn Charoensapsri
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
10
|
Dong C, Bai S, Du L. Temperature regulates circadian rhythms of immune responses in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2015; 45:641-647. [PMID: 26004319 DOI: 10.1016/j.fsi.2015.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
As an ectothermic animal, crayfish immunity and their resistance to pathogen can be significantly affected by environmental factors such as light and temperature. It has been found for a long time that multiple immune parameters of animals and human are circadian-regulated by light-entrained circadian rhythm. Whether temperature also affects the immune rhythm of animals still remains unclear. In the present study, we investigated the effect of temperature cycles on the rhythm of crayfish immunity and their resistance. Survival experiments demonstrated that temperature cycles of 24 °C and 18 °C effectively entrained the circadian rhythm of crayfish resistance to Aeromonas hydrophila in constant dark. After being exposed to temperature cycles, the crayfish injected at different time points exhibited significant difference in resistance to A. hydrophila. Bacterial growth and total hemocyte count (THC) also showed circadian variation in crayfish subjected to temperature cycles, but phenoloxidase (PO) activity didn't show rhythmic change under the same conditions. Quantitative real-time PCR revealed that basal expression of crustin1 and astacidin in crayfish subjected to temperature cycles was circadian-rhythmic, but induced expression by A. hydrophila didn't show the same rhythm. In contrast, crayfish maintained at constant temperature showed completely arrhythmic in bacterial resistance, immune parameters mentioned above and the expression of antimicrobial peptides. The results present here collectively indicated that temperature cycles entrained circadian rhythm of some immune parameters and shaped crayfish resistance to bacteria.
Collapse
Affiliation(s)
- Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Liqiang Du
- College of Life Science, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Shekhar MS, Ponniah AG. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp. JOURNAL OF FISH DISEASES 2015; 38:599-612. [PMID: 24953507 DOI: 10.1111/jfd.12279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| | - A G Ponniah
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
12
|
Rao R, Bing Zhu Y, Alinejad T, Tiruvayipati S, Lin Thong K, Wang J, Bhassu S. RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection. Gut Pathog 2015; 7:6. [PMID: 25922623 PMCID: PMC4411767 DOI: 10.1186/s13099-015-0052-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Background The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species’ immune response to this pathogenic bacteria. Result A total of 59,122,940 raw reads were obtained from the control group, and 58,385,094 reads from the Vibrio-infected group. Via de novo assembly by Trinity assembler, 59,050 control unigenes and 73,946 Vibrio-infected group unigenes were obtained. By clustering unigenes from both libraries, a total of 64,411 standard unigenes were produced. The standard unigenes were annotated against the NCBI non-redundant, Swiss-Prot, Kyoto Encyclopaedia of Genes and Genome pathway (KEGG) and Orthologous Groups of Proteins (COG) databases, with 19,799 (30.73%), 16,832 (26.13%), 14,706 (22.83%) and 7,856 (12.19%) hits respectively, giving a final total of 22,455 significant hits (34.86% of all unigenes). A Gene Ontology (GO) analysis search using the Blast2GO program resulted in 6,007 unigenes (9.32%) being categorized into 55 functional groups. A differential gene expression analysis produced a total of 14,569 unigenes aberrantly expressed, with 11,446 unigenes significantly up-regulated and 3,103 unigenes significantly down-regulated. The differentially expressed immune genes fall under various processes of the animal immune system. Conclusion This study provided an insight into the antibacterial mechanism in M. rosenbergii and the role of differentially expressed immune genes in response to V. parahaemolyticus infection. Furthermore, this study has generated an abundant list of transcript from M.rosenbergii which will provide a fundamental basis for future genomics research in this field. Electronic supplementary material The online version of this article (doi:10.1186/s13099-015-0052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rama Rao
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ya Bing Zhu
