1
|
Homma C, Inokuchi D, Nakamura Y, Uy WH, Ohnishi K, Yamaguchi H, Adachi M. Effectiveness of blocking primers and a peptide nucleic acid (PNA) clamp for 18S metabarcoding dietary analysis of herbivorous fish. PLoS One 2022; 17:e0266268. [PMID: 35442965 PMCID: PMC9020718 DOI: 10.1371/journal.pone.0266268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
The structure of food webs and carbon flow in aquatic ecosystems can be better understood by studying contributing factors such as the diets of herbivorous fish. Metabarcoding using a high-throughput sequencer has recently been used to clarify prey organisms of various fish except herbivorous fish. Since sequences of predator fish have dominated in sequences obtained by metabarcoding, we investigated a method for suppressing the amplification of fish DNA by using a blocking primer or peptide nucleic acid (PNA) clamp to determine the prey organisms of herbivorous fish. We designed three blocking primers and one PNA clamp that anneal to fish-specific sequences and examined how efficient they were in suppressing DNA amplification in various herbivorous fish. The results showed that the PNA clamp completely suppressed fish DNA amplification, and one of the blocking primers suppressed fish DNA amplification but less efficiently than the PNA clamp. Finally, we conducted metabarcoding using mock community samples as templates to determine whether the blocking primer or the PNA clamp was effective in suppressing fish DNA amplification. The results showed that the PNA clamp suppressed 99.3%-99.9% of fish DNA amplification, whereas the blocking primer suppressed 3.3%-32.9%. Therefore, we propose the application of the PNA clamp for clarifying the prey organisms and food preferences of various herbivorous fish.
Collapse
Affiliation(s)
- Chiho Homma
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Daiki Inokuchi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Yohei Nakamura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Wilfredo H. Uy
- Institute of Fisheries Research and Development, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines
| | - Kouhei Ohnishi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Haruo Yamaguchi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masao Adachi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
2
|
Lobster Distribution and Biodiversity on the Continental Shelf of Brazil: A Review. DIVERSITY 2021. [DOI: 10.3390/d13110507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The continental shelf of Brazil is home to a wide range of lobster species, with varying body size, color, habitat preference, and geographic and bathymetric distribution. Spiny lobsters (Panulirus) and slipper lobsters (Scyllaridae) are exploited for export and for the domestic market. Deep sea lobsters (Nephropidae and Polychelidae) have no commercial potential, and little is known about their biology. In this review, we identified 24 lobster species from benthic ecosystems off Brazil (Palinuridae 25%, Scyllaridae 29%, Nephropidae 25%, Polychelidae 17%, Enoplometopidae 4%). We designed a simplified theoretical scheme to understand the role of lobsters in the ecosystem, based on available evidence of distribution, biodiversity, life cycle, connectivity, and abundance. Finally, we propose a theoretical scheme of trophic top-down control, with interactions between a large decapod (spiny lobster), a demersal predator (red snapper), an apex predator (small tuna), benthic invertebrates and fishing exploitation.
Collapse
|
3
|
He H, Xia X, Yang H, Peng Q, Zheng J. A pilot study: a possible implication of Candida as an etiologically endogenous pathogen for oral lichen planus. BMC Oral Health 2020; 20:72. [PMID: 32171292 PMCID: PMC7071738 DOI: 10.1186/s12903-020-1042-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 02/03/2023] Open
Abstract
Background The aim of this study was to investigate the prevalence and genotypic profiles of Candida albicans in patients with oral lichen planus (OLP). Materials and methods Positive rates and genotypic profiles of Candida albicans strains from OLP patients and healthy controls were analyzed. Random amplified polymorphic DNA and internal transcribed spacer of ribosome DNA polymerase chain reactions were used to sequence the DNA of these strains, and then their genetic similarity was measured using BLAST, UIV Band, and Vector NTI Suite Sequence Analyses Software. Results The prevalence of C. albicans strains detected from erosive-OLP, non-erosive OLP, and normal individuals was 18.87, 18.75, and 7.92%, respectively. Four different genotypes were revealed by the two methods. To be specific, type I was found only in the healthy subjects; type II a and II b were found in non-erosive OLP, and type III was identified in erosive OLP. Intragroup similarity coefficients, i.e. SAB were 100%, and inter-groups similarity coefficients, i.e. SAB were less than 30%. Conclusions The genotypic results of C. albicans in OLP revealed an endogenous rather than exogenous infection of C. albicans. In addition, a possible pathogenic role of C. albicans in OLP, with the etiologic sense contributing to a more proper recognition on the pathogenesis, development, and progression of OLP, as well as some strategies for its diagnosis and treatment were identified.
