1
|
Zhang Z, Zhang J, Chen H, Han C, Chen Y, Zhan X, Liu Y. The shell formation mechanism of Turbo argyrostomus based on ultrastructure and transcriptome analysis. Gene 2024; 927:148747. [PMID: 38972557 DOI: 10.1016/j.gene.2024.148747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiayi Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yi Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; School of Ecology, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Zhang Y, Geng S, Yu G, Hong Y, Hu B. Research progress on formation mechanism of pearl. Heliyon 2024; 10:e35015. [PMID: 39170518 PMCID: PMC11336291 DOI: 10.1016/j.heliyon.2024.e35015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Pearls are deeply cherished for their rich color and gorgeous luster, and their quality directly affects their value. Currently, the evaluation of pearl quality is mainly based on four aspects: color, shape, size and smoothness. The quality of pearls is influenced by a variety of factors, categorized into internal factors, such as the structural composition of the nacreous layer and genetic factors of the mussels, and external factors, including the aquaculture environment. Existing research results indicates that genetic factors are the dominant factor controlling the pearl quality. However, the macromolecules such as metal ions, organic pigments and various physical and chemical factors in the aquaculture water environment will also significantly impact pearl quality. Among these, matrix proteins are organic macromolecules found in the nacreous layer that play an important role in pearl quality. They participate in the deposition of calcium carbonate and the construction of the organic framework, affecting the pearls' size and shape. The color of pearls is influenced by the deposition of metal ions, the transport of organic pigments and the regulation of microstructure.
Collapse
Affiliation(s)
- Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Jiang K, Yu H, Kong L, Liu S, Li Q. cAMP-Mediated CREM-MITF-TYR Axis Regulates Melanin Synthesis in Pacific Oysters. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:460-474. [PMID: 38613620 DOI: 10.1007/s10126-024-10309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Colorful shells in bivalves are mostly caused by the presence of biological pigments, among which melanin is a key component in the formation of shell colours. Cyclic adenosine monophosphate (cAMP) is an important messenger in the regulation of pigmentation in some species. However, the role of cAMP in bivalve melanogenesis has not yet been reported. In this study, we performed in vitro and in vivo experiments to determine the role of cAMP in regulating melanogenesis in Pacific oysters. Besides, the function of cAMP-responsive element modulator (CREM) and the interactions between CREM and melanogenic genes were investigated. Our results showed that a high level of cAMP promotes the expression of melanogenic genes in Pacific oysters. CREM controls the expression of the MITF gene under cAMP regulation. In addition, CREM can regulate melanogenic gene expression, tyrosine metabolism, and melanin synthesis. These results indicate that cAMP plays an important role in the regulation of melanogenesis in Pacific oysters. CREM is a key transcription factor in the oyster melanin synthesis pathway, which plays a crucial role in oyster melanin synthesis through a cAMP-mediated CREM-MITF-TYR axis.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Min Y, Li Q, Yu H, Kong L, Liu S. Comparative transcriptome elucidates key genes and pathways related to golden phenotype of Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101197. [PMID: 38295536 DOI: 10.1016/j.cbd.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Marine bivalves are economically important and exhibit a remarkable diversity in shell color. The Pacific oyster Crassostrea gigas stands out as an important economic species, with the successful development of four distinct color strains through selective breeding. While previous studies have shed light on the genetic mechanism underlying color segregation, the precise molecular regulatory mechanisms responsible for shell coloration in oysters remains elusive. In this study, we confirmed that the golden phenotype is primarily attributed to pheomelanin by histological and ultrastructural observations. Additionally, we conducted a comparative transcriptome analysis of the black and golden shell color oysters to explore the potential genes and pathways contributing to the golden phenotype in C. gigas. Our results revealed a significant increase in differentially expressed genes in the golden phenotype associated with pathways such as glutathione metabolism, and calcium signaling pathway, suggesting a potential role in the synthesis of pheomelanin. Of particular note, we highlighted the potential role of two-pore channel 2 (TPC2) in modulating tyrosinase activity and melanosomal pH, ultimately determining the shade of pigmentation. Our study in this work provided a preliminary exploration of the mechanism, shedding light on the melanosome microenvironment and shell color.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, China; College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, China; College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, China; College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, China; College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, China; College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Liu Y, Wang Z, Guo C, Li S, Li Y, Huang R, Deng Y. Transcriptome and exosome proteome analyses provide insights into the mantle exosome involved in nacre color formation of pearl oyster Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101151. [PMID: 37913699 DOI: 10.1016/j.cbd.2023.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, β,β-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Yong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziman Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengao Guo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyao Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youxi Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China.
