1
|
Shen Z, Shao L, Liu X, Li H, Guo H, Qin L, Luo K, Li W, Wang J, Li S, Gu Q, Guo L, Huang X, Qin Q, Liu S. Assessment of Germplasm Improvement in Three Farmed Grass Carp Populations Based on Genetic Variability. BIOLOGY 2025; 14:230. [PMID: 40136487 PMCID: PMC11939604 DOI: 10.3390/biology14030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
The assessment of genetic improvement was comprehensively analyzed using the mtDNA Cyt b gene and SSR markers among three farmed grass carp populations caught in May 2024. The results of an mtDNA Cyt b gene analysis in 198 individuals showed that the haplotype diversity index (Hi) and nucleotide diversity index (Pi) were 0.555 and 0.00058, respectively. The results of the analysis of SSR marker data in 196 individuals indicated that the unequal dosage amplification at the same locus was found in the CC population. Moreover, the total number of alleles (A: 338), number of alleles per locus (Na: 15.36), observed heterozygosity (Ho: 0.8391), expected heterozygosity (He: 0.8380), and polymorphic information content (PIC: 0.8191) in the KC population was relatively higher than that in the CC (A: 129; Na: 5.86; Ho: 0.0025; He: 0.6191; PIC: 0.5747) and CY (A: 293; Na: 8.77; Ho: 0.821; He: 0.7483; and PIC: 0.5747) populations. The FST and AMOVA analysis showed the existence of a significant differentiation (p < 0.001), with a high genetic differentiation between the CC and CY populations. In summary, a high genetic variability exists in the KC population, while the father (CY) and mother (CC) populations have relatively low genetic variability. This study reveals evidence of the existence of a "micro-hybrid". Moreover, the results demonstrated that combining both gynogenesis and backcross breeding technology is vital for the genetic improvement of grass carp. Moreover, continuous research into the genetic health of these populations is required as well as support for the protection of germplasm resources and artificial breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qinbo Qin
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.S.); (L.S.); (X.L.); (H.L.); (H.G.); (L.Q.); (K.L.); (W.L.); (J.W.); (S.L.); (Q.G.); (L.G.); (X.H.)
| | - Shaojun Liu
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.S.); (L.S.); (X.L.); (H.L.); (H.G.); (L.Q.); (K.L.); (W.L.); (J.W.); (S.L.); (Q.G.); (L.G.); (X.H.)
| |
Collapse
|
2
|
Xu P, Xiao Y, Xiao Z, Li J. Structural Variation Analysis in the samd3/elf3 Intergenic Region of the Barred knifejaw (Oplegnathus fasciatus) and the Development of Molecular Marker for Efficient Sex Identification. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:40. [PMID: 39891748 DOI: 10.1007/s10126-025-10417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
The fish species Oplegnathus fasciatus exhibits an X1X1X2X2/X1X2Y sex determination mechanism. This species holds considerable economic value and displays pronounced sexual dimorphism in growth. Therefore, the development of a rapid and accurate method for sex identification is critical to enhancing breeding efficiency and maximizing production value. Using third-generation PacBio whole-genome sequencing, we identified a homologous region in the samd3/elf3 intergenic region of the X and Y chromosomes of O. fasciatus. Analysis of the whole-genome sequence revealed a large DNA insertion marker fragment within this region. Using specifically designed primers, two bands of 390 bp and 1008 bp were successfully amplified in males, whereas only a single 390 bp band was detected in females. This marker can be easily distinguished by agarose gel electrophoresis, greatly enhancing the efficiency and accuracy of sex identification. This study not only expands the molecular marker system for sex identification of O. fasciatus but also offers a valuable methodological reference for sex identification in other economically important fish species. These findings have significant implications for germplasm improvement and efficient selection in aquaculture.
Collapse
Affiliation(s)
- Pingrui Xu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongshuang Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
4
|
Lin S, Zhang L, Wang G, Huang S, Wang Y. Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100977. [PMID: 35247793 DOI: 10.1016/j.cbd.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Aquaria species are characterized by their amazing colors and patterns. Research on the breeding molecular genetics of ornamental shrimps is surprisingly limited. We conducted a transcriptome analysis to investigate the expression of encoding genes in the integument of the strains Neocaridina denticulate sinensis. After assembled and filtered, 19,992 unigenes were annotated by aligning with public functional databases (NR, Swiss-Prot, KEGG, COG). 14,915 unigenes with significantly different expressions were found by comparing three strains integument transcriptomes. Ribosomal protein genes, ABC transporter families, calmodulin, carotenoid proteins and crustacyanin may play roles in the cytological process of pigment migration and chromatophore maintenance. Numerous color genes associated with multiple pathways including melanin, ommochrome and pteridines pathways were identified. The expression patterns of 25 candidate genes were analysis by qPCR in red, yellow, transparent and glass strains. The qPCR results in red, yellow and transparent were consistent with the level of RPKM values in the transcriptomes. The above results will advance our knowledge of integument color varieties in N. denticulate sinensis and help the genetic selection of crustaceans with consumer-favored colors. Furthermore, it also provides some candidate pigmentation genes to investigate the correlation between coloration and sympatric speciation in crustaceans.
Collapse
Affiliation(s)
- Shi Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
5
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Gao D, Huang J, Lin G, Lu J. A time-course transcriptome analysis of gonads from yellow catfish (Pelteobagrus fulvidraco) reveals genes associated with gonad development. BMC Genomics 2022; 23:409. [PMID: 35637435 PMCID: PMC9153201 DOI: 10.1186/s12864-022-08651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The yellow catfish, Pelteobagrus fulvidraco, is a commercially important fish species. It is widely distributed in the fresh water areas of China, including rivers, lakes, and reservoirs. Like many other aquaculture fish species, people have observed significant size dimorphism between male and female yellow catfish and it shows a growth advantage in males. Results Here, at the first time, the time-course transcriptome was used to explore the various expression profiles of genes in different gonad developmental stages and genders. A total of 2696 different expression genes (DEGs) were identified from different stages. Based on these DEGs, 13 gonad development related genes were identified which showed time-specific or sex biased expression patterns. Conclusion This study will provide the crucial information on the molecular mechanism of gonad development of female and male yellow catfish. Especially, during the different gonad development stages, these 13 gonad development related genes exhibit various expression patterns in female and male individual respectively. These results could inspire and facilitate us to understanding the various roles of these genes play in different gonad development stages and genders. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08651-0.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China. .,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China. .,Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
7
|
Zhao H, Zhang L, Li Q, Zhao Z, Duan Y, Huang Z, Ke H, Liu C, Li H, Liu L, Du J, Wei Z, Mou C, Zhou J. Integrated analysis of the miRNA and mRNA expression profiles in Leiocassis longirostris at gonadal maturation. Funct Integr Genomics 2022; 22:655-667. [PMID: 35467220 DOI: 10.1007/s10142-022-00857-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Leiocassis longirostris is a commercially important fish species that shows a sexually dimorphic growth pattern. A lack of molecular data from the gonads of this species has hindered research and selective breeding efforts. In this study, we conducted a comprehensive analysis of the expression profile of miRNA and mRNA to explore their regulatory roles in the gonadal maturation stage of L. longirostris. We identified 60 differentially expressed miRNAs and 20,752 differentially expressed genes by sequencing. A total of 90 miRNAs and 21 target genes involved in gonad development and sex determination were identified. Overall, the results of this study enhance our understanding of the molecular mechanisms underlying sex determination and differentiation and provide valuable genomic information for the selective breeding of L. longirostris.
