1
|
Aedo J, Aravena-Canales D, Ruiz-Jarabo I, Oyarzún R, Molina A, Martínez-Rodríguez G, Valdés JA, Mancera JM. Differential Metabolic and Transcriptional Responses of Gilthead Seabream ( Sparus aurata) Administered with Cortisol or Cortisol-BSA. Animals (Basel) 2021; 11:ani11113310. [PMID: 34828041 PMCID: PMC8614361 DOI: 10.3390/ani11113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cortisol is a key stress hormone in teleosts. Cortisol exerts its effects through genomic—and membrane-initiated mechanisms, however, the role of the latter in long-term stress responses is unknown. Here, we treated Sparus aurata with cortisol or cortisol-BSA (exclusive inductor to membrane-initiated effects) to emulate a long-term stress situation. We found that cortisol, but not cortisol-BSA, promotes energy substrate mobilization in the liver, together with the regulation of metabolism-related genes. We suggest that genomic cortisol actions exclusively participate in metabolic responses during prolonged treatment using cortisol in S. aurata. This study contributes to the current knowledge on cortisol’s involvement in stress responses in fish. Abstract Cortisol is the main glucocorticoid hormone promoting compensatory metabolic responses of stress in teleosts. This hormone acts through genomic and membrane-initiated actions to exert its functions inside the cell. Experimental approaches, using exogenous cortisol administration, confirm the role of this hormone during short (minutes to hours)- and long-term (days to weeks) responses to stress. The role of membrane-initiated cortisol signaling during long-term responses has been recently explored. In this study, Sparus aurata were intraperitoneally injected with coconut oil alone or coconut oil containing cortisol, cortisol-BSA, or BSA. After 3 days of treatment, plasma, liver, and skeletal muscle were extracted. Plasma cortisol, as well as metabolic indicators in the plasma and tissues collected, and metabolism-related gene expression, were measured. Our results showed that artificially increased plasma cortisol levels in S. aurata enhanced plasma glucose and triacylglycerols values as well as hepatic substrate energy mobilization. Additionally, cortisol stimulated hepatic carbohydrates metabolism, as seen by the increased expression of metabolism-related genes. All of these responses, observed in cortisol-administered fish, were not detected by replicating the same protocol and instead using cortisol-BSA, which exclusively induces membrane-initiated effects. Therefore, we suggest that after three days of cortisol administration, only genomic actions are involved in the metabolic responses in S. aurata.
Collapse
Affiliation(s)
- Jorge Aedo
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Daniela Aravena-Canales
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Spain; (I.R.-J.); (J.M.M.)
- Department of Animal Physiology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Ricardo Oyarzún
- Institute of Marine and Limnological Sciences, Faculty of Sciences, University Austral of Chile, Valdivia 5110652, Chile;
| | - Alfredo Molina
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Spain;
| | - Juan Antonio Valdés
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
- Correspondence: ; Tel.: +56-2661-8363; Fax: +56-2661-8415
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Spain; (I.R.-J.); (J.M.M.)
| |
Collapse
|
2
|
Hao D, Wang X, Wang X, Thomsen B, Kadarmideen HN, Lan X, Huang Y, Chen H. Transcriptomic changes in bovine skeletal muscle cells after resveratrol treatment. Gene 2020; 754:144849. [PMID: 32512157 DOI: 10.1016/j.gene.2020.144849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Skeletal muscles constitute a high proportion of the cellular mass that is essential for the growth traits in cattle. Resveratrol (RSV) is a natural polyphenol compound involved in pleiotropic biological activities of muscle. Therefore, the aim of our study was to investigate the transcriptome-level effects of RSV on bovine primary myoblast to reveal differentially expressed genes (DEGs). We treated three replicates of primary myoblasts with 20 μM mother solution containing RSV, whereas three other replicates without RSV were used as control group. Then, we conducted genome-wide transcriptome analysis for the two groups. The results of expression analysis identified 3856 DEGs of which 1805 genes were up-regulated and 2051 genes were down-regulated (adjusted P < 0.05). In addition, qRT-PCR analysis of 19 selected DEGs were consistent with the expression levels observed in the transcriptome data. Gene Ontology (GO) and pathway enrichment analysis showed 72 and 66 significant GO terms and KEGG pathways, respectively (adjusted P < 0.05). The most significant GO term was actin cytoskeleton organization (GO:0030036). The top significant KEGG pathway was focal adhesion (bta04510). Predicted protein-protein interactions (PPIs) showed that CDKN1A encoding cyclindependent kinase inhibitor 1A connects several larger protein complexes. In conclusion, our results found a list of DEGs, significant GO terms and pathways, and provided an improved and expanded understanding of the impact of RSV on cattle muscle cells at the transcriptomic level. The study elucidates the potential of using the genes enriched in pathways mediating resveratrol effects as targets in genomic selection for muscle development and growth in beef cattle.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, 712100 Yangling, Shaanxi, China; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, 712100 Yangling, Shaanxi, China
| | - Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, 712100 Yangling, Shaanxi, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, 712100 Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Aedo JE, Ruiz-Jarabo I, Martínez-Rodríguez G, Boltaña S, Molina A, Valdés JA, Mancera JM. Contribution of Non-canonical Cortisol Actions in the Early Modulation of Glucose Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:779. [PMID: 31798534 PMCID: PMC6863068 DOI: 10.3389/fendo.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Teleost fish are exposed to diverse stressors in farming and wildlife conditions during their lifespan. Cortisol is the main glucocorticoid hormone involved in the regulation of their metabolic acclimation under physiological stressful conditions. In this context, increased plasma cortisol is associated with energy substrate mobilization from metabolic tissues, such as liver and skeletal muscle, to rapidly obtain energy and cope with stress. The metabolic actions of cortisol have primarily been attributed to its genomic/classic action mechanism involving the interaction with intracellular receptors, and regulation of stress-responsive genes. However, cortisol can also interact with membrane components to activate rapid signaling pathways. In this work, using the teleost fish gilthead sea bream (Sparus aurata) as a model, we evaluated the effects of membrane-initiated cortisol actions on the early modulation of glucose metabolism. For this purpose, S. aurata juveniles were intraperitoneally administrated with cortisol and with its membrane impermeable analog, cortisol-BSA. After 1 and 6 h of each treatment, plasma cortisol levels were measured, together with glucose, glycogen and lactate in plasma, liver and skeletal muscle. Transcript levels of corticosteroids receptors (gr1, gr2, and mr) and key gluconeogenesis (g6pc and pepck)- and glycolysis (pgam1 and aldo) related genes in the liver were also measured. Cortisol and cortisol-BSA administration increased plasma cortisol levels in S. aurata 1 h after administration. Plasma glucose levels enhanced 6 h after each treatment. Hepatic glycogen content decreased in the liver at 1 h of both cortisol and cortisol-BSA administration, while increased at 6 h due to cortisol but not in response to cortisol-BSA. Expression of gr1, g6pc, pgam1, and aldo were preferentially increased by cortisol-BSA in the liver. Taking all these results in consideration, we suggest that non-canonical cortisol mechanisms contribute to the regulation of the early glucose metabolism responses to stress in S. aurata.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Spain
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Juan A. Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Juan A. Valdés
| | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| |
Collapse
|
4
|
Capolupo M, Díaz-Garduño B, Martín-Díaz ML. The impact of propranolol, 17α-ethinylestradiol, and gemfibrozil on early life stages of marine organisms: effects and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32196-32209. [PMID: 30220067 DOI: 10.1007/s11356-018-3185-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are ubiquitously detected in the marine environment at the ng-μg/L range. Given their biological activity, these compounds are known to induce detrimental effects on biota at relatively low exposure levels; however, whether they affect early life stages of marine species is still unclear. In this study, a set of bioassays was performed to assess the effects of propranolol (PROP), 17-α ethinylestradiol (EE2), and gemfibrozil (GEM) on gamete fertilization and embryonic development of mussels (Mytilus galloprovincialis) and sea urchins (Paracentrotus lividus), and on the survival of seabream (Sparus aurata) larvae. Treatments of PROP (500, 5000, 50,000 ng/L), EE2 (5, 50, 500 ng/L), and GEM (50, 500, 5000 ng/L) were selected to encompass levels comparable or superior to environmental concentrations. Obtained data were tested for dose-response curve fitting and the lowest EC10/LC10 used to calculate risk quotients (RQs) based on the MEC/PNEC. No alteration was induced by PROP on the mussel gamete fertilization, while inhibitory effects were observed at environmental levels of EE2 (500 ng/L) and GEM (5000 ng/L). Fertilization was significantly reduced in sea urchin at all PROP and EE2 dosages. The 48-h exposure to all pharmaceuticals induced the onset of morphological abnormalities in either mussel or sea urchin embryos. Alterations were generally observed at environmentally relevant dosages, except for PROP in mussels, in which alterations occurred only at 50,000 ng/L. A decreased survival of seabream larvae was recorded after 96-h exposure to PROP (all treatments), EE2 (50-500 ng/L), and GEM (500 ng/L). A median RQ > 1 was obtained for all pharmaceuticals, assigning a high risk to their occurrence in marine environments. Overall, results showed that current levels of contamination by pharmaceuticals can impact early stages of marine species, which represent critical junctures in the resilience of coastal ecosystems.
Collapse
Affiliation(s)
- Marco Capolupo
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, P.zza di P.ta S. Donato 1, 40100, Bologna, Italy.