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Tahereh Alinejad
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Microbiology Unit, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jun Wang
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Subha Bhassu
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Tian Y, Liang XW, Chang YQ, Song J. Expression of c-type lysozyme gene in sea cucumber (Apostichopus japonicus) is highly regulated and time dependent after salt stress. Comp Biochem Physiol B Biochem Mol Biol 2015; 180:68-78. [DOI: 10.1016/j.cbpb.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/30/2014] [Accepted: 10/17/2014] [Indexed: 11/24/2022]
|
14
|
Ng TH, Hung HY, Chiang YA, Lin JH, Chen YN, Chuang YC, Wang HC. WSSV-induced crayfish Dscam shows durable immune behavior. FISH & SHELLFISH IMMUNOLOGY 2014; 40:78-90. [PMID: 24973514 DOI: 10.1016/j.fsi.2014.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
One of the major gaps in our understanding of arthropod specific immune priming concerns the mechanism[s] by which the observed long-term (>2 weeks) protective effects might be mediated. Hypervariable Dscam (Down syndrome cell adhesion molecule) might support arthropod innate immunity with specificity for more extended periods. We show here that, in the relatively long-lived arthropod Cherax quadricarinatus, CqDscam does not behave like a typical, immediately-acting, short-lived innate immune factor: CqDscam was not induced within hours after challenge with a lethal virus, but instead was only up-regulated after 2-5 days. This initial response faded within ∼ 2 weeks, but another maximum was reached ∼ 1 month later. At around 2 months after the initial challenge, the virus-induced CqDscam bound to the virus virion and acted to neutralize the virus However, although CqDscam helped crayfish to survive during persistent infection, it nevertheless failed to provide any enhanced protection against a subsequent WSSV challenge. Thus, CqDscam is capable of supporting extended anti-virus immune memory in arthropods. Also, during a persistent virus infection, the balance of "immune firepower" in crayfish appears to be altered such that the general immune factors become depleted while CqDscam becomes relatively predominant.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Yi Hung
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jia-Hung Lin
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ning Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Chu Chuang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
15
|
Subtracted Transcriptome Profile of Tiger Shrimp (Penaeus monodon) That Survived WSSV Challenge. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/807806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is increased interest in the development of virus-resistant or improved shrimp stock because production is currently hindered by outbreaks and limited understanding of shrimp defense. Recent advancement now allows for high-throughput molecular studies on shrimp immunity. We used next-generation sequencing (NGS) coupled with suppression subtractive hybridization (SSH) to generate a transcriptome database of genes from tiger shrimp that survived White spot syndrome virus (WSSV) challenge. A total of 9,597 unique sequences were uploaded to NCBI Sequence Read Archive with accession number SRR577080. Sixty-five unique sequences, 6% of the total, were homologous to genes of Penaeus monodon. Genes that were initially related to bacterial infection and environmental stress such as 14-3-3 gene, heat shock protein 90, and calreticulin were also found including a few full-length gene sequences. Initial analysis of the expression of some genes was done. Hemocyanin, ferritin, and fortilin-binding protein exhibited differential expression between survivor and control tiger shrimps. Furthermore, candidate microsatellite markers for brood stock selection were mined and tested. Four trinucleotide and one dinucleotide microsatellites were successfully amplified. The study highlights the advantage of the NGS platform coupled with SSH in terms of gene discovery and marker generation.
Collapse
|
16
|
Vatanavicharn T, Prapavorarat A, Jaree P, Somboonwiwat K, Tassanakajon A. PmVRP15, a novel viral responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication. PLoS One 2014; 9:e91930. [PMID: 24637711 PMCID: PMC3956821 DOI: 10.1371/journal.pone.0091930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/18/2014] [Indexed: 12/28/2022] Open
Abstract
Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.