Collapse
Affiliation(s)
- Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yuanliang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Chao Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Lu Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhen Wei
- Leiocassis Longirostris Foundation Seed Farm, Sichuan Province, China
| | - Chengyan Mou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
8
|
Zhong H, Guo Z, Xiao J, Zhang H, Luo Y, Liang J. Comprehensive Characterization of Circular RNAs in Ovary and Testis From Nile Tilapia. Front Vet Sci 2022; 9:847681. [PMID: 35464370 PMCID: PMC9019548 DOI: 10.3389/fvets.2022.847681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is an endogenous biomolecule in eukaryotes. It has tissue- and cell-specific expression patterns and can act as a microRNA sponge or competitive endogenous RNA. Although circRNA has been found in several species in recent years, the expression profiles in fish gonad are still not fully understood. We detected the expression of circRNA in the ovary, testis, and sex-changed gonad of tilapia by high-throughput deep sequencing, and circRNA-specific computing tools. A total of 20,607 circRNAs were obtained, of which 141 were differentially expressed in the testis and ovary. Among these circRNAs, 135 circRNAs were upregulated and 6 circRNAs were downregulated in female fish. In addition, GO annotation and KEGG pathway analysis of the host genes of circRNAs indicated that these host genes were mainly involved in adherens junction, androgen production, and reproductive development, such as ZP3, PLC, delta 4a, ARHGEF10, and HSD17b3. It is worth noting that we found that circRNAs in tilapia gonads have abundant miRNA-binding sites. Among them, 935 circRNAs have a regulatory effect on miR-212, 856 circRNAs have a regulatory effect on miR-200b-3p, and 529 circRNAs have a regulatory effect on miR-200b-5p. Thus, our findings provide a new evidence for circRNA–miRNA networks in the gonads in tilapia.
Collapse
Affiliation(s)
- Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhongbao Guo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
- *Correspondence: Jun Xiao
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, China
| | - Yongju Luo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Junneng Liang
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
9
|
Ren X, Peng G, Peng B, Tan Y, Bai X. Robust strategy for disease resistance and increasing production breeding in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 122:57-66. [PMID: 35085739 DOI: 10.1016/j.fsi.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish (Procambarus clarkii) is an important aquaculture species in China. With increasing crayfish culture, a number of outbreaks of various diseases have been identified in crayfish. Despite this, there are no reports on the application of disease resistance genes in the molecular breeding of crayfish. In this study, transcriptome analysis was performed to explore the disease resistance genes in crayfish, with a focus on investigating the genetic variations in the open reading frames of these genes, for subsequent haplotype analysis. Furthermore, pathogen-challenge experiments were carried out in the crayfish, to identify the favoured haplotypes. A novel disease resistance gene, R (Resistance), was identified by means of transcriptome analysis. In total, two, four, and five haplotypes of the three disease resistance genes, ALF, R, and crustin2, respectively, were detected. ALF1, R1, and Cru1 were the favoured haplotypes of ALF, R, and crustin2, respectively. Subsequently, the favoured haplotype combinations of the different genes were obtained, and a series of molecular markers were developed to identify them. Finally, we propose a molecular breeding strategy to enhance the disease resistance of crayfish, and thus, improve its production.
Collapse
Affiliation(s)
- Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guohui Peng
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Peng
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfei Tan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
10
|
Senthilkumaran B, Kar S. Advances in Reproductive Endocrinology and Neuroendocrine Research Using Catfish Models. Cells 2021; 10:2807. [PMID: 34831032 PMCID: PMC8616529 DOI: 10.3390/cells10112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Catfishes, belonging to the order siluriformes, represent one of the largest groups of freshwater fishes with more than 4000 species and almost 12% of teleostean population. Due to their worldwide distribution and diversity, catfishes are interesting models for ecologists and evolutionary biologists. Incidentally, catfish emerged as an excellent animal model for aquaculture research because of economic importance, availability, disease resistance, adaptability to artificial spawning, handling, culture, high fecundity, hatchability, hypoxia tolerance and their ability to acclimate to laboratory conditions. Reproductive system in catfish is orchestrated by complex network of nervous, endocrine system and environmental factors during gonadal growth as well as recrudescence. Lot of new information on the molecular mechanism of gonadal development have been obtained over several decades which are evident from significant number of scientific publications pertaining to reproductive biology and neuroendocrine research in catfish. This review aims to synthesize key findings and compile highly relevant aspects on how catfish can offer insight into fundamental mechanisms of all the areas of reproduction and its neuroendocrine regulation, from gametogenesis to spawning including seasonal reproductive cycle. In addition, the state-of-knowledge surrounding gonadal development and neuroendocrine control of gonadal sex differentiation in catfish are comprehensively summarized in comparison with other fish models.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India;
| | | |
Collapse
|
11
|
Yan H, Shen X, Jiang J, Zhang L, Yuan Z, Wu Y, Liu Q, Liu Y. Gene Expression of Takifugu rubripes Gonads During AI- or MT-induced Masculinization and E2-induced Feminization. Endocrinology 2021; 162:6218011. [PMID: 33831176 DOI: 10.1210/endocr/bqab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 01/27/2023]
Abstract
Elucidating the global molecular changes that occur during aromatase inhibitor (AI)- or 17α-methyltestosterone (MT)-induced masculinization and estradiol-17β (E2)-induced feminization is critical to understanding the roles that endocrine and genetic factors play in regulating the process of sex differentiation in fish. Here, fugu larvae were treated with AI (letrozole), MT, or E2 from 25 to 80 days after hatching (dah), and gonadal transcriptomic analysis at 80 dah was performed. The expression of dmrt1, gsdf, foxl2, and other key genes (star, hsd3b1, cyp11c1, cyp19a1a, etc.) involved in the steroid hormone biosynthesis pathway were found be altered. The expression of dmrt1, gsdf, cyp19a1a, and foxl2 was further verified by quantitative polymerase chain reaction. In the control group, the expression of dmrt1 and gsdf was significantly higher in XY larvae than in XX larvae, while the expression of foxl2 and cyp19a1a was significantly higher in XX larvae than in XY larvae (P < .05). AI treatment suppressed the expression of foxl2 and cyp19a1a, and induced the expression of dmrt1 and gsdf in XX larvae. MT treatment suppressed the expression of foxl2, cyp19a1a, dmrt1, and gsdf in XX larvae. E2 treatment suppressed the expression of dmrt1 and gsdf, but did not restore the expression of foxl2 and cyp19a1a in XY larvae. The shared response following AI, MT, and E2 treatment suggested that these genes are essential for sex differentiation. This finding offers some insight into AI or MT-induced masculinization, and E2-induced femininization in fugu.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Life Sciences, Liaoning Normal university, Dalian, Liaoning 116000, China
| | - Jieming Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Zhen Yuan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Yumeng Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| |
Collapse
|
12
|
De Novo Transcriptomic Characterization Enables Novel Microsatellite Identification and Marker Development in Betta splendens. Life (Basel) 2021; 11:life11080803. [PMID: 34440547 PMCID: PMC8400612 DOI: 10.3390/life11080803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023] Open
Abstract
The wild populations of the commercially valuable ornamental fish species, Betta splendens, and its germplasm resources have long been threatened by habitat degradation and contamination with artificially bred fish. Because of the lack of effective marker resources, population genetics research projects are severely hampered. To generate genetic data for developing polymorphic simple sequence repeat (SSR) markers and identifying functional genes, transcriptomic analysis was performed. Illumina paired-end sequencing yielded 105,505,486 clean reads, which were then de novo assembled into 69,836 unigenes. Of these, 35,751 were annotated in the non-redundant, EuKaryotic Orthologous Group, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. A total of 12,751 SSR loci were identified from the transcripts and 7970 primer pairs were designed. One hundred primer pairs were randomly selected for PCR validation and 53 successfully generated target amplification products. Further validation demonstrated that 36% (n = 19) of the 53 amplified loci were polymorphic. These data could not only enrich the genetic information for the identification of functional genes but also effectively facilitate the development of SSR markers. Such knowledge would accelerate further studies on the genetic variation and evolution, comparative genomics, linkage mapping and molecular breeding in B. splendens.