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China
| |
Collapse
|
7
|
Yang J, Guo Y, Hu J, Bao Z, Wang M. A metallothionein gene from hard clam Meretrix meretrix: Sequence features, expression patterns, and metal tolerance activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105057. [PMID: 37708948 DOI: 10.1016/j.dci.2023.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Metallothioneins (MTs) are low-molecular weight cytoplasmic heavy metal binding proteins. MTs can regulate the concentration of essential or non-essential metals in organisms, and have many important biological functions, including detoxification, trace element metabolism, and anti-oxidation. In the present study, we cloned and characterized a metallothionein gene (designated as MmMT) from the hard clam Meretrix meretrix. The complete cDNA sequence of MmMT contained an open reading frame (ORF) of 629 bp, which encoded a protein of 76 amino acids with a predicted molecular mass of 7.66 kDa and a calculated theoretical isoelectric point of 7.24. MmMT is highly similar to previously identified MTs from other species, with typical metallothionein features such as a high cysteine residue content and the absence of histidine and aromatic residues. The mRNA transcripts of MmMT were prevalent in all the tested tissues, and the expression levels of MmMT were highest in the hepatopancreas and hemocytes. During the stimulation of Vibrio splendidus, the mRNA transcripts of MmMT in the hepatopancreas and hemocytes were significantly increased. The Escherichia coli overexpressing MmMT performed strong growth in the media supplemented with CdCl2 and CuSO4 compared to the control strains. These results provide useful information for further investigation of the functions of MmMT in metal detoxification and the innate immune system.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China
| | - Ying Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
8
|
Zheng B, Wang Y, Hu J, Bao Z, Wang M. Comparative analysis of two cathepsin L genes in Asiatic hard clam (Meretrix meretrix): Similar in sequence features, different in expression profiles. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108527. [PMID: 36621705 DOI: 10.1016/j.fsi.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Cathepsin L is widely found in eukaryotes and prokaryotes, and it plays important roles in innate immunity. In the present study, we cloned two cathepsin L genes (designated as MmCTSL1 and MmCTSL2, respectively) from Asiatic hard clam (Meretrix meretrix). The complete sequence of MmCTSL1 cDNA contained a 5' untranslated region (UTR) of 31 bp, a 3' UTR of 228 bp with a poly (A) tail, and an open reading frame (ORF) of 1005 bp encoding 334 amino acids with predicted molecular weight of 37.5 kDa and theoretical isoelectric point of 5.27, and contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W27 to F87), and a papain family cysteine protease domain (from L118 to T333). The complete sequence of MmCTSL2 cDNA contained a 5' UTR of 50 bp, a 3' UTR of 162 bp with a poly (A) tail, and an ORF of 996 bp encoding a polypeptide of 331 amino acids with predicted molecular weight of 36.8 kDa and theoretical isoelectric point of 7.07. It contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W30 to F89), and a papain family cysteine protease domain (from L115 to T330). Real-time quantitative PCR analysis demonstrated that MmCTSL1 and MmCTSL2 were widely expressed in all the tested tissues, including adductor muscle, foot, gill, hemocytes, hepatopancreas and mantle, with the highest mRNA expression level in hepatopancreas and hemocytes, respectively. After Vibrio splendidus challenge, the mRNA expression levels of MmCTSL1 and MmCTSL2 in hemocytes and hepatopancreas were both significantly up-regulated with different expression profiles. In hemocytes, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks (3.4-fold and 13.0-fold compared with the control, respectively) at 12 h after bacterial challenge, and MmCTSL2 responds earlier than MmCTSL1. In hepatopancreas, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks at 6 h (9.0-fold compared with the control) and 24 h (2.8-fold compared with the control) after bacterial challenge, meaning that MmCTSL1 responds earlier than MmCTSL2. At the same time, whether in hepatopancreas or hemocytes, MmCTSL1 persist for a while after the bacterial challenge peak, while MmCTSL2 would quickly return to the initial level after the bacterial challenge peak. These results indicate that cathepsin L may be involved in the immune process of hard clam against V. splendidus with different potential roles.
Collapse
Affiliation(s)
- Bo Zheng
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
9
|
Xing L, Liu S, Zhang L, Yang H, Sun L. MITF Contributes to the Body Color Differentiation of Sea Cucumbers Apostichopus japonicus through Expression Differences and Regulation of Downstream Genes. BIOLOGY 2022; 12:biology12010001. [PMID: 36671694 PMCID: PMC9854957 DOI: 10.3390/biology12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Melanin, which is a pigment produced in melanocytes, is an important contributor to sea cucumber body color. MITF is one of the most critical genes in melanocyte development and melanin synthesis pathways. However, how MITF regulates body color and differentiation in sea cucumbers is poorly understood. In this study, we analyzed the expression level and location of MITF in white, purple, and green sea cucumbers and identified the genes regulated by MITF using chromatin immunoprecipitation followed by sequencing. The mRNA and protein expression levels of MITF were all highest in purple morphs and lowest in white morphs. In situ hybridization indicated that MITF mRNA were mainly expressed in the epidermis. We also identified 984, 732, and 1191 peaks of MITF binding in green, purple, and white sea cucumbers, which were associated with 727, 557, and 887 genes, respectively. Our findings suggested that MITF contributed to the body color differentiation of green, purple, and white sea cucumbers through expression differences and regulation of downstream genes. These results provided a basis for future studies to determine the mechanisms underlying body color formation and provided insights into gene regulation in sea cucumbers.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel./Fax: +86-532-8289-8610
| |
Collapse
|
10
|
Zheng Y, Zha S, Zhang W, Dong Y, He J, Lin Z, Bao Y. Integrated RNA-seq and RNAi Analysis of the Roles of the Hsp70 and SP Genes in Red-Shell Meretrix meretrix Tolerance to the Pathogen Vibrio parahaemolyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:942-955. [PMID: 36030481 PMCID: PMC9420185 DOI: 10.1007/s10126-022-10156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/11/2022] [Indexed: 05/13/2023]
Abstract
The "Wanlihong" Meretrix meretrix (WLH-M) clam is a new variety of this species that has a red shell and stronger Vibrio tolerance than ordinary M. meretrix (ORI-M). To investigate the molecular mechanisms responsible for the WLH-M strain's tolerance to Vibrio, we challenged clams with Vibrio parahaemolyticus and then assessed physiological indexes and conducted transcriptome analysis and RNA interference experiments. The mortality, tissue bacterial load, and hemocyte reactive oxygen species level of ORI-M were significantly higher than those of WLH-M, whereas the content and activity of lysozyme were significantly lower. Gene Ontology functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that immune and metabolic pathways were enriched in Vibrio-challenged clams. The expressions of the heat shock protein 70 (Hsp70) and serine protease (SP) genes, which are involved in antibacterial immunity, were significantly upregulated in WLH-M but not in ORI-M, while the expression of the kynurenine 3-monooxygenase gene, a proinflammatory factor, was significantly downregulated in WLH-M. RNA interference experiments confirmed that Hsp70 and SP downregulation could result in increased mortality of WLH-M. Therefore, we speculate that Hsp70 and SP may be involved in the antibacterial immunity of WLH-M in vivo. Our data provided a valuable resource for further studies of the antibacterial mechanism of WLH-M and provided a foundation for the breeding of pathogen-resistant strains.