Collapse
Affiliation(s)
- Hong He
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road, Hangzhou, 310006, China. .,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.
| | - Xinyu Xia
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road, Hangzhou, 310006, China
| | - Haiping Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road, Hangzhou, 310006, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Qiao Peng
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaoer Zheng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road, Hangzhou, 310006, China. .,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Chow S, Inaba N, Nagai S, Kurogi H, Nakamura Y, Yanagimoto T, Tanaka H, Hasegawa D, Asakura T, Kikuchi J, Tomoda T, Kodama T. Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS One 2019; 14:e0225610. [PMID: 31774866 PMCID: PMC6881025 DOI: 10.1371/journal.pone.0225610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
Natural diets of leptocephalus larvae have been enigmatic. In this study, we collected DNA samples from the gut contents and body surface of leptocephali belonging to the five Anguilliform families (Anguillidae, Chlopsidae, Congridae, Muraenidae, and Serrivomeridae) from the northwest Pacific and performed next-generation 18S rDNA sequencing. Wide variety of eukaryotes was detected in both samples, from which eight eukaryotic groups (jellyfish, conoid parasite, tunicate, copepod, krill, segmented worm, fungi, and dinoflagellate) were selected on the basis of abundance. All groups except conoid parasites were common in both the samples. Cnidarian 18S rDNA reads were the most abundant in both the samples; however, the number of samples having cnidarian reads and the read counts were significantly higher in the body surface scraping samples than in the gut content samples, regardless of careful rinsing of the body surface. These results indicate that the cnidarian DNAs are most likely found because of cross contamination from the body surface and/or environment. 18S rDNA read counts of copepod and tunicate in the gut contents were greater than or comparable with those in the body surface scraping samples, which may correspond to the previous observations of fecal pellets and larvacean houses in the leptocephali gut. Thus, the present study supports previous implications that leptocephali utilize detritus materials, so called marine snow.
Collapse
Affiliation(s)
- Seinen Chow
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
- * E-mail:
| | - Nobuharu Inaba
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
- Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Sapporo, Hokkaido, Japan
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
| | - Hiroaki Kurogi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
| | - Yoji Nakamura
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
| | - Takashi Yanagimoto
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
| | - Hideki Tanaka
- Aquaculture Research Institute, Kindai University, Higashimuro, Wakayama, Japan
| | - Daisuke Hasegawa
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Taiga Asakura
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Tsutomu Tomoda
- Shibushi Station, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Shibushi, Kagoshima, Japan
| | - Taketoshi Kodama
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Kanazawa, Yokohama, Japan
| |
Collapse
|
5
|
Deb R, Nair A, Agashe D. Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies. PeerJ 2019; 7:e8058. [PMID: 31763071 PMCID: PMC6870522 DOI: 10.7717/peerj.8058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023] Open
Abstract
Host-associated gut microbiota can have significant impacts on host ecology and evolution and are often host-specific. Multiple factors can contribute to such host-specificity: (1) host dietary specialization passively determining microbial colonization, (2) hosts selecting for specific diet-acquired microbiota, or (3) a combination of both. The latter possibilities indicate a functional association and should produce stable microbiota. We tested these alternatives by analyzing the gut bacterial communities of six species of wild adult dragonfly populations collected across several geographic locations. The bacterial community composition was predominantly explained by sampling location, and only secondarily by host identity. To distinguish the role of host dietary specialization and host-imposed selection, we identified prey in the guts of three dragonfly species. Surprisingly, the dragonflies–considered to be generalist predators–consumed distinct prey; and the prey diversity was strongly correlated with the gut bacterial profile. Such host dietary specialization and spatial variation in bacterial communities suggested passive rather than selective underlying processes. Indeed, the abundance and distribution of 72% of bacterial taxa were consistent with neutral community assembly; and fluorescent in situ hybridization revealed that bacteria only rarely colonized the gut lining. Our results contradict the expectation that host-imposed selection shapes the gut microbiota of most insects, and highlight the importance of joint analyses of diet and gut microbiota of natural host populations.