Collapse
|
13
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
14
|
Huang CW, Chu PY, Wu YF, Chan WR, Wang YH. Identification of Functional SSR Markers in Freshwater Ornamental Shrimps Neocaridina denticulata Using Transcriptome Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:772-785. [PMID: 32529453 DOI: 10.1007/s10126-020-09979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The amazing colors and patterns are fascinating characteristics in all of the aquarium species. However, genetic and breeding molecular investigations of ornamental shrimps are rather limited. Here, we present the first transcriptomic analysis and application of microsatellites based on the chromatophore-encoded genes of Neocaridina denticulata to assist freshwater ornamental shrimp germplasm enhancement and its extensive applications. A total of 65,402 unigenes were annotated, and 4706 differentially expressed genes were screened and identified between super red shrimp and chocolate shrimp strains. Several gene ratios were examined to put in perspective possible genetic markers for the different strains of normal pigmentation development, including flotillin-2-like, keratin, the G protein-coupled receptor Mth2-like, annexin A7, and unconventional myosin-IXb-like. Five simple sequence repeat markers were effective for colored shrimps and were used to develop a marker-assisted selection platform for systematic breeding management program to maintain genetic diversity of the species. These markers could also be used to assist the identification of pure strains and increase the genetic stability of ornamental shrimp color phenotypes. Consequently, our results of microsatellite marker development are valuable for assisting shrimp genetic and selection breeding studies on freshwater ornamental shrimp and related crystal shrimp species.
Collapse
Affiliation(s)
- Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yu-Fang Wu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Wei-Ren Chan
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yeh-Hao Wang
- Larmax International Co., Ltd. No.9, Yuanxi 2nd Rd., Changzhi, Pingtung, Taiwan
| |
Collapse
|
15
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Xiong Y, Dan C, Ren F, Su Z, Zhang Y, Mei J. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 100:98-108. [PMID: 32142873 DOI: 10.1016/j.fsi.2020.02.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Fish mucus acts as a physiological and immunological barrier for maintaining normal fish physiology and conferring defense against pathogens infection. Here we report proteomic profiling of skin mucus of yellow catfish before and after E. ictaluri infection by Label-free LC-MS/MS approach. A total of 918 non-redundant proteins were identified from 54443 spectra referring to yellow catfish genome database. Further annotation via GO and KEGG database revealed complex protein composition of yellow catfish mucus. Besides structural proteins in mucus, a lot of immune-related proteins were retrieved, such as lectins, complement components, antibacterial peptides and immunoglobins. 133 differentially-expressed proteins (DEPs), including 76 up-regulated and 57 down-regulated proteins, were identified, most of which were enriched into 17 pathways centering on "immune system" category with 33 proteins involved. Consistently, significant proliferation of mucus-secreting goblet cells and CYPA-expressing cells were observed along outside of yellow catfish skin after E. ictaluri infection, indicating an enhanced immune response to E. ictaluri infection in yellow catfish skin mucus. The proteomic data provide systematic protein information to comprehensively understand the biological function of yellow catfish skin mucus in response to bacterial infection.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fan Ren
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - ZiHao Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yibing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Emami-Khoyi A, Parbhu SP, Ross JG, Murphy EC, Bothwell J, Monsanto DM, Vuuren BJV, Teske PR, Paterson AM. De Novo Transcriptome Assembly and Annotation of Liver and Brain Tissues of Common Brushtail Possums ( Trichosurus vulpecula) in New Zealand: Transcriptome Diversity after Decades of Population Control. Genes (Basel) 2020; 11:genes11040436. [PMID: 32316496 PMCID: PMC7230921 DOI: 10.3390/genes11040436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
The common brushtail possum (Trichosurus vulpecula), introduced from Australia in the mid-nineteenth century, is an invasive species in New Zealand where it is widespread and forms the largest self-sustained reservoir of bovine tuberculosis (Mycobacterium bovis) among wild populations. Conservation and agricultural authorities regularly apply a series of population control measures to suppress brushtail possum populations. The evolutionary consequence of more than half a century of intensive population control operations on the species’ genomic diversity and population structure is hindered by a paucity of available genomic resources. This study is the first to characterise the functional content and diversity of brushtail possum liver and brain cerebral cortex transcriptomes. Raw sequences from hepatic cells and cerebral cortex were assembled into 58,001 and 64,735 transcripts respectively. Functional annotation and polymorphism assignment of the assembled transcripts demonstrated a considerable level of variation in the core metabolic pathways that represent potential targets for selection pressure exerted by chemical toxicants. This study suggests that the brushtail possum population in New Zealand harbours considerable variation in metabolic pathways that could potentially promote the development of tolerance against chemical toxicants.