Collapse
Affiliation(s)
- Yun Zheng
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Shanjie Zha
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Weifeng Zhang
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- School of Marine Science, Ningbo University, Ningbo, 315823 China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Jing He
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| |
Collapse
|
11
|
Li X, Feng S, Xuan X, Wang H, Shen X, Chen Y, Fu Y, Bai Z, Li W. A proteomic approach reveals biomineralization and immune response for mantle to pearl sac in the freshwater pearl mussel (Hyriopsis cumingii). FISH & SHELLFISH IMMUNOLOGY 2022; 127:788-796. [PMID: 35798247 DOI: 10.1016/j.fsi.2022.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In the process of production of freshwater pearl, implanted mantle pieces undergo a series of complex physiological and biochemical processes to form pearl sac, which produce pearl. This is a very important site of occurrence due to immune-induced biomineralization, while its molecular regulatory mechanism is still unclear. Here, we use proteomics to identify differentially expressed proteins (DEPs) of the mantle and pearl sac and examine the biomineralization and immune response of the pearl sac formation process in Hyriopsis cumingii. Using iTRAQ technology and bioinformatics analysis, we obtained DEP profiles between the mantle and pearl sac. A total of 1871 proteins were identified. Of these, 74 DEPs were found between the pearl sac and outer mantle, 112 DEPs between the pearl sac and inner mantle, and 124 DEPs between the outer and inner mantles. Bioinformatics analysis revealed that the screened biomineralization-related DEPs were mainly enriched in signaling pathways associated with calcium signaling, regulation of the actin cytoskeleton and protein processing in the endoplasmic reticulum, while the immune-related DEPs were mainly enriched in the Notch, Hippo, nuclear factor kappa-B (NF-κB), and transforming growth factor-β (TGF-β) signaling pathways. In addition, the expression of six biomineralization-related and four immune-related proteins were verified at the transcriptional level using quantitative real-time PCR. Our findings contribute to furthering the understanding of the mechanisms of pearl formation and immune response, and have long-term implications for future studies on the production of high-quality freshwater pearls and development of the freshwater pearl industry.
Collapse
Affiliation(s)
- Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Shangle Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Xingrong Xuan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Xiaoya Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Yige Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
12
|
Lin S, Zhang L, Wang G, Huang S, Wang Y. Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100977. [PMID: 35247793 DOI: 10.1016/j.cbd.2022.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Aquaria species are characterized by their amazing colors and patterns. Research on the breeding molecular genetics of ornamental shrimps is surprisingly limited. We conducted a transcriptome analysis to investigate the expression of encoding genes in the integument of the strains Neocaridina denticulate sinensis. After assembled and filtered, 19,992 unigenes were annotated by aligning with public functional databases (NR, Swiss-Prot, KEGG, COG). 14,915 unigenes with significantly different expressions were found by comparing three strains integument transcriptomes. Ribosomal protein genes, ABC transporter families, calmodulin, carotenoid proteins and crustacyanin may play roles in the cytological process of pigment migration and chromatophore maintenance. Numerous color genes associated with multiple pathways including melanin, ommochrome and pteridines pathways were identified. The expression patterns of 25 candidate genes were analysis by qPCR in red, yellow, transparent and glass strains. The qPCR results in red, yellow and transparent were consistent with the level of RPKM values in the transcriptomes. The above results will advance our knowledge of integument color varieties in N. denticulate sinensis and help the genetic selection of crustaceans with consumer-favored colors. Furthermore, it also provides some candidate pigmentation genes to investigate the correlation between coloration and sympatric speciation in crustaceans.
Collapse
Affiliation(s)
- Shi Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
13
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
14
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Teng W, Xie X, Nie H, Sun Y, Liu X, Yu Z, Zheng J, Liu H, Li D, Zhang M, Wang Z, Zhu S, Du S, Du S, Li Q, Wang Q. Chromosome-level genome assembly of Scapharca kagoshimensis reveals the expanded molecular basis of heme biosynthesis in ark shells. Mol Ecol Resour 2021; 22:295-306. [PMID: 34214251 DOI: 10.1111/1755-0998.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50 = 2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the haemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of S. kagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of S. kagoshimensis.
Collapse
Affiliation(s)
- Weiming Teng
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Xi Xie
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yamin Sun
- Tianjin Biochip Corporation, Tianjin, China
| | - Xiangfeng Liu
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Zuoan Yu
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Hongyue Liu
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Dacheng Li
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Ming Zhang
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Zhisong Wang
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| | - Shouwei Zhu
- Jinzhou Research Institute of Science and Technology, Jinzhou, China
| | - Shangkun Du
- Jinzhou Research Institute of Science and Technology, Jinzhou, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qingzhi Wang
- Liaoning Ocean and Fisheries Science Research Institute and Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Dalian, China
| |
Collapse
|
16
|
Molecular Pathways and Pigments Underlying the Colors of the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus 1758). Genes (Basel) 2021; 12:genes12030421. [PMID: 33804186 PMCID: PMC7998362 DOI: 10.3390/genes12030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera—the species displaying the broadest range of colors. Three inner shell colors were investigated—red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper–Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.
Collapse
|
17
|
Huang CW, Chu PY, Wu YF, Chan WR, Wang YH. Identification of Functional SSR Markers in Freshwater Ornamental Shrimps Neocaridina denticulata Using Transcriptome Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:772-785. [PMID: 32529453 DOI: 10.1007/s10126-020-09979-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The amazing colors and patterns are fascinating characteristics in all of the aquarium species. However, genetic and breeding molecular investigations of ornamental shrimps are rather limited. Here, we present the first transcriptomic analysis and application of microsatellites based on the chromatophore-encoded genes of Neocaridina denticulata to assist freshwater ornamental shrimp germplasm enhancement and its extensive applications. A total of 65,402 unigenes were annotated, and 4706 differentially expressed genes were screened and identified between super red shrimp and chocolate shrimp strains. Several gene ratios were examined to put in perspective possible genetic markers for the different strains of normal pigmentation development, including flotillin-2-like, keratin, the G protein-coupled receptor Mth2-like, annexin A7, and unconventional myosin-IXb-like. Five simple sequence repeat markers were effective for colored shrimps and were used to develop a marker-assisted selection platform for systematic breeding management program to maintain genetic diversity of the species. These markers could also be used to assist the identification of pure strains and increase the genetic stability of ornamental shrimp color phenotypes. Consequently, our results of microsatellite marker development are valuable for assisting shrimp genetic and selection breeding studies on freshwater ornamental shrimp and related crystal shrimp species.