Collapse
Affiliation(s)
- Rittik Deb
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, India
| | - Ashwin Nair
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, India.,Shanmugha Arts, Science, Technology & Research Academy (SASTRA University), Thanjavur, Tamil Nadu, India
| | - Deepa Agashe
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, India
| |
Collapse
|
6
|
van der Reis AL, Laroche O, Jeffs AG, Lavery SD. Preliminary analysis of New Zealand scampi ( Metanephrops challengeri) diet using metabarcoding. PeerJ 2018; 6:e5641. [PMID: 30258728 PMCID: PMC6151254 DOI: 10.7717/peerj.5641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/25/2018] [Indexed: 11/29/2022] Open
Abstract
Deep sea lobsters are highly valued for seafood and provide the basis of important commercial fisheries in many parts of the world. Despite their economic significance, relatively little is known about their natural diets. Microscopic analyses of foregut content in some species have suffered from low taxonomic resolution, with many of the dietary items difficult to reliably identify as their tissue is easily digested. DNA metabarcoding has the potential to provide greater taxonomic resolution of the diet of the New Zealand scampi (Metanephrops challengeri) through the identification of gut contents, but a number of methodological concerns need to be overcome first to ensure optimum DNA metabarcoding results. In this study, a range of methodological parameters were tested to determine the optimum protocols for DNA metabarcoding, and provide a first view of M. challengeri diet. Several PCR protocols were tested, using two universal primer pairs targeting the 18S rRNA and COI genes, on DNA extracted from both frozen and ethanol preserved samples for both foregut and hindgut digesta. The selection of appropriate DNA polymerases, buffers and methods for reducing PCR inhibitors (including the use of BSA) were found to be critical. Amplification from frozen or ethanol preserved gut contents appeared similarly dependable. The COI gene was found to be more effective than 18S rRNA gene for identifying large eukaryotic taxa from the digesta; however, it was less successfully amplified. The 18S rRNA gene was more easily amplified, but identified mostly smaller marine organisms such as plankton and parasites. This preliminary analysis of the diet of M. challengeri identified a range of species (13,541 reads identified as diet), which included the ghost shark (Hydrolagus novaezealandiae), silver warehou (Seriolella punctata), tall sea pen (Funiculina quadrangularis) and the salp (Ihlea racovitzai), suggesting that they have a varied diet, with a high reliance on scavenging a diverse range of pelagic and benthic species from the seafloor.
Collapse
Affiliation(s)
| | - Olivier Laroche
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew G. Jeffs
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shane D. Lavery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Predatory flying squids are detritivores during their early planktonic life. Sci Rep 2018; 8:3440. [PMID: 29467371 PMCID: PMC5821876 DOI: 10.1038/s41598-018-21501-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Cephalopods are primarily active predators throughout life. Flying squids (family Ommastrephidae) represents the most widely distributed and ecologically important family of cephalopods. While the diets of adult flying squids have been extensively studied, the first feeding diet of early paralarvae remains a mystery. The morphology of this ontogenetic stage notably differs from other cephalopod paralarvae, suggesting a different feeding strategy. Here, a combination of Laser Capture Microdissection (LCM) and DNA metabarcoding of wild-collected paralarvae gut contents for eukaryotic 18S v9 and prokaryotic 16S rRNA was applied, covering almost every life domain. The gut contents were mainly composed by fungus, plants, algae and animals of marine and terrestrial origin, as well as eukaryotic and prokaryotic microorganisms commonly found in fecal pellets and particulate organic matter. This assemblage of gut contents is consistent with a diet based on detritus. The ontogenetic shift of diet from detritivore suspension feeding to active predation represents a unique life strategy among cephalopods and allows ommastrephid squids to take advantage of an almost ubiquitous and accessible food resource during their early stages. LCM was successfully applied for the first time to tiny, wild-collected marine organisms, proving its utility in combination with DNA metabarcoding for dietary studies.