- Inter-Departmental Research Centre for Environmental Science (CIRSA), University of Bologna, Via S. Alberto 163, 48123, Ravenna, Italy.
| | - Beatriz Díaz-Garduño
- Physical Chemical Department, Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - Maria Laura Martín-Díaz
- Physical Chemical Department, Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
5
|
Silva-Marrero JI, Sáez A, Caballero-Solares A, Viegas I, Almajano MP, Fernández F, Baanante IV, Metón I. A transcriptomic approach to study the effect of long-term starvation and diet composition on the expression of mitochondrial oxidative phosphorylation genes in gilthead sea bream (Sparus aurata). BMC Genomics 2017; 18:768. [PMID: 29020939 PMCID: PMC5637328 DOI: 10.1186/s12864-017-4148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Background The impact of nutritional status and diet composition on mitochondrial oxidative phosphorylation (OXPHOS) in fish remains largely unknown. To identify biomarkers of interest in nutritional studies, herein we obtained a deep-coverage transcriptome by 454 pyrosequencing of liver and skeletal muscle cDNA normalised libraries from long-term starved gilthead sea bream (Sparus aurata) and fish fed different diets. Results After clean-up of high-throughput deep sequencing reads, 699,991 and 555,031 high-quality reads allowed de novo assembly of liver and skeletal muscle sequences, respectively (average length: 374 and 441 bp; total megabases: 262 and 245 Mbp). An additional incremental assembly was completed by integrating data from both tissues (hybrid assembly). Assembly of hybrid, liver and skeletal muscle transcriptomes yielded, respectively, 19,530, 11,545 and 10,599 isotigs (average length: 1330, 1208 and 1390 bp, respectively) that were grouped into 15,954, 10,033 and 9189 isogroups. Following annotation, hybrid transcriptomic data were used to construct an oligonucleotide microarray to analyse nutritional regulation of the expression of 129 genes involved in OXPHOS in S. aurata. Starvation upregulated cytochrome c oxidase components and other key OXPHOS genes in the liver, which exhibited higher sensitive to food deprivation than the skeletal muscle. However, diet composition affected OXPHOS in the skeletal muscle to a greater extent than in the liver: most of genes upregulated under starvation presented higher expression among fish fed a high carbohydrate/low protein diet. Conclusions Our findings indicate that the expression of coenzyme Q-binding protein (COQ10), cytochrome c oxidase subunit 6A2 (COX6A2) and ADP/ATP translocase 3 (SLC25A6) in the liver, and cytochrome c oxidase subunit 5B isoform 1 (COX5B1) in the liver and the skeletal muscle, are sensitive markers of the nutritional condition that may be relevant to assess the effect of changes in the feeding regime and diet composition on fish farming. Electronic supplementary material The online version of this article (10.1186/s12864-017-4148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Alberto Sáez
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Ivan Viegas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep 2017; 7:12943. [PMID: 29021622 PMCID: PMC5636797 DOI: 10.1038/s41598-017-13514-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The regulation of circadian gene expression remains largely unknown in farmed fish larvae. In this study, a high-density oligonucleotide microarray was used to examine the daily expression of 13,939 unique genes in whole gilthead sea bream (Sparus aurata) larvae with fast growth potentiality. Up to 2,229 genes were differentially expressed, and the first two components of Principal Component Analysis explained more than 81% of the total variance. Clustering analysis of differentially expressed genes identified 4 major clusters that were triggered sequentially, with a maximum expression at 0 h, 3 h, 9–15 h and 18-21 h zeitgeber time. Various core clock genes (per1, per2, per3, bmal1, cry1, cry2, clock) were identified in clusters 1–3, and their expression was significantly correlated with several genes in each cluster. Functional analysis revealed a daily consecutive activation of canonical pathways related to phototransduction, intermediary metabolism, development, chromatin remodeling, and cell cycle regulation. This daily transcriptome of whole larvae resembles a cell cycle (G1/S, G2/M, and M/G1 transitions) in synchronization with multicellular processes, such as neuromuscular development. This study supports that the actively feeding fish larval transcriptome is temporally organized in a 24-h cycle, likely for maximizing growth and development.
Collapse
|
7
|
Cordero H, Guzmán-Villanueva LT, Chaves-Pozo E, Arizcun M, Ascencio-Valle F, Cuesta A, Esteban MA. Comparative ontogenetic development of two marine teleosts, gilthead seabream and European sea bass: New insights into nutrition and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:1-7. [PMID: 27317010 DOI: 10.1016/j.dci.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Gilthead seabream and European sea bass are two of the most commonly farmed fish species. Larval development is critical to ensure high survival rates and thus avoid unacceptable economic losses, while nutrition and immunity are also important factors. For this reason this paper evaluates the ontogenetic development of seabream and sea bass digestive and immune systems from eggs to 73 days post-fertilisation (dpf) by assessing the expression levels of some nutrition-relevant (tryp, amya, alp and pept1) and immune-relevant (il1b, il6, il8, tnfa, cox2, casp1, tf, nccrp1, ighm and ight) genes. The results point to similar ontogenetic development trends for both species as regard nutrition and differences in some immunity related genes.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Laura T Guzmán-Villanueva
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23090, México
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Spain
| | - Felipe Ascencio-Valle
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23090, México
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
8
|
Louro B, Marques JP, Power DM, Canário AVM. Having a BLAST: Searchable transcriptome resources for the gilthead sea bream and the European sea bass. Mar Genomics 2016; 30:67-71. [PMID: 27742405 DOI: 10.1016/j.margen.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/09/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022]
Abstract
The gilthead sea bream (Sparus aurata) and the European sea bass (Dicentrarchus labrax) are the most important aquaculture species in the Mediterranean Sea and since the last decade it has been seen an exponential increase in their available molecular resources. In order to improve accessibility to transcriptome resources, Expressed Sequence Tags (ESTs), mRNA sequences and raw read sequences were assembled and deposited in BLAST queryable databases. The publicly available sea bream and sea bass sequences (6.4 and 247.5 million) generated 45,094 and 68,117 assembled sequences, with, respectively, arithmetic mean size of 998 and 2125bp and N50 of 1302 and 2966bp. The assemblies will be regularly updated and new analytical tools added to the web server at http://sea.ccmar.ualg.pt.