Collapse
Affiliation(s)
- Arsalan Emami-Khoyi
- Center for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Shilpa Pradeep Parbhu
- Center for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa
| | - James G Ross
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Elaine C Murphy
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jennifer Bothwell
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Daniela M Monsanto
- Center for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa
| | - Bettine Jansen van Vuuren
- Center for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa
| | - Peter R Teske
- Center for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa
| | - Adrian M Paterson
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
18
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
Affiliation(s)
- L Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - S Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Sankar
- ICAR-Central Marine Research Institute, Mandapam Regional Centre, Tamil Nadu, India
| | - S Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M A Rather
- Division of Fish genetics and Biotechnology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - J K Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
19
|
Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, Valente GT, Moreira-Filho O, Martins C, Vicari MR. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 2019; 128:547-560. [DOI: 10.1007/s00412-019-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
20
|
Genome-wide RAD sequencing to identify a sex-specific marker in Chinese giant salamander Andrias davidianus. BMC Genomics 2019; 20:415. [PMID: 31122206 PMCID: PMC6533744 DOI: 10.1186/s12864-019-5771-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/03/2019] [Indexed: 11/15/2022] Open
Abstract
Background Chinese giant salamander Andrias davidianus is an endangered species. The success of artificial breeding provides a useful way to protect this species. However, the method to identify the sex and mechanism of sex determination were unclear which hinder the improvement of the artificial breeding. Detection of a sex specific marker provides an effective approach to identify genetic sex and investigate the sex determination mechanism. Results We used restriction-site-associated DNA (RAD) sequencing to isolate a sex-specific genetic marker in A. davidianus to expand knowledge of the sex determination mechanism. Four male and four female specimens were subjected to RAD sequencing, which generated 934,072,989 reads containing approximately 134.4 Gb of sequences. The first round of comparison of the assembled sequence against the opposite sex raw reads revealed 19,097 female and 17,994 male unmatched sequences. Subsequently, 19,097 female sequences were subjected to a BLAST search against male genomic data, which revealed 308 sequences unmapped to the male genome. One hundred of these were randomly selected and validated by PCR in five male and five female specimens, and four putative sex-specific sequences were produced. Further validation was performed by PCR in another 24 females and 24 males, and all female individuals exhibited the expected specific bands, while the males did not. To apply the sex-specific marker, three specimens reversed from genetic female to physiological male were found in a group exposed to elevated temperature, and 13 individuals reversed from genetic male to physiological female were obtained in a 17β-estradiol exposed group. Conclusion This is the first report of a sex-specific marker in A. davidianus and may have potential for elucidation of its sex determination mechanism and, hence, its conservation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5771-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Shu Y, Zhang H, Cai Q, Tang D, Wang G, Liu T, Lv B, Wu H. Integrated mRNA and miRNA expression profile analyses reveal the potential roles of sex-biased miRNA-mRNA pairs in gonad tissues of the Chinese concave-eared torrent frog (Odorrana tormota). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:69-80. [PMID: 30964604 DOI: 10.1002/jez.b.22851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is typically sexually dimorphic. Females are significantly less common than males in the wild. Until now, the molecular mechanisms of reproduction and sex differentiation of frogs remain unclear. Here, we integrated mRNA and microRNA (miRNA) expression profiles to reveal the molecular mechanisms of reproduction and sex differentiation in O. tormota. We identified 234 differentially expressed miRNAs (DEMs) and 18,551 differentially expressed transcripts. Of these, 12,053 mRNAs and 64 miRNAs were upregulated in testes, and 6,498 mRNAs and 170 miRNAs were upregulated in ovaries. Integrated analysis of the miRNA and mRNA expression profiles predicted 75,602 potential miRNA-mRNA interaction sites, with 42,065 negative miRNA-mRNA interactions. We found 36 differentially expressed genes (DEGs) related to reproduction and sex differentiation, of which 15 DEGs formed 92 negative miRNA-mRNA interactions with 34 known DEMs. Thus, miRNAs may play other important roles in O. tormota. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed reproductive-related processes, such as the gonadotropinreleasing hormone signaling pathway and ovarian steroidogenesis. Based on functional annotation and the literature, the retinoic acid signaling pathway, the SOX9-AMH pathway, and the process of spermatogenesis may be involved in the molecular mechanisms of reproduction and sex differentiation in O. tormota, and may be regulated by miRNAs. The miRNA-mRNA pairs described may provide further understanding of the regulatory mechanisms associated with reproduction and sex differentiation, and the molecular mechanism of reproduction in O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Huijuan Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qijia Cai
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dong Tang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ting Liu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Bihua Lv
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
22
|
Zhang S, Zhang X, Chen X, Xu T, Wang M, Qin Q, Zhong L, Jiang H, Zhu X, Liu H, Shao J, Zhu Z, Shi Q, Bian W, You X. Construction of a High-Density Linkage Map and QTL Fine Mapping for Growth- and Sex-Related Traits in Channel Catfish ( Ictalurus punctatus). Front Genet 2019; 10:251. [PMID: 30984241 PMCID: PMC6448050 DOI: 10.3389/fgene.2019.00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
A high-density genetic linkage map is of particular importance in the fine mapping for important economic traits and whole genome assembly in aquaculture species. The channel catfish (Ictalurus punctatus), a species native to North America, is one of the most important commercial freshwater fish in the world. Outside of the United States, China has become the major producer and consumer of channel catfish after experiencing rapid development in the past three decades. In this study, based on restriction site associated DNA sequencing (RAD-seq), a high-density genetic linkage map of channel catfish was constructed by using single nucleotide polymorphisms (SNPs) in a F1 family composed of 156 offspring and their two parental individuals. A total of 4,768 SNPs were assigned to 29 linkage groups (LGs), and the length of the linkage map reached 2,480.25 centiMorgans (cM) with an average distance of 0.55 cM between loci. Based on this genetic linkage map, 223 genomic scaffolds were anchored to the 29 LGs of channel catfish, and a total length of 704.66 Mb was assembled. Quantitative trait locus (QTL) mapping and genome-wide association analysis identified 10 QTLs of sex-related and six QTLs of growth-related traits at LG17 and LG28, respectively. Candidate genes associated with sex dimorphism, including spata2, spata5, sf3, zbtb38, and fox, were identified within QTL intervals on the LG17. A sex-linked marker with simple sequence repeats (SSR) in zbtb38 gene of the LG17 was validated for practical verification of sex in the channel catfish. Thus, the LG17 was considered as a sex-related LG. Potential growth-related genes were also identified, including important regulators such as megf9, npffr1, and gas1. In a word, we constructed the high-density genetic linkage map and developed the sex-linked marker in channel catfish, which are important genetic resources for future marker-assisted selection (MAS) of this economically important teleost.
Collapse
Affiliation(s)
- Shiyong Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Qin Qin
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Hucheng Jiang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xiaohua Zhu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Junjie Shao
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Zhifei Zhu
- BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
23
|
Xiao J, Cao K, Zou Y, Xiao S, Wang Z, Cai M. Sex-biased gene discovery from the gonadal transcriptomes of the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Dan C, Lin Q, Gong G, Yang T, Xiong S, Xiong Y, Huang P, Gui JF, Mei J. A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco). Sci Bull (Beijing) 2018; 63:1420-1430. [PMID: 36658982 DOI: 10.1016/j.scib.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
The sex-determining genes are found to be variable among different fish species. Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish species in China with XX/XY sex-determining type. Recently, YY super-male yellow catfish has been successfully produced by combining hormonal-induced sex reversal method with sex chromosome-linked markers. Here, we identified a novel PDZ domain-containing gene in yellow catfish designated as pfpdz1, in whose intron the sex-linked marker was located. The coding sequence of pfpdz1 in Y chromosome was identical to that in X chromosome except a missense SNP (A/T) that changes an amino acid (E8V) in the N-terminal region. Pfpdz1 displayed male-specific expression during sex differentiation. Overexpression of pfpdz1 using additive transgenesis induces XX ovary to differentiate into testis-like tissue, while the targeted inactivation of pfpdz1 in Y chromosome using CRISPR/Cas9-mediated mutagenesis triggers ovarian differentiation. Furthermore, we demonstrated that pfpdz1 initiates testicular differentiation through upregulating expression of amh, dmrt1 and sox9a1, as well as downregulating expression of cyp19a1, foxl2 and wnt4. Our data provide functional evidence that pfpdz1 is significant for male differentiation and maintenance in yellow catfish.
Collapse
Affiliation(s)
- Cheng Dan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuting Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Qin G, Luo W, Tan S, Zhang B, Ma S, Lin Q. Dimorphism of sex and gonad-development-related genes in male and female lined seahorse, Hippocampus erectus, based on transcriptome analyses. Genomics 2018; 111:260-266. [PMID: 30445213 DOI: 10.1016/j.ygeno.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Seahorse is characterized by its male pregnancy and sex-role reversal. To better understand the sexual dimorphism of male and female seahorses based on essential genes, we performed systematic transcriptome studies for both genders. A total of 157,834,590 cleaned reads were obtained and assembled into 129,268 transcripts and 31,764 could be annotated. Results showed that 176 up-regulated and 391 down-regulated transcripts were identified in the male seahorses compared with those in females. Genes involved in sex differentiation, such as dmrt1, sox9, fem1 and vasa, were identified and characterized. Moreover, the essential genes involved in reproductive molecular pathway were identified and analyzed in seahorses. In conclusion, the present study provides an archive for the future systematic research on seahorse sex differentiation.