Collapse
|
8
|
Tan S, Liu H. Unravel the hidden protistan diversity: application of blocking primers to suppress PCR amplification of metazoan DNA. Appl Microbiol Biotechnol 2017; 102:389-401. [PMID: 29080999 DOI: 10.1007/s00253-017-8565-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/08/2017] [Accepted: 09/28/2017] [Indexed: 11/28/2022]
Abstract
Planktonic protists, including both autotroph and heterotroph, have been recognized as a major contributor to primary production and consumers of bacteria, archaea and picophytoplankton. However, the understanding of protistan diversity is typically impeded by the large amount of metazoans when employing universal primers to environmental samples. In this study, we developed 3 blocking primers to inhibit the amplification of metazoan DNA in PCR. First, we optimized the design and concentration of blocking primers by using 2 metazoans and 3 protists in quantitative PCR. No significant difference (q > 0.05) was found in protistan community structure at phylum, family or OTU levels and genetic diversity between samples amplified with and without adding blocking primers, indicating that the blocking primer does not alter the composition of protistan community. An application to samples with a high abundance of metazoans showed that the blocking primer can reduce 42.1-72.4% of metazoan sequences, resulting the retrieval of a higher protistan richness and diversity. The use of the blocking primer helped to identify protistan community composition from a large size fraction, which is usually dominated by metazoans. Protistan community from the small (0.2-10 μm) and large (> 10 μm) size fractions exhibited a low similarity of 36.6% and shared 14.7% OTUs. About 63.8% of the OTUs were unique to the large fraction. Species from groups, such as Lepidodinium, Warnowia, Kareniaceae, Torodiniales, Phaeocystis, Chrysochromulina and Chrysophyceae, were enriched in the large fraction, indicating that they could be largely underestimated in studies that exclude the large-sized cells. Blocking primers are a promising tool to increase the efficiency for the characterization of protistan diversity in aquatic planktonic ecosystems.
Collapse
Affiliation(s)
- Shangjin Tan
- Division of Life Science, The Hong Kong University of Science and Technology, CYT5004, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, CYT5004, Clear Water Bay, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 2016; 89:16-37. [PMID: 27490868 DOI: 10.1111/cbdd.12833] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022]
Abstract
This review briefly discussed nomenclature, synthesis, chemistry, and biophysical properties of a plethora of PNA derivatives reported since the discovery of aegPNA. Different synthetic methods and structural analogs of PNA synthesized till date were also discussed. An insight was gained into various chemical, physical, and biological properties of PNA which make it preferable over all other classes of modified nucleic acid analogs. Thereafter, various approaches with special attention to the practical constraints, characteristics, and inherent drawbacks leading to the delay in the development of PNA as gene therapeutic drug were outlined. An explicit account of the successful application of PNA in different areas of research such as antisense and antigene strategies, diagnostics, molecular probes, and so forth was described along with the current status of PNA as gene therapeutic drug. Further, the plausibility of the existence of PNA and its role in primordial chemistry, that is, origin of life was explored in an endeavor to comprehend the mystery and open up its deepest secrets ever engaging and challenging the human intellect. We finally concluded it with a discussion on the future prospects of PNA technology in the field of therapeutics, diagnostics, and origin of life.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, García-Galano T, Martínez-Rodríguez G, Mancera JM. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus. PLoS One 2016; 11:e0158919. [PMID: 27391425 PMCID: PMC4938498 DOI: 10.1371/journal.pone.0158919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.
Collapse
Affiliation(s)
- Leandro Rodríguez-Viera
- Center for Marine Research, University of Havana, Havana, Cuba
- Department of Biology, University of Cadiz, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | - Erick Perera
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | | | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Antonio Casuso
- Center for Marine Research, University of Havana, Havana, Cuba
| | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | | | | | | |
Collapse
|
11
|
Falk BG, Reed RN. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus. PeerJ 2015; 3:e1445. [PMID: 26623196 PMCID: PMC4662595 DOI: 10.7717/peerj.1445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Molecular approaches to prey identification are increasingly useful in elucidating predator-prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons.
Collapse
Affiliation(s)
- Bryan G Falk
- US Geological Survey, Fort Collins Science Center , Fort Collins, CO , USA
| | - Robert N Reed
- US Geological Survey, Fort Collins Science Center , Fort Collins, CO , USA
| |
Collapse
|
12
|
Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. J Comp Physiol B 2014; 185:17-35. [PMID: 25192870 DOI: 10.1007/s00360-014-0851-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Trypsin enzymes have been studied in a wide variety of animal taxa due to their central role in protein digestion as well as in other important physiological and biotechnological processes. Crustacean trypsins exhibit a high number of isoforms. However, while differences in properties of isoenzymes are known to play important roles in regulating different physiological processes, there is little information on this aspect for decapod trypsins. The aim of this review is to integrate recent findings at the molecular level on trypsin enzymes of the spiny lobster Panulirus argus, into higher levels of organization (biochemical, organism) and to interpret those findings in relation to the feeding ecology of these crustaceans. Trypsin in lobster is a polymorphic enzyme, showing isoforms that differ in their biochemical features and catalytic efficiencies. Molecular studies suggest that polymorphism in lobster trypsins may be non-neutral. Trypsin isoenzymes are differentially regulated by dietary proteins, and it seems that some isoenzymes have undergone adaptive evolution coupled with a divergence in expression rate to increase fitness. This review highlights important but poorly studied issues in crustaceans in general, such as the relation among trypsin polymorphism, phenotypic (digestive) flexibility, digestion efficiency, and feeding ecology.