Collapse
Affiliation(s)
- Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yu-Fang Wu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Wei-Ren Chan
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City, 20224, Taiwan
| | - Yeh-Hao Wang
- Larmax International Co., Ltd. No.9, Yuanxi 2nd Rd., Changzhi, Pingtung, Taiwan
| |
Collapse
|
18
|
Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Sci Rep 2020; 10:20238. [PMID: 33214602 PMCID: PMC7678851 DOI: 10.1038/s41598-020-77181-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcription gene expression by targeting genes and play crucial roles in diverse biological processes involving body color formation. However, miRNAs and miRNA-targets underlying shell color polymorphism remain largely unknown in mollusca. Using four shell colors full-sib families of the Pacific oyster Crassostrea gigas, we systematically identified miRNAs and miRNA-targets in the mantles, which organ could produce white, golden, black or partially pigmented shell. RNA sequencing and analysis identified a total of 53 known miRNA and 91 novel miRNAs, 47 of which were detected to differentially express among six pairwise groups. By integrating miRNA and mRNA expression profiles, a total of 870 genes were predicted as targets of differentially expressed miRNAs, mainly involving in biomineralization and pigmentation through functional enrichment. Furthermore, a total of four miRNAs and their target mRNAs were predicted to involve in synthesis of melanin, carotenoid or tetrapyrrole. Of them, lgi-miR-317 and its targets peroxidase and lncRNA TCONS_00951105 are implicated in acting as the competing endogenous RNA to regulate melanogenesis. Our studies revealed the systematic characterization of miRNAs profiles expressed in oyster mantle, which might facilitate understanding the intricate molecular regulation of shell color polymorphism and provide new insights into breeding research in oyster.
Collapse
|
19
|
Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL. Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genomics 2020; 21:662. [PMID: 32977773 PMCID: PMC7517651 DOI: 10.1186/s12864-020-07015-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.
Collapse
Affiliation(s)
- Pauline Auffret
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Jérémy Le Luyer
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Manaarii Sham Koua
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Virgile Quillien
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- Ifremer, UMR LEMAR UBO CNRS Ifremer IRD 6539, ZI Pointe Diable CS 10070, F-29280 Plouzane, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
20
|
Huang S, Jiang H, Zhang L, Gu Q, Wang W, Wen Y, Luo F, Jin W, Cao X. Integrated proteomic and transcriptomic analysis reveals that polymorphic shell colors vary with melanin synthesis in Bellamya purificata snail. J Proteomics 2020; 230:103950. [PMID: 32871245 DOI: 10.1016/j.jprot.2020.103950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
The snail Bellamya purificata is an ecologically and economically important freshwater gastropod species. However, limited genomic resources are available for this snail. In this study, the transcriptome of mantle tissues and proteome of shells of B. purificata with two shell colors (namely light-cyan line (LC) and light-purple line (LP)) were deeply sequenced and characterized. A total of 5.72 million contigs were assembled into 157,015 unigenes, 21,455 (13.66%) of these unigenes were significantly matched to NR, Swiss-Prot, KOG, GO and KEGG database. 1807 differentially expressed genes (DEGs) were identified between the two different shell color lines. These DEGs were significantly enriched in five KEGG pathways including tyrosine metabolism, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and histidine metabolism, which suggested that the shell color polymorphism in B. purificata was a result of melanin synthesis variation. A total of 1521 proteins were identified in B. purificata here as well. The differentially expressed protein analysis showed that the tyrosinase content in LP was significantly decreased in comparison to LC, which agreed with the transcriptome analysis results. This study provides valuable genomic resources of B. purificata and improves our understanding of molecular mechanisms of biomineralization and shell color polymorphism in snail.
Collapse
Affiliation(s)
- Songqian Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Hanjun Jiang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- College of Marxism, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Weimin Wang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong Wen
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Fuguang Luo
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Wu Jin
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
22
|
Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X. Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 2020; 112:2011-2020. [DOI: 10.1016/j.ygeno.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023]
|
23
|
Jiang K, Jiang L, Nie H, Huo Z, Yan X. Molecular cloning and expression analysis of tyrosinases ( tyr) in four shell-color strains of Manila clam Ruditapes philippinarum. PeerJ 2020; 8:e8641. [PMID: 32110498 PMCID: PMC7032058 DOI: 10.7717/peerj.8641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
The Manila clam (Ruditapes philippinarum) is an economically important molluscan bivalve with variation in pigmentation frequently observed in the shell. In nature, tyrosinase is widely distributed in invertebrates and vertebrates, and plays a crucial role in a variety of physiological activities. In this study, a tyrosinase gene (tyr 9) was cloned and the expression level of tyr genes (tyr 6, tyr 9, tyr 10, and tyr 11) were investigated in different shell colors. Quantitative real-time PCR showed that tyr genes were significantly expressed in the mantle, a shell formation and pigmentation-related tissue. Moreover, the expression pattern of the tyr genes in the mantle of different shell-color strains was different, suggesting that tyrosinases might be involved in different shell-color formation. In addition, the expression profile of tyr 6, tyr 9, tyr 10, and tyr 11 genes were detected at different early developmental stages and the expression level varied with embryonic and larval growth. RNA interference (RNAi) results showed that the expression level of tyr 9 in the RNAi group was significantly down-regulated compared to control and negative control groups, indicating that Rptyr 9 might participate in shell-color formation. Our results indicated that tyr genes were likely to play vital roles in the formation of shell and shell-color in R. philippinarum.
Collapse
Affiliation(s)
- Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
24
|
Nie H, Jiang K, Li N, Jahan K, Jiang L, Huo Z, Yan X. Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam Ruditapes philippinarum. Anim Biotechnol 2020; 32:439-450. [PMID: 31967493 DOI: 10.1080/10495398.2020.1714635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Manila clam, Ruditapes philippinarum, is an ecologically and economically important marine bivalve species. In this study, we conducted transcriptomic sequencing of two different shell color strains (O and Z) before color appearance (uncolored juvenile clam) and pigmented shell color (colored juvenile clam) and investigated the analysis of the differential expression patterns of specific genes associated with pigmentation by RNA-seq and time course qPCR analysis. The transcription level of 16 differentially expressed genes (DEGs) related with shell color was analyzed by qRT-PCR to validate the performance of RNA-seq from Illumina sequence data where most of them were up-regulated. Two genes were down-regulated after the occurrence of zebra clam stripes compared with uncolored zebra clam. The trend of gene expression obtained by qPCR was basically consistent with that of RNA-seq. The synthesis of melanin in bivalves plays potential roles in the pigmentation of the shell and is closely related to the formation of the surface pattern. The porphyrin metabolism combined with tyrosinase and melanogenesis signaling pathway is a novel finding in shell color determination of R. philippinarum. This study sheds light on the pigmentation and coloration mechanism of the Manila clam.