Collapse
Affiliation(s)
- Bruno Louro
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - João Pedro Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto. Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Deborah M Power
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
10
|
Magnanou E, Noirot C, Falcón J, Jørgensen EH. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish. Mar Genomics 2016; 29:45-53. [PMID: 27118202 DOI: 10.1016/j.margen.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000bp with an average length (1690bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture.
Collapse
Affiliation(s)
- Elodie Magnanou
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France.
| | - Celine Noirot
- INRA, Plateforme bioinformatique Toulouse Midi-Pyrénées, UR875 Biométrie et Intelligence Artificielle, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Even Hjalmar Jørgensen
- Faculty of Biosciences, Fisheries and Economy, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tormsø, Norway.
| |
Collapse
|
11
|
Patel A, Dettleff P, Hernandez E, Martinez V. A comprehensive transcriptome of early development in yellowtail kingfish (Seriola lalandi). Mol Ecol Resour 2015; 16:364-76. [DOI: 10.1111/1755-0998.12451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022]
Affiliation(s)
- A. Patel
- FAVET-INBIOGEN; Faculty of Veterinary Sciences; University of Chile; Avda. Santa Rosa 11735 Santiago Chile
| | - P. Dettleff
- FAVET-INBIOGEN; Faculty of Veterinary Sciences; University of Chile; Avda. Santa Rosa 11735 Santiago Chile
| | - E. Hernandez
- FAVET-INBIOGEN; Faculty of Veterinary Sciences; University of Chile; Avda. Santa Rosa 11735 Santiago Chile
| | - V. Martinez
- FAVET-INBIOGEN; Faculty of Veterinary Sciences; University of Chile; Avda. Santa Rosa 11735 Santiago Chile
| |
Collapse
|
12
|
Callol A, Reyes-López FE, Roig FJ, Goetz G, Goetz FW, Amaro C, MacKenzie SA. An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus. PLoS One 2015. [PMID: 26207370 PMCID: PMC4514713 DOI: 10.1371/journal.pone.0133328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2x106 reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue.
Collapse
Affiliation(s)
- Agnès Callol
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department de Biologia cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco J. Roig
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Giles Goetz
- Northwest Fisheries Science Center, Seattle, United States of America
| | | | - Carmen Amaro
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Simon A. MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Transcriptomic responses of Atlantic salmon (Salmo salar) to environmental enrichment during juvenile rearing. PLoS One 2015; 10:e0118378. [PMID: 25742646 PMCID: PMC4350989 DOI: 10.1371/journal.pone.0118378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar). Full siblings were reared in either a hatchery environment devoid of structure or an environment enriched with gravel substrate. At the end of endogenous feeding by juveniles, we examined patterns of gene transcript abundance in head tissues using the cGRASP-designed Agilent 4×44K microarray. Significance analysis of microarrays (SAM) indicated that 808 genes were differentially transcribed between the rearing environments and a total of 184 gene ontological (GO) terms were over- or under-represented in this gene list, several associated with mitosis/cell cycle and muscle and heart development. There were also pronounced differences among families in the degree of transcriptional response to rearing environment enrichment, suggesting that gene-by-environment effects, possibly related to parental origin, could influence the efficacy of enrichment interventions.