Collapse
Affiliation(s)
- Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Wei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shuwen Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, PR China
| | - Shaobo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, PR China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
26
|
Gong G, Dan C, Xiao S, Guo W, Huang P, Xiong Y, Wu J, He Y, Zhang J, Li X, Chen N, Gui JF, Mei J. Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis. Gigascience 2018; 7:5106933. [PMID: 30256939 PMCID: PMC6228179 DOI: 10.1093/gigascience/giy120] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/25/2018] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
Background The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource. Findings To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ∼81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis. Conclusions Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.
Collapse
Affiliation(s)
- Gaorui Gong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng Dan
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shijun Xiao
- Wuhan Frasergen Bioinformatics, East Lake High-Tech Zone, Wuhan, Hubei, 430075, China
| | - Wenjie Guo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Peipei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academyof Sciences, University of the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yang Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yan He
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jicheng Zhang
- Wuhan Frasergen Bioinformatics, East Lake High-Tech Zone, Wuhan, Hubei, 430075, China
| | - Xiaohui Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nansheng Chen
- Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
27
|
Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Genet Genomics 2018; 294:287-299. [PMID: 30377773 DOI: 10.1007/s00438-018-1508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The Chinese giant salamander Andrias davidianus is a protected amphibian with high nutritional and economic value. Understanding its sex determination mechanism is important for improving culture techniques and sex control in breeding. However, little information on the characterization of critical genes involved in sex is available. Herein, sequencing of ovary and test produced 40,783,222 and 46,128,902 raw reads, respectively, which were jointly assembled into 80,497 unigenes. Of these, 36,609 unigenes were annotated, of which 8907 were female-biased and 10,385 were male-biased. Several sex-related pathways were observed, including the Wnt signaling pathway. After elevated temperature and estrogen exposure, neomale and neofemale specimens were identified by a female-specific marker for the first time. RT-qPCR analysis showed the expression profile of ten selected sex-biased genes to be exhibited consistently in male and neomale and in female and neofemale, with the exception of the Amh and TfIIIa genes. Results suggested that these genes may play important roles in A. davidianus sex determination and gonad development. This provides a basis for further investigation of the molecular mechanisms of sex determination in amphibians.
Collapse
|
28
|
Anderson KC, Knuckey R, Cánepa M, Elizur A. A transcriptomic investigation of appetite-regulation and digestive processes in giant grouper Epinephelus lanceolatus during early larval development. JOURNAL OF FISH BIOLOGY 2018; 93:694-710. [PMID: 30232812 DOI: 10.1111/jfb.13798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The giant grouper Epinephelus lanceolatus is an ecologically vulnerable species with high market demand. However, efforts to improve larval husbandry are hindered by a lack of knowledge surrounding larval developmental physiology. To address this shortfall, a transcriptomic approach was applied to larvae between 1 and 14 days post hatch (dph) to characterise the molecular ontogenesis of genes that influence appetite and digestion. Appetite regulating factors were detected from 1 dph, including neuropeptide Y, nesfatin-1, cocaine and amphetamine regulated transcript, cholecystokinin and pituitary adenylate cyclase activating peptide and the expression level of several genes changed sharply with the onset of exogenous feeding. The level of expression for proteases, chitinases, lipases and amylases typically followed one of two expression patterns, a general increase as development progressed, or an inverted U-shape with maximal expression at c. 6 dph. Similarly, the tendency among both expression patterns was for the level of expression to increase around the time of mouth-opening. There was also evidence to suggest the presence of putative isoforms for several digestion-related genes. We have provided an insight into appetite-regulation and digestive processes in groupers during early larval development and have developed a transcriptomic database that will aid future efforts to rear this species in an aquaculture setting.
Collapse
Affiliation(s)
- Kelli C Anderson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Launceston, Australia
| | - Richard Knuckey
- The Company One, Grouper Breeding Facility, Cairns, Australia
| | | | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Australia
| |
Collapse
|
29
|
Yan H, Shen X, Cui X, Wu Y, Wang L, Zhang L, Liu Q, Jiang Y. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1275-1290. [PMID: 29777416 DOI: 10.1007/s10695-018-0519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Quantifying the expression of mRNAs in the gonads at the critical stage of molecular sex differentiation stage might help to clarify the regulatory network during early sex differentiation and provide new information on the role of sex-related genes in gonadal function. In this study, transcriptomic analysis of sex-related genes expression profiles in fugu gonads at 60 and 90 days after hatching (dah) was conducted firstly, and a total of 112,504,991 clean reads, encompassing 28.35 Gb of sequences were retrieved. Twenty-three thousand eight hundred ten genes were found to be expressed in juvenile fugu gonads, and we mainly focused on the differentially expressed genes that have the potential to be involved in the gonadal sex differentiation. For 60-dah juveniles, we identified 1014 genes that were upregulated in the ovary and 1570 that were upregulated in the testis. For 90-dah juveniles, we identified 1287 genes that were upregulated in the ovary and 1500 that were upregulated in the testis. The dimorphic expression patterns of 15 genes in gonads at 30 and 40 dah were further investigate using qPCR. Cyp11b and star were expressed at higher levels in XY than in XX, while cyp11a1 and cyp19a1a were expressed at higher levels in XX than in XY at 30 dah. At 40 dah, the levels of gsdf, dmrt1, dmrt3, cyp11c1, star, and hsd3b expression were higher in XY, while the levels of foxl2, cyp19a1a, wnt9b, and foxD4 expression were higher in XX. Sox9, cyp11a1, cyp17a1, cyp17a2, and nr5a2 were expressed at similar levels in XX and XY at 40 dah. This is the first report of gonadal transcriptome of fugu at early sex differentiation stage, and our results provide an archive for further study on molecular mechanism underlying sex differentiation in this species.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yumeng Wu
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| | - Yusheng Jiang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| |
Collapse
|
30
|
Yu L, Xu D, Ye H, Yue H, Ooka S, Kondo H, Yazawa R, Takeuchi Y. Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:467-480. [PMID: 29616430 DOI: 10.1007/s10126-018-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.
Collapse
Affiliation(s)
- Lingyun Yu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
| | - Dongdong Xu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316100, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shioh Ooka
- Japan Ocean Resources Development and Engineering Co., Ltd., 7-1 Jizohamacho, Kishiwada, Osaka, 596-0015, Japan
| | - Hidehiro Kondo
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Yutaka Takeuchi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
31
|
Anderson K, Kuo CY, Lu MW, Bar I, Elizur A. A transcriptomic investigation of digestive processes in orange-spotted grouper, Epinephelus coioides, before, during, and after metamorphic development. Gene 2018; 661:95-108. [DOI: 10.1016/j.gene.2018.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|
32
|
Chen Y, Shi M, Zhang W, Cheng Y, Wang Y, Xia XQ. The Grass Carp Genome Database (GCGD): an online platform for genome features and annotations. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4049441. [PMID: 29220445 PMCID: PMC5532967 DOI: 10.1093/database/bax051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
As one of the four major Chinese carps of important economic value, the grass carp (Ctenopharyngodon idellus) has attracted increasing attention from the scientific community. Recently, the draft genome has been released as a milestone in research of grass carp. In order to facilitate the utilization of these genome data, we developed the grass carp genome database (GCGD). GCGD provides visual presentation of the grass carp genome along with annotations and amino acid sequences of predicted protein-coding genes. Other related genetic and genomic data available in this database include the genetic linkage maps, microsatellite genetic markers (i.e. Short Sequence Repeats, SSRs), and some selected transcriptomic datasets. A series of tools have been integrated into GCGD for visualization, analysis and retrieval of data, e.g. JBrowse for navigation of genome annotations, BLAST for sequence alignment, EC2KEGG for comparison of metabolic pathways, IDConvert for conversion of terms across databases and ReadContigs for extraction of sequences from the grass carp genome. Database URL:http://bioinfo.ihb.ac.cn/gcgd
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
- University of Chinese Academy of Sciences, Beijing, China
| | - Mijuan Shi
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
| | - Wanting Zhang
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
| | - Yingyin Cheng
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
| | - Yaping Wang
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
| | - Xiao-Qin Xia
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China and
- Corresponding author: Tel/Fax: +86 27 68780915;
| |
Collapse
|
33
|
Liu H, Pang M, Yu X, Zhou Y, Tong J, Fu B. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix). DNA Res 2018; 25:4791395. [PMID: 29315393 PMCID: PMC6014435 DOI: 10.1093/dnares/dsx054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species.