Collapse
Affiliation(s)
- Tipachai Vatanavicharn
- Applied Analytical Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Adisak Prapavorarat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattarunda Jaree
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:88-102. [PMID: 24052493 DOI: 10.1007/s10126-013-9535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/15/2013] [Indexed: 05/25/2023]
Abstract
Gene expression profiling was performed in Japanese flounder Paralichthys olivaceus fed diets supplemented with fish oil (FO), linseed oil (LO), or olive oil (OO) for 6 weeks. The LO and OO groups showed significantly retarded growth, lower feed intake, lower protein efficiency ratio, and lower hepatosomatic index (P < 0.05). Liver fatty acid composition reflected the dietary fatty acid composition. Microarray analysis revealed that dietary n - 3 highly unsaturated fatty acid (HUFA) deficiency affected 169 transcripts. In the LO group, 57 genes were up-regulated and 38 genes were down-regulated, whereas in the OO group nine genes were up-regulated and 87 genes were down-regulated. Analysis of the functional annotations suggested that dietary n - 3 HUFA affected genes involved in signal transduction (23.2 %), cellular processes (21.1 %), metabolism (including glucose, lipid, and nucleobase; 15.5 %), transport (11.3 %), regulation of transcription (10.5 %), and immune response (4.2 %). Several genes encoding serine/threonine kinases such as protein kinase C and calmodulin-dependent kinase and nuclear hormone receptors such as vitamin D receptor, retinoic acid receptor, and receptors for cytokines (bone morphogenic protein and transforming growth factor β) were affected. Among 169 transcripts, 22 genes were affected in both LO and OO groups. The present study identified several genes involved in n - 3 HUFA deficiency-sensitive pathways, which will be useful for selective breeding of flounder strains able to adapt to n - 3 HUFA deficiency.
Collapse
Affiliation(s)
- Ubonrat Limtipsuntorn
- Department of Marine Bioscience, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato 4-5-7, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
18
|
Jiang H, Li F, Zhang J, Zhang J, Huang B, Yu Y, Xiang J. Comparison of protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis challenged with heat-inactivated Vibrio anguillarum and white spot syndrome virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:111-123. [PMID: 24057166 DOI: 10.1007/s10126-013-9538-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Fenneropenaeus chinensis (Chinese shrimp) culture industry, like other Penaeidae culture, has been seriously affected by the shrimp diseases caused by bacteria and virus. To better understand the mechanism of immune response of shrimp to different pathogens, proteome research approach was utilized in this study. Firstly, the soluble hepatopancreas protein samples in adult Chinese shrimp among control, heat-inactivated Vibrio-challenged and white spot syndrome virus-infected groups were separated by 2-DE (pH range, 4-7; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and pH range, 3-10; tricine-SDS-PAGE). Then the differentially expressed protein spots (≥1.5-fold or ≤0.67-fold averagely of controls) were analyzed by LC-ESI-MS/MS. Using Mascot online database searching algorithm and SEQUEST searching program, 48 and 49 differentially expressed protein spots were successfully identified in response to Vibrio and white spot syndrome virus infection, respectively. Based on these results, we discussed the mechanism of immune response of the shrimp and shed light on the differences between immune response of shrimp toward Vibrio and white spot syndrome virus. This study also set a basis for further analyses of some key genes in immune response of Chinese shrimp.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Guo H, Ye CX, Wang AL, Xian JA, Liao SA, Miao YT, Zhang SP. Trascriptome analysis of the Pacific white shrimp Litopenaeus vannamei exposed to nitrite by RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2013; 35:2008-16. [PMID: 24055647 DOI: 10.1016/j.fsi.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 05/26/2023]
Abstract
In the present study, transcriptome of nitrite-exposed Litopenaeus vannamei was performed using a newly developed high-throughput sequencing technology (Illumina RNA-seq). As many as 42,336 unigenes were generated with 561 bp of average length and 736 bp of unigene N50 after filtering and assembly. These unigenes from the de novo assembly were further annotated using BLAST and BLAST2GO softwares. A total of 23,532 unigenes were unambiguous alignments to the reference when BLAST against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases available at NCBI. Numerous candidate genes associated with immune response, detoxification, apoptosis pathway were identified. Ten candidate genes related to immune responses and apoptosis were selected for validating the results of assembly and annotation by real-time quantitative PCR. Results revealed that the expressions of all these ten genes were up-regulated after nitrite exposure. Combining to our previous study, we speculate that all these selected genes may be involved in the response to nitrite stress. The study shows a systematic overview of the transcriptome analysis in L. vannamei, and provides valuable gene information for studying molecular mechanisms under nitrite exposure.