Collapse
|
14
|
Zhang X, Wang S, Chen S, Chen Y, Liu Y, Shao C, Wang Q, Lu Y, Gong G, Ding S, Sha Z. Transcriptome analysis revealed changes of multiple genes involved in immunity in Cynoglossus semilaevis during Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:209-218. [PMID: 25543033 DOI: 10.1016/j.fsi.2014.11.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis) is one of the most valuable marine aquatic species in Northern China. Given to the rapid development of aquaculture industry, the C. semilaevis was subjected to disease-causing bacteria Vibrio anguillarum. It therefore is indispensable and urgent to understand the mechanism of C. semilaevis host defense against V. anguillarum infection. In the present study, the extensively analysis at the transcriptome level for V. Anguillarum disease in tongue sole was carried out. In total, 94,716 high quality contigs were generated from 75,884,572 clean reads in three libraries (HOSG, NOSG, and CG). 22,746 unigenes were identified when compared with SwissProt, an NR protein database and NT nucleotide database. 954 genes exhibiting the differentially expression at least one pair of comparison in all three libraries were identified. GO enrichment for these genes revealed gene response to biotic stimulus, immune system regulation, and immune response and cytokine production. Further, the pathways such as complement and coagulation cascades and Vibrio cholerae infection pathways were enriched in defensing of pathogen. Besides, 13,428 SSRs and 118,239 SNPs were detected in tongue sole, providing further support for genetic variation and marker-assisted selection in future. In summary, this study identifies several putative immune pathways and candidate genes deserving further investigation in the context of development of therapeutic regimens and lays the foundation for selecting resistant lines of C. semilaevis against V. anguillarum.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China; Laboratory of Marine Biodiversity and Global Change, College of Oceanography and Environmental Science, Xiamen University, 182 Daxue Road, Xiamen 361005, Fujian, China
| | - Shaolin Wang
- Department of Psychiatry & Neurobiology Science, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville 22911, VA, USA
| | - Songlin Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yadong Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Changwei Shao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Qilong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yang Lu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Guangye Gong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Shaoxiong Ding
- Laboratory of Marine Biodiversity and Global Change, College of Oceanography and Environmental Science, Xiamen University, 182 Daxue Road, Xiamen 361005, Fujian, China
| | - Zhenxia Sha
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| |
Collapse
|
15
|
Second generation genetic linkage map for the gilthead sea bream Sparus aurata L. Mar Genomics 2014; 18 Pt A:77-82. [DOI: 10.1016/j.margen.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
|
16
|
Benzekri H, Armesto P, Cousin X, Rovira M, Crespo D, Merlo MA, Mazurais D, Bautista R, Guerrero-Fernández D, Fernandez-Pozo N, Ponce M, Infante C, Zambonino JL, Nidelet S, Gut M, Rebordinos L, Planas JV, Bégout ML, Claros MG, Manchado M. De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genomics 2014; 15:952. [PMID: 25366320 PMCID: PMC4232633 DOI: 10.1186/1471-2164-15-952] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022] Open
Abstract
Background Senegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution. Results A comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB. Conclusions Transcriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-952) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Manuel Manchado
- IFAPA Centro El Toruño, IFAPA, Consejeria de Agricultura y Pesca, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
17
|
Li J, Li J, Chen P, Liu P, He Y. Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda: assembly, annotation and marker discovery. Mol Biol Rep 2014; 42:135-47. [PMID: 25266235 DOI: 10.1007/s11033-014-3749-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023]
Abstract
The ridgetail white prawn Exopalaemon carinicauda is one of major economic mariculture species in eastern China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its good traits. In the present study, 454 pyrosequencing was undertaken to investigate the transcriptome profiles of E. carinicauda. A collection of 1,028,710 sequence reads (459.59 Mb) obtained from cDNA prepared from eyestalk and hemocytes was assembled into 162,056 expressed sequence tags (ESTs). Of these, 29.88 % of 48,428 contigs and 70.12 % of 113,628 singlets possessed high similarities to sequences in the GenBank non-redundant database, with most significant (E value <1e(-10)) unigenes matches occurring with crustacean and insect sequences. KEGG analysis of unigenes identified putative members of biological pathways related to growth and immunity. In addition, we obtained a total of putative 125,112 SNPs and 13,467 microsatellites. These results will contribute to the understanding of the genome makeup and provide useful information for future functional genomic research in E. carinicauda.
Collapse
Affiliation(s)
- Jitao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | | | | | | | | |
Collapse
|
18
|
Calduch-Giner JA, Echasseriau Y, Crespo D, Baron D, Planas JV, Prunet P, Pérez-Sánchez J. Transcriptional assessment by microarray analysis and large-scale meta-analysis of the metabolic capacity of cardiac and skeletal muscle tissues to cope with reduced nutrient availability in Gilthead Sea Bream (Sparus aurata L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:423-435. [PMID: 24626932 DOI: 10.1007/s10126-014-9562-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The effects of nutrient availability on the transcriptome of cardiac and skeletal muscle tissues were assessed in juvenile gilthead sea bream fed with a standard diet at two feeding levels: (1) full ration size and (2) 70 % satiation followed by a finishing phase at the maintenance ration. Microarray analysis evidenced a characteristic transcriptomic profile for each muscle tissue following changes in oxidative capacity (heart > red skeletal muscle > white skeletal muscle). The transcriptome of heart and secondly that of red skeletal muscle were highly responsive to nutritional changes, whereas that of glycolytic white skeletal muscle showed less ability to respond. The highly expressed and nutritionally regulated genes of heart were mainly related to signal transduction and transcriptional regulation. In contrast, those of white muscle were enriched in gene ontology (GO) terms related to proteolysis and protein ubiquitination. Microarray meta-analysis using the bioinformatic tool Fish and Chips ( http://fishandchips.genouest.org/index.php ) showed the close association of a representative cluster of white skeletal muscle with some of cardiac and red skeletal muscle, and many GO terms related to mitochondrial function appeared to be common links between them. A second round of cluster comparisons revealed that mitochondria-related GOs also linked differentially expressed genes of heart with those of liver from cortisol-treated gilthead sea bream. These results show that mitochondria are among the first responders to environmental and nutritional stress stimuli in gilthead sea bream, and functional phenotyping of this cellular organelle is highly promising to obtain reliable markers of growth performance and well-being in this fish species.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes. Gene 2014; 544:56-66. [PMID: 24768179 DOI: 10.1016/j.gene.2014.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
Abstract
The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate further functional approaches.
