1
|
Zhang Y, Zhang C, Wen H, Qi X, Wang Q, Zhang K, Wang L, Sun D, Dong Y, Li P, Li Y. Genetic Basis and Identification of Candidate Genes for Alkalinity Tolerance Trait in Spotted Sea Bass (Lateolabrax maculatus) by Genome-Wide Association Study (GWAS). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:27. [PMID: 39786505 DOI: 10.1007/s10126-024-10405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L. maculatus individuals exposed to carbonate alkaline conditions were collected, and a genome-wide association study (GWAS) conducted to elucidate genetic basis related to carbonate alkalinity tolerance trait. Results showed that 14 SNPs and 8 InDels were markedly related to carbonate alkalinity tolerance trait, and 404 candidate genes were pinpointed within a ± 300-kb region surrounding these variants. Notably, the most significant SNP (SNP_05_17240108), along with two adjacent SNPs (SNP_05_17240102 and SNP_05_17240340) and two InDels (InDel_05_17240228 and InDel_05_17240231), was situated in the intron region of trio gene that could play vital roles in cell remodeling, and cell junction and activity of aquaporins to deal with carbonate alkalinity stress. Furthermore, candidate genes were significantly involved in pathways associated with carbohydrate metabolism, cell remodeling, ion transport, and RNA degradation, which were consistent with RNA-Seq analysis results of gills and kidneys in response to alkalinity stress. Our study will contribute to elucidate the genetic basis of alkalinity tolerance and the identified SNPs and InDels could be used for marker-assisted selection (MAS) and genomic selection (GS) for alkalinity tolerance trait in the breeding programs of spotted sea bass.
Collapse
Affiliation(s)
- Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Chong Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Qing Wang
- Fujian Minwell Industrial Co., LTD, Fuding, 355200, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yani Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Kim M, Munyaneza JP, Cho E, Jang A, Jo C, Nam KC, Choo HJ, Lee JH. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals (Basel) 2023; 13:2966. [PMID: 37760369 PMCID: PMC10525433 DOI: 10.3390/ani13182966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Meat flavor is an important factor that influences the palatability of chicken meat. Inosine 5'-monophosphate (IMP), inosine, and hypoxanthine are nucleic acids that serve as taste-active compounds, mainly enhancing flavor in muscle tissue. For this study, we performed a genome-wide association study (GWAS) using a mixed linear model to identify single-nucleotide polymorphisms (SNPs) that are significantly associated with changes in the contents of the nucleotide-related compounds of breast meat in the Korean native chicken (KNC) population. The genomic region on chicken chromosome 5 containing an SNP (rs316338889) was significantly (p < 0.05) associated with all three traits. The trait-related candidate genes located in this significant genomic region were investigated through performing a functional enrichment analysis and protein-protein interaction (PPI) database search. We found six candidate genes related to the function that possibly affected the content of nucleotide-related compounds in the muscle, namely, the TNNT3 and TNNT2 genes that regulate muscle contractions; the INS, IGF2, and DUSP8 genes associated with insulin sensitivity; and the C5NT1AL gene that is presumably related to the nucleotide metabolism process. This study is the first of its kind to find candidate genes associated with the content of all three types of nucleotide-related compounds in chicken meat using GWAS. The candidate genes identified in this study can be used for genomic selection to breed better-quality chickens in the future.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
3
|
Munyaneza JP, Kim M, Cho E, Jang A, Choo HJ, Lee JH. Association of single-nucleotide polymorphisms in dual specificity phosphatase 8 and insulin-like growth factor 2 genes with inosine-5'-monophosphate, inosine, and hypoxanthine contents in chickens. Anim Biosci 2023; 36:1357-1366. [PMID: 37402464 PMCID: PMC10472161 DOI: 10.5713/ab.23.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE This study aimed to identify the single-nucleotide polymorphisms (SNPs) in the dual-specificity phosphatase 8 (DUSP8) and insulin-like growth factor 2 (IGF2) genes and to explore their effects on inosine-5'-monophosphate (IMP), inosine, and hypoxanthine contents in Korean native chicken -red-brown line (KNC-R Line). METHODS A total sample of 284 (males, n = 127; females n = 157) and 230 (males, n = 106; females, n = 124) aged of 10 weeks old KNC-R line was used for genotyping of DUSP8 and IGF2 genes, respectively. One SNP (rs313443014 C>T) in DUSP8 gene and two SNPs (rs315806609A/G and rs313810945T/C) in IGF2 gene were used for genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and KASP methods, respectively. The Two-way analysis of variance of the R program was used to associate DUSP8 and IGF2 genotypes with nucleotide contents in KNC-R chickens. RESULTS The DUSP8 (rs313443014 C>T) was polymorphic in KNC-R line and showed three genotypes: CC, CT, and TT. The IGF2 gene (rs315806609A/G and rs313810945T/C) was also polymorphic and had three genotypes per SNP, including GG, AG, and AA for the SNP rs315806609A/G and genotypes: CC, CT, and TT for the SNP rs313810945T/C. Association resulted into a strong significant association (p<0.01) with IMP, inosine, and hypoxanthine. Moreover, the significant effect of sex (p<0.05) on nucleotide content was also observed. CONCLUSION The SNPs in the DUSP8 and IGF2 genes might be used as genetic markers in the selection and production of chickens with highly flavored meat.