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Shekhar MS, Kiruthika J, Ponniah AG. Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1957-1968. [PMID: 24436977 DOI: 10.1016/j.fsi.2013.09.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Four suppression subtractive hybridization (SSH) cDNA libraries were constructed to identify differentially expressed salinity stress responsive genes of black tiger shrimp, Penaeus monodon exposed to low (3 ppt) salinity conditions. Forward and reverse SSH cDNA libraries were developed from the gill and gut tissues of shrimp and clones having inserts larger than 300 bp were unidirectionally sequenced. Based on the sequence homology search, the identified genes were categorized for their putative functions related to a wide range of biological roles, such as nucleic acid regulation and replication, immune response, energy and metabolism, cell signaling, cellular process, cytoskeleton and membrane structure, stress and osmoregulation. Gene expression levels in response to low salinity conditions at 2 weeks post salinity stress of thirteen selected differentially expressed genes identified from SSH cDNA libraries (14-3-3 like protein, crust in, lysozyme, arginine kinase, Naþ/Kþ-ATPase a-subunit, intracellular fatty acid binding protein, cathepsin B, anti-lipopolysaccharide factor, ferritin, ubiquitin conjugating enzyme E2, calreticulin, innexin 2 and heat shock protein 21) were analyzed by RT-PCR. The highest gene expression levels were observed for Naþ/Kþ-ATPase a-subunit (34.28-folds) in gill tissues, intracellular fatty acid binding protein (13.30-folds) in gut tissues and innexin 2 (14.43-folds) in muscle tissues respectively. The differential and significant levels of gene expression indicate the functional role of these genes in shrimp salinity stress adaptive mechanisms.
Collapse
|
21
|
Andriantahina F, Liu X, Feng T, Xiang J. Current status of genetics and genomics of reared penaeid shrimp: information relevant to access and benefit sharing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:399-412. [PMID: 23529408 DOI: 10.1007/s10126-013-9500-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/16/2013] [Indexed: 06/02/2023]
Abstract
At present, research and progress in shrimp genomics and genetics show significant developments. Shrimp genetics and genomics also show immense potential for an increased production in a way that meets shrimp culture progress goals for the third millennium. This review article aims to provide an overview of its current status and future direction, discusses questions that need focused research to address them, and summarizes areas where genetics and genomics knowledge can make a positive difference to shrimp culture sustainability. Sustainable progress of penaeid shrimps will depend upon feasible solutions for environmental, research, economic, consumer problems, proper development, and planning policy enforcement. It is recommended that increased funding for biotechnology research and progress be directed to expand worldwide commercial shrimp culture and address environmental and public health issues. For any researcher or shrimp company member who has attempted to or whom would like to thoroughly search the literature to gain a complete understanding of the current state of shrimp genetics and genomics, this publication will be an invaluable source of reference materials, some of which is reported here for the first time.
Collapse
Affiliation(s)
- Farafidy Andriantahina
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | | | | | | |
Collapse
|
22
|
Tassanakajon A, Somboonwiwat K, Supungul P, Tang S. Discovery of immune molecules and their crucial functions in shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:954-967. [PMID: 23059654 DOI: 10.1016/j.fsi.2012.09.021] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Several immune-related molecules in penaeid shrimps have been discovered, most of these via the analysis of expressed sequence tag libraries, microarray studies and proteomic approaches. These immune molecules include antimicrobial peptides, serine proteinases and inhibitors, phenoloxidases, oxidative enzymes, clottable protein, pattern recognition proteins, lectins, Toll receptors, and other humoral factors that might participate in the innate immune system of shrimps. These molecules have mainly been found in the hemolymph and hemocytes, which are the main sites where immune reactions take place, while some are found in other immune organs/tissues, such as the lymphoid organs, gills and intestines. Although the participation of some of these immune molecules in the shrimp innate immune defense against invading pathogens has been demonstrated, the functions of many molecules remain unclear. This review summarizes the current status of our knowledge concerning the discovery and functional characterization of the immune molecules in penaeid shrimps.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
23
|
Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:973-980. [PMID: 22967763 DOI: 10.1016/j.fsi.2012.08.023] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