Collapse
|
20
|
Sarropoulou E, Moghadam HK, Papandroulakis N, De la Gándara F, Ortega Garcia A, Makridis P. The Atlantic Bonito (Sarda sarda, Bloch 1793) transcriptome and detection of differential expression during larvae development. PLoS One 2014; 9:e87744. [PMID: 24503907 PMCID: PMC3913633 DOI: 10.1371/journal.pone.0087744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/28/2013] [Indexed: 01/06/2023] Open
Abstract
The Atlantic bonito (Sarda sarda, Bloch 1793) belongs to the important marine fish species with a wide geographical distribution covering the Atlantic Ocean, the Mediterranean and its bordering seas. Aquaculture practices for this species are still in their infancies and scientific studies are seldom undertaken, mainly because of difficulties in sampling. Thus for small tuna species like the Atlantic bonito only little is known about its biology and regarding the molecular background even less information is available. In the production of marine fish it is known that the most critical period is the larval stages, as high growth rates as well as significant developmental changes take place. In this study we have investigated the transcriptome of the Atlantic bonito of five larvae stages applying Illumina sequencing technology. For non-model species like aquaculture species, transcriptome analysis of RNA samples from individuals using Illumina sequencing technology is technically efficient and cost effective. In the present study a total number of 169,326,711 paired-end reads with a read length of 100 base pairs were generated resulting in a reference transcriptome of 68,220 contigs with an average length of 2054 base pairs. For differential expression analyses single end reads were obtained from different developmental stages and mapped to the constructed reference transcriptome. Differential expression analyses revealed in total 18,657 differentially expressed transcripts and were assigned to five distinguished groups. Each of the five clusters shows stage specific gene expression. We present for the first time in the Atlantic bonito an extensive RNA-Seq based characterization of its transcriptome as well as significant information on differential expression among five developmental larvae stages. The generated transcripts, including SNP and microsatellite information for candidate molecular markers and gene expression information will be a valuable resource for future genetic and molecular studies.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- * E-mail:
| | - Hooman K. Moghadam
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Fernando De la Gándara
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Aurelio Ortega Garcia
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Pavlos Makridis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
21
|
Zhang L, Li L, Zhu Y, Zhang G, Guo X. Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:17-33. [PMID: 23907648 DOI: 10.1007/s10126-013-9526-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
As a benthic filter-feeder of estuaries, the eastern oyster, Crassostrea virginica, faces tremendous exposure to microbial pathogens. How eastern oysters without adaptive immunity survive in pathogen-rich environments is of fundamental interest, but studies on its immune system are hindered by the lack of genomic resources. We sequenced the transcriptome of an adult oyster with short Illumina reads and assembled 66,229 contigs with a N50 length of 1,503 bp. The assembly covered 89.4 % of published ESTs and 97.9 % of mitochondrial genes demonstrating its quality. A set of 39,978 contigs and unigenes (>300 bp) were identified and annotated by searching public databases. Analysis of the gene set yielded a diverse set of 657 genes related to innate immunity, including many pertaining to pattern recognition, effectors, signal transduction, cytokines, and apoptosis. Gene families encoding C1q domain containing proteins, CTLD, IAPs, Ig_I-set, and TRAFs expanded in C. virginica and Crassostrea gigas. Many key genes of the apoptosis system including IAP, BAX, BAC-2, caspase, FADD, and TNFR were identified, suggesting C. virginica possess advanced apoptosis and apoptosis-regulating systems. Our results show that short Illumina reads can produce transcriptomes of highly polymorphic genomes with coverage and integrity comparable to that from longer 454 reads. The expansion and high diversity in gene families related to innate immunity, point to a complex defense system in the lophotrochozoan C. virginica, probably in adaptation to a pathogen-rich environment.