Collapse
Affiliation(s)
- Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Ning Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kifat Jahan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
25
|
Yao L, Bao A, Hong W, Hou C, Zhang Z, Liang X, Aniwashi J. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin. PeerJ 2019; 7:e8077. [PMID: 31772839 PMCID: PMC6875393 DOI: 10.7717/peerj.8077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the molecular mechanisms determining the coat color of native breed sheep in Xinjiang. Methods Bashibai sheep, Yemule white sheep and Tulufan black sheep were selected. Illumina HiSeq X Ten sequencing technology was used to detect the genes responsible for the white, light brown, black and cyan gray coat colors in sheep. Sequence analysis and functional gene annotation analysis were performed to analyze the results. The signal pathways and differentially expressed genes related to sheep hair color production regulation were screened and finally verified by real-time polymerase chain reaction. Results Functional annotation by Kyoto Encyclopedia of Genes and Genomes analysis revealed significant differences in enrichment of immunity-related pathways as well as melanogenesis synthetic and tyrosine metabolism pathways. Our results showed that the DCT, TYR, TYRP1, PMEL, SLC45A2 and MLANA six genes may be associated with the regulation of coat color development and provide a theoretical basis for selecting natural coat colors of sheep.
Collapse
Affiliation(s)
- Lidan Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Aodungerile Bao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wenjuan Hong
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Chenxi Hou
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhenliang Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaopeng Liang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jueken Aniwashi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
26
|
Yang Z, Xu F, Zhang Z, Li J, Jia Y, Li H, Liu X. Genetic determination of sex and shell color in the Pacific abalone Haliotis discus hannai revealed by an integrated linkage map. Anim Genet 2019; 50:733-739. [PMID: 31571283 DOI: 10.1111/age.12860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
Integrated linkage maps for each sex have been constructed for the Pacific abalone Haliotis discus hannai using three F1 mapping families based on co-dominant markers. A total of 273 markers were placed on the female map, spanning 927.3 cM with an average interval of 3.64 cM, whereas 277 markers were mapped on the male map, covering 727.0 cM with an average spacing of 2.80 cM. Both female and male maps consisted of 18 linkage groups, corresponding well with the number of chromosomes. Furthermore, the sex-determining locus and the green/orange shell color controlling locus were mapped to the linkage group 3 (LG3) and LG9 respectively. A marker completely linked to phenotypic sex was identified, and the sex determination system was further concluded as paternal heterogametic (males XY and females XX). Based on the segregation ratio of the shell color in the progeny, a simple recessive model of epistasis was proposed to explain the distribution of different color morphs (green, orange and blue): the recessive allele determining orange type masks the effect of the locus controlling green and blue types, whereas the dominant allele at the green/orange locus permits the expression of green and blue types controlled by another locus. The current consensus map provides a useful framework for genetic studies in the Pacific abalone. Mapping of the sex-determining locus and the shell color-controlling locus leads to further understanding of the mechanisms underlying these important traits.
Collapse
Affiliation(s)
- Z Yang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - F Xu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Z Zhang
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - J Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Y Jia
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - H Li
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - X Liu
- Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
27
|
Mao J, Zhang W, Wang X, Song J, Yin D, Tian Y, Hao Z, Han B, Chang Y. Histological and Expression Differences Among Different Mantle Regions of the Yesso Scallop (Patinopecten yessoensis) Provide Insights into the Molecular Mechanisms of Biomineralization and Pigmentation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:683-696. [PMID: 31385168 DOI: 10.1007/s10126-019-09913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms of shell formation and pigmentation are issues of great interest in molluscan studies due to the unique physical and biological properties of shells. The Yesso scallop, Patinopecten yessoensis, is one of the most important maricultural bivalves in Asian countries, and its shell color shows polymorphism. To gain more information about the underlying mechanisms of shell formation and pigmentation, this study presents the first analyses of histological and transcriptional differences between different mantle regions of the Yesso scallop, which are thought to be responsible for the formation of different shell layers. The results showed major microstructural differences between the edge and central mantles, which were closely associated with their functions. Different biomineralization-related GO functions, which might participate in the formation of different shell layers, were significantly enriched in the different mantle regions, indicating the different molecular functions of the two mantle regions in shell formation. The melanogenesis pathway, which controls melanin biosynthesis, was the most significantly enriched pathway in the DEGs between the two mantle regions, indicating its important role in shell pigmentation. Tyr, the key and rate-limiting gene in melanogenesis, was expressed at a remarkably high level in the central mantle, while the upstream regulatory genes included in melanogenesis were mainly upregulated in the edge mantle, suggesting the different molecular functions of the two mantle regions in shell pigmentation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
28
|
Hu Z, Song H, Yang MJ, Yu ZL, Zhou C, Wang XL, Zhang T. Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100598. [DOI: 10.1016/j.cbd.2019.100598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023]
|
29
|
Yan X, Nie H, Huo Z, Ding J, Li Z, Yan L, Jiang L, Mu Z, Wang H, Meng X, Chen P, Zhou M, Rbbani MG, Liu G, Li D. Clam Genome Sequence Clarifies the Molecular Basis of Its Benthic Adaptation and Extraordinary Shell Color Diversity. iScience 2019; 19:1225-1237. [PMID: 31574780 PMCID: PMC6831834 DOI: 10.1016/j.isci.2019.08.049] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 11/04/2022] Open
Abstract