Collapse
Affiliation(s)
- Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
34
|
Zhu R, Liu XX, Lv X, Li SY, Li YD, Yu XJ, Wang XG. Deciphering transcriptome profile of the yellow catfish (Pelteobagrus fulvidraco) in response to Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2017; 70:593-608. [PMID: 28866276 DOI: 10.1016/j.fsi.2017.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiella ictaluri is one of the most important pathogens posing a serious threat for yellow catfish (Pelteobagrus fulvidraco), a highly valuable fish species of increasing commercial interest in China. Here, a transcriptomic strategy was undertaken to investigate the yellow catfish gene expression profile against infection by the bacterial pathogen E. ictaluri. Comparison of the transcriptome profiles between the infected and uninfected samples showed that a massive gene expression change occurred in yellow catfish following bacterial exposure. A total of 5527 differentially expressed genes (DEGs) were detected, of which 2265 showed up-regulation and 3262 down-regulation. Gene set enrichment analysis revealed the presence of canonical pathways directly linked to innate and adaptive immune response, such as pattern recognition receptor (PRR) signaling pathways, complement and coagulation cascades, as well as T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additionally, 47,526 putative EST-liked simple sequence repeats (SSRs) markers were retrieved for use in genetic studies. This study establishes the first molecular clues to understand the potential mechanisms of yellow catfish resistance to E. ictaluri, thus enabling future efforts on disease control programs in this valuable aquaculture species.
Collapse
Affiliation(s)
- Rong Zhu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiao-Xiao Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xue Lv
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shun-Yi Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ya-Dong Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xue-Jing Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xing-Guo Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
35
|
Silva-Marrero JI, Sáez A, Caballero-Solares A, Viegas I, Almajano MP, Fernández F, Baanante IV, Metón I. A transcriptomic approach to study the effect of long-term starvation and diet composition on the expression of mitochondrial oxidative phosphorylation genes in gilthead sea bream (Sparus aurata). BMC Genomics 2017; 18:768. [PMID: 29020939 PMCID: PMC5637328 DOI: 10.1186/s12864-017-4148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Background The impact of nutritional status and diet composition on mitochondrial oxidative phosphorylation (OXPHOS) in fish remains largely unknown. To identify biomarkers of interest in nutritional studies, herein we obtained a deep-coverage transcriptome by 454 pyrosequencing of liver and skeletal muscle cDNA normalised libraries from long-term starved gilthead sea bream (Sparus aurata) and fish fed different diets. Results After clean-up of high-throughput deep sequencing reads, 699,991 and 555,031 high-quality reads allowed de novo assembly of liver and skeletal muscle sequences, respectively (average length: 374 and 441 bp; total megabases: 262 and 245 Mbp). An additional incremental assembly was completed by integrating data from both tissues (hybrid assembly). Assembly of hybrid, liver and skeletal muscle transcriptomes yielded, respectively, 19,530, 11,545 and 10,599 isotigs (average length: 1330, 1208 and 1390 bp, respectively) that were grouped into 15,954, 10,033 and 9189 isogroups. Following annotation, hybrid transcriptomic data were used to construct an oligonucleotide microarray to analyse nutritional regulation of the expression of 129 genes involved in OXPHOS in S. aurata. Starvation upregulated cytochrome c oxidase components and other key OXPHOS genes in the liver, which exhibited higher sensitive to food deprivation than the skeletal muscle. However, diet composition affected OXPHOS in the skeletal muscle to a greater extent than in the liver: most of genes upregulated under starvation presented higher expression among fish fed a high carbohydrate/low protein diet. Conclusions Our findings indicate that the expression of coenzyme Q-binding protein (COQ10), cytochrome c oxidase subunit 6A2 (COX6A2) and ADP/ATP translocase 3 (SLC25A6) in the liver, and cytochrome c oxidase subunit 5B isoform 1 (COX5B1) in the liver and the skeletal muscle, are sensitive markers of the nutritional condition that may be relevant to assess the effect of changes in the feeding regime and diet composition on fish farming. Electronic supplementary material The online version of this article (10.1186/s12864-017-4148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Alberto Sáez
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Ivan Viegas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
36
|
Transcriptome analysis of three critical periods of ovarian development in Yellow River carp (Cyprinus carpio). Theriogenology 2017; 105:15-26. [PMID: 28923703 DOI: 10.1016/j.theriogenology.2017.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Abstract
Ovary development is a complex process involving numerous genes; the molecular mechanism underlying the ovary development of carp is still unknown. Here we used Illumina HiSeq™ 2500 to explore the transcriptome of undifferentiated gland (PG), juvenile ovary (OJ) and adult ovary (OA) of Yellow River carp (Cyprinus carpio). A total of 58,749 unigenes were obtained, comprising 45,707 known genes and 13,042 new genes. We identified differentially-expressed genes (DEGs) during development and characterized the functional properties of DEGs by comparison with the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases. qRT-PCR was used to analyze the expression of 22 DEGs and the results corresponded with those of RNA-Seq. Among DEGs between PG and OJ, some upstream regulators of gonad development were upregulated in PG, such as cyp19a and sox9, while some oocyte-specific genes were upregulated in OJ, such as nobox, bmp15 and zp2. Among DEGs between OJ and OA, many oocyte physiological function-related genes were upregulated in OA, such as fem-1 and foxl2. GO analysis showed a higher number of DEGs from PG-OJ analysis were assigned to reproduction terms. Furthermore, our investigation has also revealed DEGs identified from PG-OJ analysis were enriched in several important functional pathways, such as Fanconi anemia and the notch signal pathway. These data suggested a dynamic shift in gene expression during ovary development, and DEGs between PG and OJ provided crucial candidate gene data for the study of ovarian differentiation. Additionally, a total of 1,776,769 single nucleotide polymorphisms and 157,279 INDEs were revealed from transcriptome data. This result will contribute to knowledge of ovary differentiation of Yellow River carp.