Collapse
|
13
|
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods 2013; 10:999-1002. [PMID: 23995388 DOI: 10.1038/nmeth.2634] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/31/2013] [Indexed: 11/09/2022]
Abstract
We describe improvements for sequencing 16S ribosomal RNA (rRNA) amplicons, a cornerstone technique in metagenomics. Through unique tagging of template molecules before PCR, amplicon sequences can be mapped to their original templates to correct amplification bias and sequencing error with software we provide. PCR clamps block amplification of contaminating sequences from a eukaryotic host, thereby substantially enriching microbial sequences without introducing bias.
Collapse
Affiliation(s)
- Derek S Lundberg
- 1] Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, USA. [3]
| | | | | | | | | |
Collapse
|
14
|
Egizi A, Healy SP, Fonseca DM. Rapid blood meal scoring in anthropophilic Aedes albopictus and application of PCR blocking to avoid pseudogenes. INFECTION GENETICS AND EVOLUTION 2013; 16:122-8. [PMID: 23352890 DOI: 10.1016/j.meegid.2013.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Blood meal analysis (BMA) is a useful tool for epidemiologists and vector ecologists to assess which vector species are critical to disease transmission. In most current BMA assays vertebrate primers amplify DNA from a blood meal, commonly an abundant mitochondrial (mtDNA) locus, which is then sequenced and compared to known sequences in GenBank to identify its source. This technique, however, is time consuming and costly as each individual sample must be sequenced for species identification and mixed blood meals cloned prior to sequencing. Further, we found that several standard BMA vertebrate primers match sequences of the mtDNA of the Asian tiger mosquito, Aedes albopictus, making their use for blood meal identification in this species impossible. Because of the importance of Ae. albopictus as a vector of dengue and chikungunya viruses to humans, we designed a rapid assay that allows easy identification of human blood meals as well as mixed meals between human and nonhuman mammals. The assay consists of a nested PCR targeting the cytochrome b (cytb) mtDNA locus with a blocking primer in the internal PCR. The blocking primer has a 3' inverted dT modification that when used with the Stoffel Taq fragment prevents amplification of nuclear cytochrome b pseudogenes in humans and allows for the continued use of cytb in BMA studies, as it is one of the most species-rich loci in GenBank. We used our assay to examine 164 blooded specimens of Ae. albopictus from suburban coastal New Jersey and found 62% had obtained blood from humans with 7.6% mixes between human and another mammal species. We also confirmed the efficiency of our assay by comparing it with standard BMA primers on a subset of 62 blooded Ae. albopictus. While this assay was designed for use in Ae. albopictus, it will have broader application in other anthropophilic mosquitoes.
Collapse
Affiliation(s)
- Andrea Egizi
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
15
|
O'Rorke R, Lavery S, Chow S, Takeyama H, Tsai P, Beckley LE, Thompson PA, Waite AM, Jeffs AG. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One 2012; 7:e42757. [PMID: 22927937 PMCID: PMC3424154 DOI: 10.1371/journal.pone.0042757] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/10/2012] [Indexed: 01/01/2023] Open
Abstract
The Western Australian rock lobster fishery has been both a highly productive and sustainable fishery. However, a recent dramatic and unexplained decline in post-larval recruitment threatens this sustainability. Our lack of knowledge of key processes in lobster larval ecology, such as their position in the food web, limits our ability to determine what underpins this decline. The present study uses a high-throughput amplicon sequencing approach on DNA obtained from the hepatopancreas of larvae to discover significant prey items. Two short regions of the 18S rRNA gene were amplified under the presence of lobster specific PNA to prevent lobster amplification and to improve prey amplification. In the resulting sequences either little prey was recovered, indicating that the larval gut was empty, or there was a high number of reads originating from multiple zooplankton taxa. The most abundant reads included colonial Radiolaria, Thaliacea, Actinopterygii, Hydrozoa and Sagittoidea, which supports the hypothesis that the larvae feed on multiple groups of mostly transparent gelatinous zooplankton. This hypothesis has prevailed as it has been tentatively inferred from the physiology of larvae, captive feeding trials and co-occurrence in situ. However, these prey have not been observed in the larval gut as traditional microscopic techniques cannot discern between transparent and gelatinous prey items in the gut. High-throughput amplicon sequencing of gut DNA has enabled us to classify these otherwise undetectable prey. The dominance of the colonial radiolarians among the gut contents is intriguing in that this group has been historically difficult to quantify in the water column, which may explain why they have not been connected to larval diet previously. Our results indicate that a PCR based technique is a very successful approach to identify the most abundant taxa in the natural diet of lobster larvae.