Collapse
Affiliation(s)
- Linlin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | |
Collapse
|
22
|
Lanes CFC, Bizuayehu TT, de Oliveira Fernandes JM, Kiron V, Babiak I. Transcriptome of Atlantic cod (Gadus morhua L.) early embryos from farmed and wild broodstocks. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:677-694. [PMID: 23887676 DOI: 10.1007/s10126-013-9527-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Significant efforts have been made to elucidate factors affecting egg quality in fish. Recently, we have shown that eggs originating from wild broodstock (WB) of Atlantic cod (Gadus morhua L.) are of superior quality to those derived from farmed broodstock (FB), and this is associated with differences in the chemical composition of egg yolk. However, maternal transcripts, accumulated during oogenesis, have not been studied extensively in fish. The aim of the present study was to characterize putative maternal mRNA transcriptome in fertilized eggs of Atlantic cod and to compare transcript pools between WB and FB in order to investigate the relation between egg developmental potential and putative maternal mRNA deposits. We performed high-throughput 454 pyrosequencing. For each WB and FB group, five cDNA libraries were individually tagged and sequenced, resulting in 98,687 (WB) and 119,333 (FB) average reads per library. Sequencing reads were de novo assembled, annotated, and mapped. Out of 13,726 identified isotigs, 238 were differentially expressed between WB and FB, with 155 isotigs significantly upregulated in WB. The sequence reads were mapped to 11,340 different Atlantic cod transcripts and 158 sequences were differentially expressed between the 2 groups. Important transcripts involved in fructose metabolism, fatty acid metabolism, glycerophospholipid metabolism, and oxidative phosphorylation were differentially represented between the two broodstock groups, showing potential as biomarkers of egg quality in teleosts. Our findings contribute to the hypothesis that maternal mRNAs affect egg quality and, consequently, the early development of fish.
Collapse
|
23
|
Xiao Y, Zhou Y, Xiong Z, Zou L, Jiang M, Luo Z, Wen S, Liu W, Liu S, Li W. Involvement of JNK in the embryonic development and organogenesis in zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:716-725. [PMID: 23884438 DOI: 10.1007/s10126-013-9520-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
c-Jun N-terminal kinase (JNK) is one of the mitogen-activated protein kinases. Previous studies showed that the JNK is involved in signaling pathways initiating cell cycle, and eventually, causing apoptosis through persistent activation in mammals. In this article, it is further revealed that the jnk1 gene is closely related with the embryonic development and organogenesis in zebrafish. RT-PCR and Western blot analysis show that there were distinct expression patterns of JNK at the different developmental stages as well as in the various tissues in zebrafish. Knockdown of jnk1 by RNA interference (RNAi) resulted in high lethal, serious retardation and malformations of embryos in zebrafish. SP600125, a JNK-specific inhibitor, gives rise to high mortality in zebrafish, similar to that caused by the jnk1 RNA interference. SP600125 is also responsible for the severe abnormality of organs, especially the skeletal system, such as skull, mandible deficiency, and cyrtosis heterauxesis. The results also indicate that the inhibition of JNK by SP600125 suppresses the ovarian differentiation during the embryo development in zebrafish. Overall, our study demonstrates that the jnk1 gene is required for ovary differentiation and development in the zebrafish, and down-regulated JNK directly inhibits ovary differentiation during early ontogenetic stages.
Collapse
Affiliation(s)
- Yamei Xiao
- Key Lab of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vieira FA, Thorne MAS, Stueber K, Darias M, Reinhardt R, Clark MS, Gisbert E, Power DM. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen Comp Endocrinol 2013; 191:45-58. [PMID: 23770218 DOI: 10.1016/j.ygcen.2013.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.
Collapse
|
25
|
Fernández CG, Roufidou C, Antonopoulou E, Sarropoulou E. Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:313-320. [PMID: 23053055 DOI: 10.1007/s10126-012-9486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The mechanism of early fish development as well as the control of egg quality is of great importance for the ability of the oocyte to develop after fertilization. Embryonic development is initially regulated by maternally provided mRNAs and later by the zygotic genome. Maternal mRNAs have an important role in initiating processes crucial to patterning the developing fish embryo. Furthermore, it has been shown that maternal RNA plays an important role in egg quality. The identification and characterization of candidate maternal genes in non-model fish species with important aquaculture interest like the gilthead sea bream Sparus aurata L. is of importance for future studies related to egg quality. The broodstock of the gilthead sea bream produces large quantities of eggs with a high and non-controllable quality variation. In the present study, we have studied the gene expression of 16 genes (gapdh 1 and 2, cathepsin D, L, S and Z, erk1, jnk1, p38 alpha and p38 delta, ppar alpha, beta and gamma, tubulin beta, ferritin M, cyclinA2) of different functional categories in seven developmental stages. The 16 genes were chosen based on their putative involvement in egg quality and regulation of early development. In total, 11 showed a characteristic gene expression pattern pinpointing to the possible function as maternal genes and thus may function as molecular biomarker for egg quality.