Ruditapes philippinarum is an economically important bivalve with remarkable diversity in its shell coloration patterns. In this study, we sequenced the whole genome of the Manila clam and investigated the molecular basis of its adaptation to hypoxia, acidification, and parasite stress with transcriptome sequencing and an RNA sequence analysis of different tissues and developmental stages to clarify these major issues. A number of immune-related gene families are expanded in the R. philippinarum genome, such as TEP, C3, C1qDC, Hsp70, SABL, and lysozyme, which are potentially important for its stress resistance and adaptation to a coastal benthic life. The transcriptome analyses demonstrated the dynamic and orchestrated specific expression of numerous innate immune-related genes in response to experimental challenge with pathogens. These findings suggest that the expansion of immune- and stress-related genes may play vital roles in resistance to adverse environments and has a profound effect on the clam's adaptation to benthic life. We present a new genome assembly of the Manila clam Ruditapes philippinarum Analysis of gene family expansions and transcriptome characterization were conducted Tyr and mitf genes were potentially involved in shell color patterns of Manila clam Expansion of GPCRs and immune-related genes were found in R. philippinarum
Collapse
Affiliation(s)
- Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jianfeng Ding
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhenzhen Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Lulu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhengqiang Mu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huamin Wang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiangyu Meng
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Peng Chen
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Md Golam Rbbani
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Guangjian Liu
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
30
|
Xu M, Huang J, Shi Y, Zhang H, He M. Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters, Pinctada fucata martensii. BMC Genomics 2019; 20:469. [PMID: 31176356 PMCID: PMC6555990 DOI: 10.1186/s12864-019-5807-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii (Pfu.), widely cultured in the South China Sea, is a precious source of sea pearls and calcifying materials. A yellow shell variety of Pfu. was obtained after years of artificial breeding. To identify differentially expressed genes between yellow shell and normal black shell pearl oysters, we performed transcriptomic sequencing and proteomic analyses using mantle edge tissues. RESULTS A total of 56,969 unigenes were obtained from transcriptomic, of which 21,610 were annotated, including 385 annotated significant up-regulated genes and 227 significant down-regulated genes in yellow shell oysters (| log2 (fold change) | ≥2 and false discovery rate < 0.001). Tyrosine metabolism, calcium signalling pathway, phototransduction, melanogenesis pathways and rhodopsin related Gene Ontology (GO) terms were enriched with significant differentially expressed genes (DEGs) in transcriptomic. Proteomic sequencing identified 1769 proteins, of which 51 were significantly differentially expressed in yellow shell oysters. Calmodulin, N66 matrix protein, nacre protein and Kazal-type serine protease inhibitor were up-regulated in yellow shell oysters at both mRNA and protein levels, while glycine-rich protein shematrin-2, mantle gene 4, and sulphide: quinone oxidoreductase were down-regulated at two omics levels. Particularly, calmodulin, nacre protein N16.3, mantle gene 4, sulphide: quinone oxidoreductase, tyrosinase-like protein 3, cytochrome P450 3A were confirmed by quantitative real-time PCR. Yellow shell oysters possessed higher total carotenoid content (TCC) compared than black shell oyster based on spectrophotography. CONCLUSIONS The yellow phenotype of pearl oysters, characterised by higher total carotenoids content, may reflect differences in retinal and rhodopsin metabolism, melanogenesis, calcium signalling pathway and biomineralisation. These results provide insights for exploring the relationships between calcium regulation, biomineralisation and yellow shell colour pigmentation.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
31
|
Mao J, Zhang X, Zhang W, Tian Y, Wang X, Hao Z, Chang Y. Genome-wide identification, characterization and expression analysis of the MITF gene in Yesso scallops (Patinopecten yessoensis) with different shell colors. Gene 2018; 688:155-162. [PMID: 30552980 DOI: 10.1016/j.gene.2018.11.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is the center of the regulator network of melanin synthesis in vertebrates. However, the role of MITF in shell color formation is poorly studied in mollusks. In the present study, an MITF gene, PyMITF, was first identified at the whole-genome level in Yesso scallop (Patinopecten yessoensis), an evolutionarily and economically important species, the shell color of which shows polymorphism. The PyMITF is a large gene spanning ~37 kb in the genome with 7 introns and 8 exons. A basic helix-loop-helix leucine zipper (bHLH-LZ) domain was detected in the PyMITF protein sequence, which can bind the canonical E-box sequence in the promoter region of the downstream genes. Phylogenetic analysis of the MITFs among vertebrates and invertebrates revealed that the molecular evolution of MITFs was consistent with the species taxonomy. Different expression levels of PyMITF were detected among different shell color strains, indicating the important role of PyMITF involved in shell pigmentation. Besides, PyMITF was expressed at a significantly higher level in the central mantle than that in the edge mantle, proving the participation of the central mantle in shell color formation in molecular level for the first time. The work provides valuable information for the molecular mechanism study of shell color formation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaosen Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
32
|
Shinohara M, Kinoshita S, Tang E, Funabara D, Kakinuma M, Maeyama K, Nagai K, Awaji M, Watabe S, Asakawa S. Comparison of Two Pearl Sacs Formed in the Same Recipient Oyster with Different Genetic Background Involved in Yellow Pigmentation in Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:594-602. [PMID: 29846830 DOI: 10.1007/s10126-018-9830-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls. It has been reported that polymorphism of yellow pigmentation of Akoya pearls is genetically regulated, but the responsible gene(s) has remained unknown. Here, we prepared pearl sac pairs formed in the same recipient oyster but coming from donor oysters that differ in their color. These two pearl sacs produced pearls with different yellowness even in the same recipient oyster. Yellow tone of produced pearls was consistent with shell nacre color of donor oysters from which mantle grafts were prepared, indicating that donor oysters strongly contribute to the yellow coloration of Akoya pearls. We also conducted comparative RNA-seq analysis and retrieved several candidate genes involved in the pearl coloration. Whole gene expression patterns of pair sacs were not grouped by pearl color they produced, but grouped by recipient oysters in which they were grown, suggesting that the number of genes involved in the yellow coloration is quite small, and that recipient oyster affects gene expression of the majority of genes in the pearl sac.