Collapse
Affiliation(s)
- Richard O'Rorke
- Leigh Marine Laboratory, University of Auckland, Warkworth, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goulden EF, Hall MR, Pereg LL, Høj L. Identification of an antagonistic probiotic combination protecting ornate spiny lobster (Panulirus ornatus) larvae against Vibrio owensii infection. PLoS One 2012; 7:e39667. [PMID: 22792184 PMCID: PMC3390342 DOI: 10.1371/journal.pone.0039667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/24/2012] [Indexed: 12/20/2022] Open
Abstract
Vibrio owensii DY05 is a serious pathogen causing epizootics in the larviculture of ornate spiny lobster Panulirus ornatus. In the present study a multi-tiered probiotic screening strategy was used to identify a probiotic combination capable of protecting P. ornatus larvae (phyllosomas) from experimental V. owensii DY05 infection. From a pool of more than 500 marine bacterial isolates, 91 showed definitive in vitro antagonistic activity towards the pathogen. Antagonistic candidates were shortlisted based on phylogeny, strength of antagonistic activity, and isolate origin. Miniaturized assays used a green fluorescent protein labelled transconjugant of V. owensii DY05 to assess pathogen growth and biofilm formation in the presence of shortlisted candidates. This approach enabled rapid processing and selection of candidates to be tested in a phyllosoma infection model. When used in combination, strains Vibrio sp. PP05 and Pseudoalteromonas sp. PP107 significantly and reproducibly protected P. ornatus phyllosomas during vectored challenge with V. owensii DY05, with survival not differing significantly from unchallenged controls. The present study has shown the value of multispecies probiotic treatment and demonstrated that natural microbial communities associated with wild phyllosomas and zooplankton prey support antagonistic bacteria capable of in vivo suppression of a pathogen causing epizootics in phyllosoma culture systems.
Collapse
Affiliation(s)
- Evan F. Goulden
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Michael R. Hall
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lily L. Pereg
- Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
17
|
Saunders MI, Thompson PA, Jeffs AG, Säwström C, Sachlikidis N, Beckley LE, Waite AM. Fussy feeders: phyllosoma larvae of the Western Rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS One 2012; 7:e36580. [PMID: 22586479 PMCID: PMC3346720 DOI: 10.1371/journal.pone.0036580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022] Open
Abstract
The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2-8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species.
Collapse
Affiliation(s)
- Megan I. Saunders
- Oceans Institute & School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia, Australia
- Global Change Institute, University of Queensland, St. Lucia, Queensland, Australia
| | - Peter A. Thompson
- Australian Commonwealth Scientific Industrial and Research Organisation, Hobart, Tasmania, Australia
| | - Andrew G. Jeffs
- Leigh Marine Laboratory, University of Auckland, Warkworth, Northland, New Zealand
| | - Christin Säwström
- Oceans Institute & School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia, Australia
| | - Nikolas Sachlikidis
- Department of Primary Industries and Fisheries, Queensland Government, Cairns, Queensland, Australia
| | - Lynnath E. Beckley
- School of Environmental Science, Murdoch University, Murdoch, Western Australia, Australia
| | - Anya M. Waite
- Oceans Institute & School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
18
|
Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Mol Ecol 2011; 21:1931-50. [PMID: 22171763 DOI: 10.1111/j.1365-294x.2011.05403.x] [Citation(s) in RCA: 614] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The analysis of food webs and their dynamics facilitates understanding of the mechanistic processes behind community ecology and ecosystem functions. Having accurate techniques for determining dietary ranges and components is critical for this endeavour. While visual analyses and early molecular approaches are highly labour intensive and often lack resolution, recent DNA-based approaches potentially provide more accurate methods for dietary studies. A suite of approaches have been used based on the identification of consumed species by characterization of DNA present in gut or faecal samples. In one approach, a standardized DNA region (DNA barcode) is PCR amplified, amplicons are sequenced and then compared to a reference database for identification. Initially, this involved sequencing clones from PCR products, and studies were limited in scale because of the costs and effort required. The recent development of next generation sequencing (NGS) has made this approach much more powerful, by allowing the direct characterization of dozens of samples with several thousand sequences per PCR product, and has the potential to reveal many consumed species simultaneously (DNA metabarcoding). Continual improvement of NGS technologies, on-going decreases in costs and current massive expansion of reference databases make this approach promising. Here we review the power and pitfalls of NGS diet methods. We present the critical factors to take into account when choosing or designing a suitable barcode. Then, we consider both technical and analytical aspects of NGS diet studies. Finally, we discuss the validation of data accuracy including the viability of producing quantitative data.