Collapse
Affiliation(s)
- Carmen García Fernández
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
26
|
Ferraresso S, Bonaldo A, Parma L, Cinotti S, Massi P, Bargelloni L, Gatta PP. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013; 14:315. [PMID: 23663263 PMCID: PMC3659078 DOI: 10.1186/1471-2164-14-315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. RESULTS The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. CONCLUSIONS Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Shi Y, Yu C, Gu Z, Zhan X, Wang Y, Wang A. Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:175-187. [PMID: 22941536 DOI: 10.1007/s10126-012-9476-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Pearl oyster, Pinctada martensii, is a marine bivalve species widely distributed in tropic and subtropic marine coasts. Mantle is the special tissue of P. martensii that secretes biomineralization proteins inducing shell deposition as well as iridescent nacre both in the inner shell and artificial nucleus. The pearl oyster is very efficient for artificial pearl production and is therefore an ideal organism for studies into the processes of biomineralization. However, deficiency of transcriptome information limits the insight into biomineralization mechanisms and pearl formation. In this study, we sequenced and characterized the P. martensii mantle transcriptome using 454 pyrosequencing. A total of 25,723 unique transcripts were assembled from 220,824 quality reads, followed by annotation and Gene Ontology classification analysis. A total of 146 unique transcript segments homologous to 49 reference biomineralization genes were identified, including calcineurin-binding protein, amorphous calcium carbonate binding protein 1, calmodulin, calponin-like protein, carbonic anhydrase 1, glycine-rich shell matrix protein, lysine-rich matrix protein, mantle gene or protein, nacrein, pearlin, PIF, regucalcin, and shematrin. The sequence data enabled the identification of 10,285 potential single nucleotide polymorphism loci and 7,836 putative indels, providing a resource for molecular biomarker, population genetics, and functional genomic studies. A large number of candidate genes for biomineralization were identified, considerably enriching resources for the study of shell formation. These sequence data will notably advance biomineralization and transcriptome study in pearl oyster and other Pinctada species.
Collapse
Affiliation(s)
- Yaohua Shi
- Key Laboratory of Tropic Biological Resources-Ministry of Education, Hainan Key Laboratory of Tropical Hydrobiological Technology, The Ocean College, Hainan University, Haikou 570228, China
| | | | | | | | | | | |
Collapse
|
28
|
Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L, Estensoro I, Ballester-Lozano G, Sitjà-Bobadilla A, Pérez-Sánchez J. Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 2013; 14:178. [PMID: 23497320 PMCID: PMC3606596 DOI: 10.1186/1471-2164-14-178] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Background The gilthead sea bream (Sparus aurata) is the main fish species cultured in the Mediterranean area and constitutes an interesting model of research. Nevertheless, transcriptomic and genomic data are still scarce for this highly valuable species. A transcriptome database was constructed by de novo assembly of gilthead sea bream sequences derived from public repositories of mRNA and collections of expressed sequence tags together with new high-quality reads from five cDNA 454 normalized libraries of skeletal muscle (1), intestine (1), head kidney (2) and blood (1). Results Sequencing of the new 454 normalized libraries produced 2,945,914 high-quality reads and the de novo global assembly yielded 125,263 unique sequences with an average length of 727 nt. Blast analysis directed to protein and nucleotide databases annotated 63,880 sequences encoding for 21,384 gene descriptions, that were curated for redundancies and frameshifting at the homopolymer regions of open reading frames, and hosted at http://www.nutrigroup-iats.org/seabreamdb. Among the annotated gene descriptions, 16,177 were mapped in the Ingenuity Pathway Analysis (IPA) database, and 10,899 were eligible for functional analysis with a representation in 341 out of 372 IPA canonical pathways. The high representation of randomly selected stickleback transcripts by Blast search in the nucleotide gilthead sea bream database evidenced its high coverage of protein-coding transcripts. Conclusions The newly assembled gilthead sea bream transcriptome represents a progress in genomic resources for this species, as it probably contains more than 75% of actively transcribed genes, constituting a valuable tool to assist studies on functional genomics and future genome projects.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Institute of Aquaculture Torre de la Sal, Castellón, CSIC, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Sarropoulou E, Galindo-Villegas J, García-Alcázar A, Kasapidis P, Mulero V. Characterization of European sea bass transcripts by RNA SEQ after oral vaccine against V. anguillarum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:634-642. [PMID: 22790793 DOI: 10.1007/s10126-012-9466-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/05/2012] [Indexed: 06/01/2023]
Abstract
The European sea bass (Dicentrarchus labrax) is, along with the gilthead sea bream (Sparus aurata), one of the most extensively cultured species in European aquaculture productions. Massive mortalities may be caused by bacterial or viral infections in intensive aquaculture production. Evaluation of the efficacy of an oral vaccine against Vibrio anguillarum (Aquavac Vibrio Oral) in sea bass revealed specific immune gene expression profiles in the gut as well as protection of fish. In the present study, we performed RNA SEQ in two different tissues: the hind gut and the head kidney. For each tissue, one control sample (where a sample presents a pool of four to five individuals) and one sample after oral vaccine against V. anguillarum were submitted to 454 next-generation sequencing. In total, 269,043 sequences were obtained, 143,007 for head kidney and 125,036 for gut. The read lengths ranged from 40 to 706 bp with an average length of 348 bp. The total number of clustered sequences for head kidney is accounting to 49,089 (∼34 %) and for gut to 71,676 (~57 %). Differential expression was detected for 496 transcripts in head kidney and for 336 in gut. The results not only enrich the present collection of expressed sequence tag sequences including rare transcripts like leukocyte immune-type receptors, cullin, or supervillin but also show the efficacy of oral vaccination against V. anguillarum.
Collapse
Affiliation(s)
- E Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece.
| | | | | | | | | |
Collapse
|