Collapse
Affiliation(s)
- Mikihiro Shinohara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | - Enkong Tang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Makoto Kakinuma
- Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie, 517-0403, Japan
| | - Masahiko Awaji
- Japan Fisheries Research and Education Agency, National Research Institute of Aquaculture, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
33
|
Xing L, Sun L, Liu S, Li X, Zhang L, Yang H. De Novo assembly and comparative transcriptome analyses of purple and green morphs of Apostichopus japonicus during body wall pigmentation process. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:151-161. [PMID: 30241009 DOI: 10.1016/j.cbd.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 01/23/2023]
Abstract
Pigmentation processes provide a traceable and relevant trait for understanding key issues in evolutionary biology such as adaptation, speciation and the maintenance of balanced polymorphisms. The sea cucumber Apostichopus japonicus, which has nutritive and medical properties, is considered the most valuable commercial species in many parts of Asia. Compared with the green morph, the purple morph is rare and has great appeal to consumers. However, little is currently known about the molecular mechanism of body color formation in A. japonicus, even in echinoderm. Here, we employ illumina sequencing to examine expression patterns of the gene network underlying body wall development in purple and green morphs of A. japonicus. Overall, the number of down-regulated genes in the green morph was significantly more than in the purple morph during the pigmentation stage. We observed dynamic expression patterns of a large number of pigment, regulation and growth genes from the "Melanogenesis", "Melanoma", "Wnt signaling pathway", "Notch signaling pathway", "epithelium development", "epidermal growth factor receptor binding","growth factor activity" and "growth", including contrasting expression patterns of these genes in green and purple morph. This study provides comprehensive lists of differentially expressed genes during body wall development in the green and purple morphs, revealing potential candidate genes that may be involved in regulating body color formation and polymorphism. These data will provide valuable information for future genetic studies on sea cucumbers elucidating the molecular mechanisms underlying pigmentation, and may support the culture of desirable color morphs.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
34
|
Zhang S, Wang H, Yu J, Jiang F, Yue X, Liu B. Identification of a gene encoding microphthalmia-associated transcription factor and its association with shell color in the clam Meretrix petechialis. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:75-83. [PMID: 30031885 DOI: 10.1016/j.cbpb.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development through the direct transcriptional control of related genes, e.g., the phenoloxidase gene. In this study, an MITF gene, MpMITF2, was identified in the clam Meretrix petechialis. The full-length cDNA of MpMITF2 was 2026 bp, and the molecular mass of the predicted protein was 42.6 kDa. A basic helix-loop-helix leucine zipper domain was detected in the deduced protein sequence, which can bind the E-box motif within the promoter of the downstream genes. The mRNA of MpMITF2 was more highly expressed in the mantle compared to the other four tissues. Furthermore, there was a significant difference in the mRNA expression of MpMITF2 among three clam strains with different shell colors. The protein level of MpMITF2 was also different among these strains. These results implied that MpMITF2 was associated with shell color formation in the clam M. petechialis. When the mRNA expression of MpMITF2 was knocked down, the new shell showed discontinuous pigment distribution, suggesting that the reduced expression of MpMITF2 influenced pigment synthesis. A gene encoding phenoloxidase (MpPO) was identified as related to the shell color of the clam and was also a putative downstream gene of MITF. Both the mRNA and protein levels of MpPO decreased significantly at 12 h post-MpMITF-suppression, suggesting that MpMITF2 is required for the expression of MpPO. Our results indicate the close relationships among MpMITF2, MpPO and shell color. This study implicates the role of MITF in shell color formation in the clam M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjuan Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266000, China
| |
Collapse
|
35
|
Yue X, Huan P, Hu Y, Liu B. Integrated transcriptomic and proteomic analyses reveal potential mechanisms linking thermal stress and depressed disease resistance in the turbot Scophthalmus maximus. Sci Rep 2018; 8:1896. [PMID: 29382883 PMCID: PMC5790011 DOI: 10.1038/s41598-018-20065-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
A worldwide increase in the reports of diseases affecting marine organisms has paralleled the climate warming over the past few decades. In this study, we applied omics to explore the mechanisms underlying thermo-linked epizootics, by comparing both the transcriptome- and proteome-wide response of turbots to a mimic pathogen (poly I:C) between high temperature and low temperature using a time-course approach. Our results showed that myeloperoxidase (MPO) and insulin were differentially expressed transcripts shared by all five time-points post poly I:C-injection between high and low temperature and also had a consistent expression trend as differentially expressed proteins at 24 h post injection. Combined with other data, it was suggested that the elevated temperature enhanced neutrophil-mediated immunity and the resultant MPO-mediated oxidative stress, which lasted for at least 5 days. The contents of malondialdehyde and protein carbonyls, markers of oxidative damage for lipids and proteins, respectively, were compared between different temperature groups, and the results further implied the emergence of oxidative damage under high temperature. It was also suggested that metabolism disorder likely occur considering the sustained expression changes of insulin. Hence, prolonged MPO-mediated oxidative stress and metabolic disorder might be involved in the thermo-linked epizootic.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yonghua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
36
|
Feng D, Li Q, Yu H, Kong L, Du S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 2018; 8:1436. [PMID: 29362405 PMCID: PMC5780484 DOI: 10.1038/s41598-018-19950-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in diverse biological processes and have drawn extensive attention in the past few years. However, lncRNAs remain poorly understood about expression and roles in Crassostrea gigas, a potential model organism for marine molluscan studies. Here, we systematically identified lncRNAs in the mantles of C. gigas from four full-sib families characterized by white, black, golden, and partially pigmented shell. Using poly(A)-independent and strand-specific RNA-seq, a total of 441,205,852 clean reads and 12,243 lncRNA transcripts were obtained. LncRNA transcripts were relatively short with few exons and low levels of expression in comparison to protein coding mRNA transcripts. A total of 427 lncRNAs and 349 mRNAs were identified to differentially express among six pairwise groups, mainly involving in biomineralization and pigmentation through functional enrichment. Furthermore, a total of 6 mRNAs and their cis-acting lncRNAs were predicted to involve in synthesis of melanin, carotenoid, tetrapyrrole, or ommochrome. Of them, chorion peroxidase and its cis-acting lincRNA TCONS_00951105 are implicated in playing an essential role in the melanin synthetic pathway. Our studies provided the first systematic characterization of lncRNAs catalog expressed in oyster mantle, which may facilitate understanding the molecular regulation of shell colour diversity and provide new insights into future selective breeding of C. gigas for aquaculture.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Mun S, Kim YJ, Markkandan K, Shin W, Oh S, Woo J, Yoo J, An H, Han K. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum). Genome Biol Evol 2017; 9:1487-1498. [PMID: 28505302 PMCID: PMC5499747 DOI: 10.1093/gbe/evx096] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | - Yun-Ji Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | | | - Wonseok Shin
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | - Sumin Oh
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Jiyoung Woo
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Jongsu Yoo
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Hyesuck An
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| |
Collapse
|
38
|
Song X, Xu C, Liu Z, Yue Z, Liu L, Yang T, Cong B, Yang F. Comparative Transcriptome Analysis of Mink (Neovison vison) Skin Reveals the Key Genes Involved in the Melanogenesis of Black and White Coat Colour. Sci Rep 2017; 7:12461. [PMID: 28963476 PMCID: PMC5622100 DOI: 10.1038/s41598-017-12754-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022] Open
Abstract
Farmed mink (Neovison vison) is one of the most important fur-bearing species worldwide, and coat colour is a crucial qualitative characteristic that contributes to the economic value of the fur. To identify additional genes that may play important roles in coat colour regulation, Illumina/Solexa high-throughput sequencing technology was used to catalogue the global gene expression profiles in mink skin with two different coat colours (black and white). RNA-seq analysis indicated that a total of 12,557 genes were differentially expressed in black versus white minks, with 3,530 genes up-regulated and 9,027 genes down-regulated in black minks. Significant differences were not observed in the expression of MC1R and TYR between the two different coat colours, and the expression of ASIP was not detected in the mink skin of either coat colour. The expression levels of KITLG, LEF1, DCT, TYRP1, PMEL, Myo5a, Rab27a and SLC7A11 were validated by qRT-PCR, and the results were consistent with RNA-seq analysis. This study provides several candidate genes that may be associated with the development of two coat colours in mink skin. These results will expand our understanding of the complex molecular mechanisms underlying skin physiology and melanogenesis in mink and will provide a foundation for future studies.