Collapse
Affiliation(s)
- Francois Pompanon
- Université Grenoble 1, Laboratoire d'Ecologie Alpine, CNRS, UMR 5553, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The increasing sensitivity of PCR has meant that in the last two decades PCR has emerged as a major tool in diet studies, enabling us to refine our understanding of trophic links and to elucidate the diets of predators whose prey is as yet uncharacterized. The achievements and methods of PCR-based diet studies have been reviewed several times, but here we review an important development in the field: the use of PCR enrichment techniques to promote the amplification of prey DNA over that of the predator. We first discuss the success of using group-specific primers either in parallel single reactions or in multiplex reactions. We then concentrate on the more recent use of PCR enrichment techniques such as restriction enzyme digests, peptide nucleic acid clamping, DNA blocking and laser capture microdissection. We also survey the vast literature on enrichment techniques in clinical biology, to ascertain the pitfalls of enrichment techniques and what refinements have yielded some highly sensitive methods. We find that while there are several new approaches to enrichment, peptide nucleic acid clamping and DNA blocking are generally sufficient techniques for the characterization of diets of predators and highlight the most important considerations of the approach.
Collapse
Affiliation(s)
- R O'Rorke
- Leigh Marine Laboratory, University of Auckland, Warkworth, Northland 0941, New Zealand.
| | | | | |
Collapse
|
20
|
Terahara T, Chow S, Kurogi H, Lee SH, Tsukamoto K, Mochioka N, Tanaka H, Takeyama H. Efficiency of peptide nucleic acid-directed PCR clamping and its application in the investigation of natural diets of the Japanese eel leptocephali. PLoS One 2011; 6:e25715. [PMID: 22069444 PMCID: PMC3206044 DOI: 10.1371/journal.pone.0025715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022] Open
Abstract
Polymerase chain reaction (PCR)-clamping using blocking primer and DNA-analogs, such as peptide nucleotide acid (PNA), may be used to selectively amplify target DNA for molecular diet analysis. We investigated PCR-clamping efficiency by studying PNA position and mismatch with complementary DNA by designing PNAs at five different positions on the nuclear rDNA internal transcribed spacer 1 of the Japanese eel Anguilla japonica in association with intra-specific nucleotide substitutions. All five PNAs were observed to efficiently inhibit amplification of a fully complementary DNA template. One mismatch between PNA and template DNA inhibited amplification of the template DNA, while two or more mismatches did not. DNA samples extracted from dorsal muscle and intestine of eight wild-caught leptochephalus larvae were subjected to this analysis, followed by cloning, nucleotide sequence analysis, and database homology search. Among 12 sequence types obtained from the intestine sample, six were identified as fungi. No sequence similarities were found in the database for the remaining six types, which were not related to one another. These results, in conjunction with our laboratory observations on larval feeding, suggest that eel leptocephali may not be dependent upon living plankton for their food source.
Collapse
Affiliation(s)
- Takeshi Terahara
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Seinen Chow
- National Research Institute of Aquaculture, Yokosuka, Japan
| | - Hiroaki Kurogi
- National Research Institute of Aquaculture, Yokosuka, Japan
| | | | - Katsumi Tsukamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | | | - Hideki Tanaka
- National Research Institute of Aquaculture, Mie, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|