1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Fu Q, Ma K, Zhao J, Li J, Wang X, Zhao M, Fu X, Huang D, Chen H. Metagenomics unravel distinct taxonomic and functional diversities between terrestrial and aquatic biomes. iScience 2024; 27:111047. [PMID: 39435150 PMCID: PMC11492093 DOI: 10.1016/j.isci.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Microbes in terrestrial and aquatic ecosystems play crucial roles in driving ecosystem functions, but currently, there is a lack of comparison regarding their taxonomic and functional diversities. Here, we conducted a global analysis to investigate the disparities in microbial taxonomy and microbial-mediated biogeochemical cycles between terrestrial and aquatic ecosystems. Results showed a higher relative abundance of bacteria, especially Actinobacteria and Acidobacteria, in soil than water metagenomes, leading to a greater proportion of genes related to membrane transport, regulatory, and cellular signaling. Moreover, there was a higher abundance of genes associated with carbohydrate, sulfur, and potassium metabolisms in the soil, while those involved in nitrogen and iron metabolisms were more prevalent in the water. Thus, both soil and water microbiomes exhibited unique taxonomic and functional properties associated with biogeochemical processes, providing valuable insights into predicting and understanding the adaptation of microbes in different ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Meiqi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dandan Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
3
|
Glasl B, Luter HM, Damjanovic K, Kitzinger K, Mueller AJ, Mahler L, Engelberts JP, Rix L, Osvatic JT, Hausmann B, Séneca J, Daims H, Pjevac P, Wagner M. Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges. THE ISME JOURNAL 2024; 18:wrae069. [PMID: 38676557 PMCID: PMC11812461 DOI: 10.1093/ismejo/wrae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Ammonia-oxidizing archaea and nitrite-oxidizing bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification-the aerobic oxidation of ammonia to nitrite and further to nitrate-and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterize two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualization, and physiological rate measurements. Both represent a new genus in the ammonia-oxidizing archaeal class Nitrososphaeria and the nitrite-oxidizing bacterial order Nitrospirales, respectively. Furthermore, we show that larvae of this viviparous sponge are densely colonized by representatives of Ca. Nitrosokoinonia and Ca. Nitrosymbion indicating vertical transmission. In adults, the representatives of both symbiont genera are located extracellularly in the mesohyl. Comparative metagenome analyses and physiological data suggest that ammonia-oxidizing archaeal symbionts of the genus Ca. Nitrosokoinonia strongly rely on endogenously produced nitrogenous compounds (i.e. ammonium, urea, nitriles/cyanides, and creatinine) rather than on exogenous ammonium sources taken up by the sponge. Additionally, the nitrite-oxidizing bacterial symbionts of the genus Ca. Nitrosymbion may reciprocally support the ammonia-oxidizers with ammonia via the utilization of sponge-derived urea and cyanate. Comparative analyses of published environmental 16S rRNA gene amplicon data revealed that Ca. Nitrosokoinonia and Ca. Nitrosymbion are widely distributed and predominantly associated with marine sponges and corals, suggesting a broad relevance of our findings.
Collapse
Affiliation(s)
- Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Heidi M Luter
- Australian Institute of Marine Science, 4810 Townsville, Australia
| | | | - Katharina Kitzinger
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Leonie Mahler
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Joan Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St. Lucia, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, 4102 Woolloongabba, Australia
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St. Lucia, Australia
| | - Jay T Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Joana Séneca
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
4
|
Garritano AN, Majzoub ME, Ribeiro B, Damasceno T, Modolon F, Messias C, Vilela C, Duarte G, Hill L, Peixoto R, Thomas T. Species-specific relationships between deep sea sponges and their symbiotic Nitrosopumilaceae. THE ISME JOURNAL 2023; 17:1517-1519. [PMID: 37258653 PMCID: PMC10432484 DOI: 10.1038/s41396-023-01439-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Sponges thrive in the deep, dark and nutrient-depleted ocean and may rely on microbial symbionts for carbon acquisition and energy generation. However, these symbiotic relationships remain largely unexplored. In this study, we analyze the microbiome of deep-sea sponges and show that ammonia-oxidizing archaea (AOA) of the family Nitrosopumilaceae make up at least 75% of the microbial communities of the sponges Aphrocallistes sp., Farrea sp. and Paratimea sp.. Given the known autotrophic metabolism of AOAs, this implies that these sponge holobionts can have the capacity for primary production in the deep-sea. We also show that specific AOA lineages are highly specific towards their hosts, hinting towards an unprecedent vertical transmission of these symbionts in deep-sea sponges. Our results show that the ecology and evolution of symbiotic relationships in deep-sea sponge is distinct from that of their shallow-water counterparts.