Collapse
|
37
|
Zhao C, Zhang G, Yin S, Li Z, Wang Q, Chen S, Zhou G. Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of sex-biased miRNA-mRNA pairs in gonad tissue of dark sleeper (Odontobutis potamophila). BMC Genomics 2017; 18:613. [PMID: 28806919 PMCID: PMC5557427 DOI: 10.1186/s12864-017-3995-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Background The dark sleeper (Odontobutis potamophila) is an important commercial fish species which shows a sexually dimorphic growth pattern. However, the lack of sex transcriptomic data is hindering further research and genetically selective breeding of the dark sleeper. In this study, integrated analysis of mRNA and miRNA was performed on gonad tissue to elucidate the molecular mechanisms of sex determination and differentiation in the dark sleeper. Results A total of 143 differentially expressed miRNAs and 16,540 differentially expressed genes were identified. Of these, 8103 mRNAs and 75 miRNAs were upregulated in testes, and 8437 mRNAs and 68 miRNAs were upregulated in ovaries. Integrated analysis of miRNA and mRNA expression profiles predicted more than 50,000 miRNA-mRNA interaction sites, and among them 27,583 negative miRNA-mRNA interactions. A number of sex related genes were targeted by sex-biased miRNAs. The relationship between 15 sex-biased genes and 15 sex-biased miRNAs verified by using qRT-PCR were described. Additionally, a number of SNPs were revealed through the transcriptome data. Conclusions The overall results of this study facilitate our understanding of the molecular mechanism underlying sex determination and differentiation and provide valuable genomic information for selective breeding of the dark sleeper. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3995-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Guosong Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China. .,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| | - Zecheng Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Qintao Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Shuqiao Chen
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu, 210036, China
| | - Guoqin Zhou
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu, 210036, China
| |
Collapse
|
38
|
Huang S, Cao X, Tian X. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:521-533. [PMID: 27457889 DOI: 10.1007/s10126-016-9713-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.
Collapse
Affiliation(s)
- Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xianchang Tian
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China
| |
Collapse
|
39
|
Zeng Q, Liu S, Yao J, Zhang Y, Yuan Z, Jiang C, Chen A, Fu Q, Su B, Dunham R, Liu Z. Transcriptome Display During Testicular Differentiation of Channel Catfish (Ictalurus punctatus) as Revealed by RNA-Seq Analysis. Biol Reprod 2016; 95:19. [PMID: 27307075 DOI: 10.1095/biolreprod.116.138818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) has been recognized as a dominant freshwater aquaculture species in the United States. It is also a suitable model for studying the mechanisms of sex determination and differentiation because of its sexual plasticity and exhibition of both genetic and environmental sex determination. The testicular differentiation in male channel catfish normally starts between 90 and 102 days postfertilization (dpf), while the ovarian differentiation starts early from 19 dpf. As such, efforts to better understand the postponed testicular development at the molecular level are needed. Toward that end, we conducted transcriptomic comparison of gene expression of male and female gonads at 90, 100, and 110 dpf using high-throughput RNA-Seq. Transcriptomic profiles of male gonads on 90 and 100 dpf exhibited high similarities except for a small number of significantly up-regulated genes that were involved in development of germ cell-supporting somatic cells, while drastic changes were observed during 100-110 dpf, with a group of highly up-regulated genes that were involved in germ cells development, including nanog and pou5f1 Transcriptomic comparison between testes and ovaries identified male-preferential genes, such as gsdf, cxcl12, as well as other cytokines mediated the development of the gonad into a testis. Co-expression analysis revealed highly correlated genes and potential pathways underlying germ cell differentiation and spermatogonia stem cell development. The candidate genes and pathways identified in this study set the foundation for further studies on sex determination and differentiation in catfish as well as other teleosts.
Collapse
Affiliation(s)
- Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| |
Collapse
|
40
|
Han X, Ling Q, Li C, Wang G, Xu Z, Lu G. Characterization of pikeperch (Sander lucioperca) transcriptome and development of SSR markers. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Luo H, Xiao S, Ye H, Zhang Z, Lv C, Zheng S, Wang Z, Wang X. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti. PLoS One 2016; 11:e0152572. [PMID: 27019203 PMCID: PMC4809619 DOI: 10.1371/journal.pone.0152572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022] Open
Abstract
Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Hua Ye
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhengshi Zhang
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Changhuan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Shuming Zheng
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Xiaoqing Wang
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| |
Collapse
|
42
|
Sex differences in the expression of GH/IGF axis genes underlie sexual size dimorphism in the yellow catfish (Pelteobagrus fulvidraco). SCIENCE CHINA-LIFE SCIENCES 2015; 59:431-3. [PMID: 26660095 DOI: 10.1007/s11427-015-4957-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/07/2015] [Indexed: 10/22/2022]
|
43
|
Zhang J, Ma W, He Y, Wu J, Dawar FU, Ren F, Zhao X, Mei J. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish. Gene 2015; 578:169-76. [PMID: 26692148 DOI: 10.1016/j.gene.2015.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Sexual size dimorphism has been observed in many cultivable fish species including yellow catfish, in which male fish grow much faster than female fish. Ghrelin is a potent stimulator of pituitary growth hormone (GH) release and known to potentially promote food intake and body weight gain. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), ghrelin and its functional receptor, growth hormone secretagogue receptor (GHSR) cDNAs were cloned. Real-time PCR indicated that both ghrelin and GHSR were more highly expressed in hypothalamus and gut of male fish than female. During normal larval development, expression of ghrelin and GHSR genes was significantly higher in males than in females. 17a-Methyltestosterone (MT) treatment enhanced the expression of ghrelin in female larval fish and GHSR in both sexes, whereas the expression of ghrelin in male larval fish increased in the beginning, then decreased as the treatment time prolonged. Furthermore, the expression of ghrelin and GHSR in male juvenile was significantly increased compared with female juvenile, in short and long term fasting periods, suggesting that male fish may have a better appetite than female during fasting. Our results demonstrate that sex difference in the expression of ghrelin and GHSR may be involved in sexual size dimorphism by regulating feeding and GH/IGF signaling in yellow catfish.
Collapse
Affiliation(s)
- Jin Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenge Ma
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan He
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Farman Ullah Dawar
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Ren
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohan Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2015; 16:1006. [PMID: 26607692 PMCID: PMC4659196 DOI: 10.1186/s12864-015-2219-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/16/2015] [Indexed: 01/15/2023] Open
Abstract
Background The Pacific white shrimp (Litopenaeus vannamei) is the world’s most prevalent cultured crustacean species. However, the supply of high-quality broodstocks is limited and baseline information related to its reproductive activity and molecular issues related to gonad development are scarce. In this study, we performed transcriptome sequencing on the gonads of adult male and female L. vannamei to identify sex-related genes. Results A total of 25.16 gigabases (Gb) of sequences were generated from four L. vannamei gonadal tissue libraries. After quality control, 24.11 Gb of clean reads were selected from the gonadal libraries. De-novo assembly of all the clean reads generated a total of 65,218 unigenes with a mean size of 1021 bp and a N50 of 2000 bp. A search of all-unigene against Nr, SwissProt, KEGG, COG and NT databases resulted in 26,482, 23,062, 20,659, 11,935 and 14,626 annotations, respectively, providing a total of 30,304 annotated unigenes. Among annotated unigenes, 12,320 unigenes were assigned to gene ontology categories and 20,659 unigenes were mapped to 258 KEGG pathways. By comparing the ovary and testis libraries, 19,279 testicular up-regulated and 3,529 ovarian up-regulated unigenes were identified. Enrichment analysis of differentially expressed unigenes resulted in 1060 significantly enriched GO terms and 34 significantly enriched KEGG pathways. Nine ovary-specific, 6 testis-specific, 45 testicular up-regulated and 39 ovarian up-regulated unigenes were then confirmed by semi-quantitative PCR and quantitative real-time PCR. In addition, using all-unigenes as a reference, a total of 13,233 simple sequence repeats (SSRs) were identified in 10,411 unigene sequences. Conclusions The present study depicts the first large-scale RNA sequencing of shrimp gonads. We have identified many important sex-related functional genes, GO terms and pathways, all of which will facilitate future research into the reproductive biology of shrimp. We expect that the SSRs detected in this study can then be used as genetic markers for germplasm evaluation of breeding and imported populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2219-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Lu J, Zheng M, Zheng J, Liu J, Liu Y, Peng L, Wang P, Zhang X, Wang Q, Luan P, Mahbooband S, Sun X. Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in Yellow Catfish (Pelteobagrus fulvidraco) Brain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:613-623. [PMID: 26242754 PMCID: PMC4540775 DOI: 10.1007/s10126-015-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is a pivotal freshwater aquaculture species in China. It shows sexual size dimorphism favoring male in growth. Whole transcriptome approach is required to get the overview of genetic toolkit for understanding the sex determination mechanism aiming at devising its monosex production. Beside gonads, the brain is also considered as a major organ for vertebrate reproduction. Transcriptomic analyses on the brain and of different developmental stages will provide the dynamic view necessary for better understanding its sex determination. In this regard, we have performed a de novo assembly of yellow catfish brain transcriptome by high throughput Illumina sequencing. A total number of 154,507 contigs were obtained with the lengths ranging from 201 to 27,822 bp and N50 of 2,101 bp, as well as 20,699 unigenes were identified. Of these unigenes, 13 and 54 unigenes were detected to be XY-specifically expressed genes (SEGs) for one and 2-year-old yellow catfish, while the corresponding numbers of XX-SEGs for those two stages were 19 and 13, respectively. Our work identifies a set of annotated genes that are candidate factors affecting sexual dimorphism as well as simple sequence repeat (SSR) and single nucleotide variation (SNV) in yellow catfish. To validate the expression patterns of the sex-related genes, we performed quantitative real-time PCR (qRT-PCR) indicating the reliability and accuracy of our analysis. The results in our study may enhance our understanding of yellow catfish sex determination and potentially help to improve the production of all-male yellow catfish for aquaculture.