The first line of defense against microbial infections in animals is innate immune response which triggers diverse humoral and cellular activities via signal transduction pathways. Toll, IMD and JAK/STAT pathways are regarded as the main pathways regulating the immune response of invertebrates. This paper reviews the main progress of the investigation on the immune response to pathogen's infection in shrimp and supposes that these three signal pathways exist in shrimp. Most of the components (proteins or genes) involved in Toll pathway of Drosophila have been cloned also in shrimp which suggested the existence of Toll pathway in shrimp. The data update shows that the Toll pathway of shrimp is responsive not only to Gram-positive bacteria, Gram-negative bacteria, but also to WSSV. Challenge of WSSV can lead to the variation of transcription level of all identified components in shrimp Toll pathway, which supported that Toll pathway in shrimp played important roles during WSSV infection. Two major homologs to the components of IMD pathway of Drosophila, IMD and Relish, have been identified in shrimp, which indicated that IMD pathway should be existed in shrimp and might play important roles in regulating the immune response of shrimp to bacteria and virus infection. Relish in IMD pathway and dorsal in Toll pathway of shrimp were both involved in the immune response of shrimp to bacteria and virus infection, which implied that these two pathways are not completely separated during the immune response of shrimp. The transcription of STAT in shrimp was modulated after WSSV infection, which suggested that a putative JAK/STAT pathway might exist in shrimp and be very important to virus infection. Study on the signaling pathway regulating the immune response in shrimp could help us to understand the innate immune system, and would provide instructions to shrimp disease control. Obviously, to get more clear ideas about the innate immunological pathways in shrimp, more solid functional studies should be done in the future.
Collapse
Affiliation(s)
- Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | |
Collapse
|
24
|
Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:11-26. [PMID: 22484214 DOI: 10.1016/j.dci.2012.03.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 05/26/2023]
Abstract
The annual production of shrimp culture in mainland of China has been over one million tons for several years. The major cultivated penaeidae species are Litopenaeus vannamei, Fenneropenaeus chinensis, Penaeus monodon and Marsupenaeus japonicus. Due to the importance of shrimp aquaculture in China, researchers have paid more attention to the molecular mechanism of shrimp disease occurrence and tried to develop an efficient control strategy for disease. This paper summarizes the research progress related to innate immunity of penaeid shrimp made in the last decade in Mainland China. Several pattern recognition receptors, such as lectin, toll, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) and tetraspanin were identified. The major signal transduction pathways, including Toll pathway, IMD pathway, which might be involved in the immune response of shrimp, were focused on and most of the components in Toll pathway were identified. Also, cellular immune responses such as phagocytosis and apoptosis were regarded playing very important roles in anti-WSSV infection to shrimp. The molecules involved in the maintenance of the immune homeostasis of shrimp and the progress on molecular structure and pathogenic mechanism of WSSV were summarized. Therefore, the brief outline about the immune system of shrimp is drawn based on the recent data which will help us to understand the immune responses of shrimp to different pathogens.
Collapse
Affiliation(s)
- Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
25
|
Zhi B, Tang W, Zhang X. Enhancement of shrimp antiviral immune response through caspase-dependent apoptosis by small molecules. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:575-583. [PMID: 20936319 DOI: 10.1007/s10126-010-9328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Epidemic diseases cost large amount of economic loss in the shrimp aquaculture. To control the epidemic diseases, it is a very efficient approach to enhance the shrimp immunity by immunostimulants. In aquaculture, however, the applications of the available immunostimulants are very limited due to the lack of information about the roles of these immunostimulants in animal immunity. In the present study, a caspase protein (PjCaspase), required in shrimp antiviral apoptosis, was used as the target protein to screen for small molecules which would enhance the shrimp immunity. Based on screening using the EGFP-PjCaspase fusion protein in insect cells, four small molecules could enhance the activity of PjCaspase protein. Among them, IL-2 and evodiamine were further evidenced to enhance the apoptotic activity of shrimp hemocytes in vivo, suggesting that the small molecules improved the activity of apoptosis through the activation of the PjCaspase protein. The results indicated that the enhancement of apoptotic activity effectively inhibited the white spot syndrome virus (WSSV) infection in shrimp, which further led to the decrease of mortalities of WSSV-infected shrimp. Therefore, our study, for the first time, presented that the strategy using the key proteins in immune responses of aquatic organisms as the target proteins was a very efficient approach for the screening of immunostimulants to prevent the aquatic organisms from pathogen infections.
Collapse
Affiliation(s)
- Bin Zhi
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | | | | |
Collapse
|