Collapse
Affiliation(s)
- Alessandro N Garritano
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bárbara Ribeiro
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Taissa Damasceno
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Fluvio Modolon
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Camila Messias
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Caren Vilela
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Gustavo Duarte
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Lilian Hill
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Raquel Peixoto
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
5
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Webster N, Thomas T. Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species. Syst Appl Microbiol 2023; 46:126426. [PMID: 37141831 DOI: 10.1016/j.syapm.2023.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Chen Y, Pan T, Chai G, Li Z. Complete genome of Mycetocola spongiae MSC19T isolated from deep-sea sponge Cacospongia mycofijiensis indicates the adaptation to deep-sea environment and sponge-microbe symbioses. Mar Genomics 2022; 63:100955. [DOI: 10.1016/j.margen.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
|
7
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
de Oliveira BFR, Freitas-Silva J, Sánchez-Robinet C, Laport MS. Transmission of the sponge microbiome: moving towards a unified model. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:619-638. [PMID: 33048474 DOI: 10.1111/1758-2229.12896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Claudia Sánchez-Robinet
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Fiore CL, Jarett JK, Steinert G, Lesser MP. Trait-Based Comparison of Coral and Sponge Microbiomes. Sci Rep 2020; 10:2340. [PMID: 32047192 PMCID: PMC7012828 DOI: 10.1038/s41598-020-59320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.
Collapse
Affiliation(s)
- Cara L Fiore
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA.
- Appalachian State University, Biology Department, Boone, NC, USA.
| | - Jessica K Jarett
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
- AnimalBiome, Oakland, CA, USA
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, Kiel, Germany
| | - Michael P Lesser
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
| |
Collapse
|
11
|
Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep 2020; 10:645. [PMID: 31959785 PMCID: PMC6971038 DOI: 10.1038/s41598-020-57464-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
Relatively little is known about the role of sponge microbiomes in the Antarctic marine environment, where sponges may dominate the benthic landscape. Specifically, we understand little about how taxonomic and functional diversity contributes to the symbiotic lifestyle and aids in nutrient cycling. Here we use functional metagenomics to investigate the community composition and metabolic potential of microbiomes from two abundant Antarctic sponges, Leucetta antarctica and Myxilla sp. Genomic and taxonomic analyses show that both sponges harbor a distinct microbial community with high fungal abundance, which differs from the surrounding seawater. Functional analyses reveal both sponge-associated microbial communities are enriched in functions related to the symbiotic lifestyle (e.g., CRISPR system, Eukaryotic-like proteins, and transposases), and in functions important for nutrient cycling. Both sponge microbiomes possessed genes necessary to perform processes important to nitrogen cycling (i.e., ammonia oxidation, nitrite oxidation, and denitrification), and carbon fixation. The latter indicates that Antarctic sponge microorganisms prefer light-independent pathways for CO2 fixation mediated by chemoautotrophic microorganisms. Together, these results show how the unique metabolic potential of two Antarctic sponge microbiomes help these sponge holobionts survive in these inhospitable environments, and contribute to major nutrient cycles of these ecosystems.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Antonia Cristi
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - James F Gillooly
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile.
| |
Collapse
|
12
|
Cárdenas CA, Font A, Steinert G, Rondon R, González-Aravena M. Temporal Stability of Bacterial Communities in Antarctic Sponges. Front Microbiol 2019; 10:2699. [PMID: 31824467 PMCID: PMC6883807 DOI: 10.3389/fmicb.2019.02699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
Marine sponges host dense, diverse, and species-specific microbial communities around the globe; however, most of the current knowledge is restricted to species from tropical and temperate waters. Only recently, some studies have assessed the microbiome of a few Antarctic sponges; however, contrary to low mid-latitude sponges, the knowledge about temporal (stability) patterns in the bacterial communities of Antarctic sponges is absent. Here, we studied the temporal patterns of bacterial communities in the Antarctic sponges Mycale (Oxymycale) acerata, Isodictya sp., Hymeniacidon torquata, and Tedania (Tedaniopsis) wellsae that were tagged in situ and monitored during three austral summers over a 24-month period. By using amplicon sequencing of the bacterial 16S rRNA gene we found that the microbiome differed between species. In general, bacterial communities were dominated by gammaproteobacterial OTUs; however, M. acerata showed the most distinct pattern, being dominated by a single betaproteobacterial OTU. The analysis at OTU level (defined at 97% sequence similarity) showed a highly stable bacterial community through time, despite the abnormal seawater temperatures (reaching 3°C) and rates of temperature increase of 0.15°C day-1 recorded in austral summer 2017. Sponges were characterized by a small core bacterial community that accounted for a high percentage of the abundance. Overall, no consistent changes in core OTU abundance were recorded for all studied species, confirming a high temporal stability of the microbiome. In addition, predicted functional pathway profiles showed that the most abundant pathways among all sponges belonged mostly to metabolism pathway groups (e.g., amino acid, carbohydrate, energy, and nucleotide). The predicted functional pathway patterns differed among the four sponge species. However, no clear temporal differences were detected supporting what was found in terms of the relatively stable composition of the bacterial communities.