Collapse
Affiliation(s)
- Jianguo Lu
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- />National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, China
| | - Min Zheng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />Department of Civil Engineering, Auburn University, Auburn, AL 36849 USA
| | - Jiajia Zheng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Jian Liu
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongzhuang Liu
- />School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lina Peng
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
- />Harbin Normal University, Harbin, China
| | - Pingping Wang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Xiaofeng Zhang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Qiushi Wang
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Peixian Luan
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| | - Shahid Mahbooband
- />Department of Zoology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Xiaowen Sun
- />Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 43 Songfa Street, Daoli District, Harbin, 150070 China
| |
Collapse
|
46
|
Wu J, Xiong S, Jing J, Chen X, Wang W, Gui JF, Mei J. Comparative Transcriptome Analysis of Differentially Expressed Genes and Signaling Pathways between XY and YY Testis in Yellow Catfish. PLoS One 2015; 10:e0134626. [PMID: 26241040 PMCID: PMC4524600 DOI: 10.1371/journal.pone.0134626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/11/2015] [Indexed: 11/18/2022] Open
Abstract
YY super-males have rarely been detected in nature and only been artificially created in some fish species including tilapia and yellow catfish (Pelteobagrusfulvidraco), which provides a promising model for testis development and spermatogenesis. In our previous study, significant differences in morphology and miRNA expression were detected between XY and YY testis of yellow catfish. Here, solexa sequencing technology was further performed to compare mRNA expression between XY and YY testis. Compared with unigenes expressed in XY testis, 1146 and 1235 unigenes have significantly higher and lower expression in YY testis, respectively. 605 differentially expressed unigenes were annotated to 1604 GO terms with 319 and 286 genes having relative higher expression in XY and YY testis. KEGG analysis suggested different levels of PI3K-AKT and G protein-coupled receptor (GPCR) signaling pathways between XY and YY testis. Down-regulation of miR-141/429 in YY testis was speculated to promote testis development and maturation, and several factors in PI3K-AKT and GPCR signaling pathways were found as predicted targets of miR-141/429, several of which were confirmed by dual-luciferase reporter assays. Our study provides a comparative transcriptome analysis between XY and YY testis, and reveals interactions between miRNAs and their target genes that are possibly involved in regulating testis development and spermatogenesis.
Collapse
Affiliation(s)
- Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weimin Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
- * E-mail: (JM); (JFG)
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- * E-mail: (JM); (JFG)
| |
Collapse
|
47
|
Pan ZJ, Li XY, Zhou FJ, Qiang XG, Gui JF. Identification of Sex-Specific Markers Reveals Male Heterogametic Sex Determination in Pseudobagrus ussuriensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:441-451. [PMID: 25981673 DOI: 10.1007/s10126-015-9631-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Comprehending sex determination mechanism is a first step for developing sex control breeding biotechnologies in fish. Pseudobagrus ussuriensis, one of bagrid catfishes in Bagridae, had been observed to have about threefold size dimorphism between males and females, but its sex determination mechanism had been unknown. In this study, we firstly used the amplified fragment length polymorphism (AFLP)-based screening approach to isolate a male-specific DNA fragment and thereby identified a 10,569 bp of male-specific sequence and a 10,365 bp of female-related sequence by genome walking in the bagrid catfish, in which a substantial genetic differentiation with 96.35 % nucleotide identity was revealed between them. Subsequently, a high differentiating region of 650 bp with only 70.26 % nucleotide identity was found from the corresponding two sequences, and three primer pairs of male-specific marker, male and female-shared marker with different length products in male and female genomes, and female-related marker were designed. Significantly, when these markers were used to identify genetic sex of the bagrid catfish, only male individuals was detected to amplify the male-specific marker fragment, and female-related marker was discovered to produce dosage association in females and in males. Our current data provide significant genetic evidence that P. ussuriensis has heterogametic XY sex chromosomes in males and homogametic XX sex chromosomes in females. Therefore, sex determination mechanism of P. ussuriensis is male heterogametic XX/XY system.
Collapse
Affiliation(s)
- Zheng-Jun Pan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
48
|
Xiong S, Jing J, Wu J, Ma W, Dawar FU, Mei J, Gui JF. Characterization and sexual dimorphic expression of Cytochrome P450 genes in the hypothalamic-pituitary-gonad axis of yellow catfish. Gen Comp Endocrinol 2015; 216:90-7. [PMID: 25937250 DOI: 10.1016/j.ygcen.2015.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is an important freshwater fish species in China. In particular, an all-male population has been commercially produced for the males grow faster than females. However, the molecular mechanisms underlying sexual dimorphism of body size and sex differentiation are still unclear in yellow catfish. This study attempts to characterize and analyze the expression of Cytochrome P450 (CYP) family members that have been shown to play an important role in sex differentiation and metabolism in teleosts. A total of 25 CYP genes were identified from our transcriptomes by 454 pyrosequencing and Solexa sequencing, including 17 genes with complete open reading frame (ORF). Phylogenetic analyses were conducted to compare these genes with their counterparts from other teleosts. In the tissues of hypothalamic-pituitary-gonad (HPG) axis, most of the genes were expressed at uniform level in both sexes. However, multiple CYP genes displayed sexual dimorphic expression, such as cyp2AD, cyp4b, cyp8a, cyp11b2, cyp17a and cyp27a expressed at higher level in testis than in ovary, whereas cyp2g, cyp7a, cyp8b, cyp19a1a and cyp26a expressed at higher level in ovary than in testis. The expression response of six CYP genes in ovary was also assessed after 17α-methyltestosterone (MT) treatment. Testis-biased expressed cyp11b2 and cyp17a were significantly up-regulated, while cyp11a and cyp19a1a were reduced in ovary after MT treatment. Our work is helpful for understanding molecular evolution of CYP genes in vertebrates and the mechanism of sexual dimorphism in teleosts.
Collapse
Affiliation(s)
- Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenge Ma
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Farman Ullah Dawar
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|