Collapse
Affiliation(s)
- Xingchao Song
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Xu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zongyue Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zhigang Yue
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Linling Liu
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tongao Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Bo Cong
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Fuhe Yang
- Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
39
|
Jiang F, Yue X, Wang H, Liu B. Transcriptome profiles of the clam Meretrix petechialis hepatopancreas in response to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2017; 62:175-183. [PMID: 28110034 DOI: 10.1016/j.fsi.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 05/27/2023]
Abstract
Microbial diseases have received much attention due to their enormous destruction of aquaculture, and Vibrio parahaemolyticus is one of the main pathogens that cause bacterial disease in the clam Meretrix petechialis. To better understand the molecular mechanisms of the immune response to Vibrio in M. petechialis, RNA-Seq was applied to explore global expression changes of hepatopancreas from this clam after Vibrio challenge. There were 199,318,966 clean reads obtained by Illumina sequencing, which were further assembled into 214,577 transcripts, and then 147,255 unigenes with an N50 of 1393 bp were identified. Gene ontology (GO) analysis revealed 21 biological process subcategories, 15 cellular component subcategories and 12 molecular function subcategories. A total of 8358 unigenes were mapped onto 267 biological signaling pathways by KEGG, among which there were 16 pathways related to the immune system. In total, 206 differentially expressed genes (DEGs) were identified, including 113 up-regulated unigenes and 93 down-regulated unigenes. In these DEGs, 96 DEGs were annotated in at least one database, accounting for 46.60% of all significant DEGs. To validate the transcriptome dataset, 15 DEGs were selected for real-time qPCR confirmation and the results showed that expression patterns of 13 genes (86.7%) agreed well with the RNA-Seq analysis. Fourteen of the 206 DEGs were annotated to be immune-related genes, and we examined the expression patterns of four immune-related DEGs using clams post immersion challenge. This study enriched the M. petechialis transcriptome database and provided insight into the immune response of M. petechialis against Vibrio infection.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000, Qingdao, China.
| |
Collapse
|
40
|
Integration of Next Generation Sequencing and EPR Analysis to Uncover Molecular Mechanism Underlying Shell Color Variation in Scallops. PLoS One 2016; 11:e0161876. [PMID: 27563719 PMCID: PMC5001709 DOI: 10.1371/journal.pone.0161876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/12/2016] [Indexed: 12/05/2022] Open
Abstract
The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture.
Collapse
|
41
|
Williams ST. Molluscan shell colour. Biol Rev Camb Philos Soc 2016; 92:1039-1058. [DOI: 10.1111/brv.12268] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/27/2023]
|
42
|
Feng D, Li Q, Yu H, Zhao X, Kong L. Comparative Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Characterized by Shell Colors: Identification of Genetic Bases Potentially Involved in Pigmentation. PLoS One 2015; 10:e0145257. [PMID: 26693729 PMCID: PMC4691203 DOI: 10.1371/journal.pone.0145257] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shell color polymorphisms of Mollusca have contributed to development of evolutionary biology and population genetics, while the genetic bases and molecular mechanisms underlying shell pigmentation are poorly understood. The Pacific oyster (Crassostrea gigas) is one of the most important farmed oysters worldwide. Through successive family selection, four shell color variants (white, golden, black and partially pigmented) of C. gigas have been developed. To elucidate the genetic mechanisms of shell coloration in C. gigas and facilitate the selection of elite oyster lines with desired coloration patterns, differentially expressed genes (DEGs) were identified among the four shell color variants by RNA-seq. RESULTS Digital gene expression generated over fifteen million reads per sample, producing expression data for 28,027 genes. A total number of 2,645 DEGs were identified from pair-wise comparisons, of which 432, 91, 43 and 39 genes specially were up-regulated in white, black, golden and partially pigmented shell of C. gigas, respectively. Three genes of Abca1, Abca3 and Abcb1 which belong to the ATP-binding cassette (ABC) transporters super-families were significantly associated with white shell formation. A tyrosinase transcript (CGI_10008737) represented consistent up-regulated pattern with golden coloration. We proposed that white shell variant of C. gigas could employ "endocytosis" to down-regulate notch level and to prevent shell pigmentation. CONCLUSION This study discovered some potential shell coloration genes and related molecular mechanisms by the RNA-seq, which would provide foundational information to further study on shell coloration and assist in selective breeding in C. gigas.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuelin Zhao
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|