Collapse
Affiliation(s)
- César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | | |
Collapse
|
13
|
Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol 2019; 95:5582607. [DOI: 10.1093/femsec/fiz155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
ABSTRACTEfficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world’s coral reef ecosystems.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Lauren Jonas
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Hanzhi Lin
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| |
Collapse
|
14
|
Feng G, Sun W, Zhang F, Orlić S, Li Z. Functional Transcripts Indicate Phylogenetically Diverse Active Ammonia-Scavenging Microbiota in Sympatric Sponges. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:131-143. [PMID: 29423641 DOI: 10.1007/s10126-018-9797-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 05/06/2023]
Abstract
Symbiotic ammonia scavengers contribute to effective removal of ammonia in sponges. However, the phylogenetic diversity and in situ activity of ammonia-scavenging microbiota between different sponge species are poorly addressed. Here, transcribed ammonia monooxygenase genes (amoA), hydrazine synthase genes (hzsA), and glutamine synthetase genes (glnA) were analyzed to reveal the active ammonia-scavenging microbiota in the sympatric sponges Theonella swinhoei, Plakortis simplex, and Phakellia fusca, and seawater. Archaeal amoA and bacterial glnA transcripts rather than bacterial amoA, hzsA, and archaeal glnA transcripts were detected in the investigated sponges and seawater. The transcribed amoA genes were ascribed to two Thaumarchaeota ecotypes, while the transcribed glnA genes were interspersed among the lineages of Cyanobacteria, Tectomicrobia, Poribacteria, Alpha-, Beta-, Gamma-, and Epsilonproteobacteria. In addition, transcribed abundances of archaeal amoA and bacterial glnA genes in these sponges have been quantified, showing significant variation among the investigated sponges and seawater. The transcriptome-based qualitative and quantitative analyses clarified the different phylogenetic diversity and transcription expression of functional genes related to microbially mediated ammonia scavenging in different sympatric sponges, contributing to the understanding of in situ active ecological functions of sponge microbial symbionts in holobiont nitrogen cycling.
Collapse
Affiliation(s)
- Guofang Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Wei Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Fengli Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijeničkacesta 54, 10000, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean region-STIM, Bijeničkacesta 54, 10000, Zagreb, Croatia
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
15
|
Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. MICROBIOME 2018; 6:46. [PMID: 29523192 PMCID: PMC5845141 DOI: 10.1186/s40168-018-0428-1] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
The recognition that all macroorganisms live in symbiotic association with microbial communities has opened up a new field in biology. Animals, plants, and algae are now considered holobionts, complex ecosystems consisting of the host, the microbiota, and the interactions among them. Accordingly, ecological concepts can be applied to understand the host-derived and microbial processes that govern the dynamics of the interactive networks within the holobiont. In marine systems, holobionts are further integrated into larger and more complex communities and ecosystems, a concept referred to as "nested ecosystems." In this review, we discuss the concept of holobionts as dynamic ecosystems that interact at multiple scales and respond to environmental change. We focus on the symbiosis of sponges with their microbial communities-a symbiosis that has resulted in one of the most diverse and complex holobionts in the marine environment. In recent years, the field of sponge microbiology has remarkably advanced in terms of curated databases, standardized protocols, and information on the functions of the microbiota. Like a Russian doll, these microbial processes are translated into sponge holobiont functions that impact the surrounding ecosystem. For example, the sponge-associated microbial metabolisms, fueled by the high filtering capacity of the sponge host, substantially affect the biogeochemical cycling of key nutrients like carbon, nitrogen, and phosphorous. Since sponge holobionts are increasingly threatened by anthropogenic stressors that jeopardize the stability of the holobiont ecosystem, we discuss the link between environmental perturbations, dysbiosis, and sponge diseases. Experimental studies suggest that the microbial community composition is tightly linked to holobiont health, but whether dysbiosis is a cause or a consequence of holobiont collapse remains unresolved. Moreover, the potential role of the microbiome in mediating the capacity for holobionts to acclimate and adapt to environmental change is unknown. Future studies should aim to identify the mechanisms underlying holobiont dynamics at multiple scales, from the microbiome to the ecosystem, and develop management strategies to preserve the key functions provided by the sponge holobiont in our present and future oceans.
Collapse
Affiliation(s)
- L. Pita
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - L. Rix
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - B. M. Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - A. Franke
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - U. Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|