Collapse
Affiliation(s)
- Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342,
Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
4
|
Chen G, Zhou Y, Yu X, Wang J, Luo W, Pang M, Tong J. Genome-Wide Association Study Reveals SNPs and Candidate Genes Related to Growth and Body Shape in Bighead Carp (Hypophthalmichthys nobilis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1138-1147. [PMID: 36350467 DOI: 10.1007/s10126-022-10176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Growth is an economically important trait in bighead carp and other aquaculture species that affects production efficiency. Interestingly, the head of the bighead carp has a high market value in China; therefore, it is important to study the genetic bases of both growth and body shape traits. A genome-wide association study was performed based on 2b-RAD sequencing of 776 individuals to identify SNPs associated with growth and body shape traits, including body weight, body length, body height, and deheaded body length. In total, 26 significant and 19 suggestive SNPs were identified, and more than half of these significant SNPs were clustered in LG16. Two LGs (LG16 and LG21) contained QTLs associated with body weight. Fourteen SNPs of LG16 and two LG21 SNPs were found to be associated with body length. For body height, 12 significantly associated SNPs were identified in LG16. Additionally, 12 SNPs of LG16 and 3 SNPs of LG21 were found to be associated with deheaded body length. Forty-three genes were significantly or suggestively associated with body shape/growth traits based on GWAS results, 18 of which were candidate genes for all BW, BL, BH, and DBL traits. One of these genes, fndc5b, was selected for further analyses. Association analysis revealed that one SNP (g.245 C > T) in the introns of fndc5b was significantly associated with growth-related traits in growth-extreme samples. The mRNA levels of fndc5b in the brains of the lightweight group were significantly higher than those of the heavy-weight group. This study helps to reveal the genetic structure of growth and body development in fish and provides candidate genes for future molecular marker-assisted selection for fast growth and better body conformation in bighead carp.
Collapse
Affiliation(s)
- Geng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
5
|
Blaj I, Tetens J, Bennewitz J, Thaller G, Falker-Gieske C. Structural variants and tandem repeats in the founder individuals of four F 2 pig crosses and implications to F 2 GWAS results. BMC Genomics 2022; 23:631. [PMID: 36057580 PMCID: PMC9440560 DOI: 10.1186/s12864-022-08716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Structural variants and tandem repeats are relevant sources of genomic variation that are not routinely analyzed in genome wide association studies mainly due to challenging identification and genotyping. Here, we profiled these variants via state-of-the-art strategies in the founder animals of four F2 pig crosses using whole-genome sequence data (20x coverage). The variants were compared at a founder level with the commonly screened SNPs and small indels. At the F2 level, we carried out an association study using imputed structural variants and tandem repeats with four growth and carcass traits followed by a comparison with a previously conducted SNPs and small indels based association study. RESULTS A total of 13,201 high confidence structural variants and 103,730 polymorphic tandem repeats (with a repeat length of 2-20 bp) were profiled in the founders. We observed a moderate to high (r from 0.48 to 0.57) level of co-localization between SNPs or small indels and structural variants or tandem repeats. In the association step 56.56% of the significant variants were not in high LD with significantly associated SNPs and small indels identified for the same traits in the earlier study and thus presumably not tagged in case of a standard association study. For the four growth and carcass traits investigated, many of the already proposed candidate genes in our previous studies were confirmed and additional ones were identified. Interestingly, a common pattern on how structural variants or tandem repeats regulate the phenotypic traits emerged. Many of the significant variants were embedded or nearby long non-coding RNAs drawing attention to their functional importance. Through which specific mechanisms the identified long non-coding RNAs and their associated structural variants or tandem repeats contribute to quantitative trait variation will need further investigation. CONCLUSIONS The current study provides insights into the characteristics of structural variants and tandem repeats and their role in association studies. A systematic incorporation of these variants into genome wide association studies is advised. While not of immediate interest for genomic prediction purposes, this will be particularly beneficial for elucidating biological mechanisms driving the complex trait variation.
Collapse
Affiliation(s)
- Iulia Blaj
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany.
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | - Jörn Bennewitz
- Institute of Animal Husbandry and Breeding, University of Hohenheim, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| | | |
Collapse
|
6
|
Gong J, Zhao J, Ke Q, Li B, Zhou Z, Wang J, Zhou T, Zheng W, Xu P. First genomic prediction and genome‐wide association for complex growth‐related traits in Rock Bream (Oplegnathus fasciatus). Evol Appl 2021; 15:523-536. [PMID: 35505886 PMCID: PMC9046763 DOI: 10.1111/eva.13218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Rock Bream (Oplegnathus fasciatus) is an important aquaculture species for offshore cage aquaculture and fish stocking of marine ranching in East Asia. Genomic selection has the potential to expedite genetic gain for the key target traits of a breeding program, but has not yet been evaluated in Oplegnathus. The purposes of the present study were to explore the performance of genomic selection to improve breeding value accuracy through real data analyses using six statistical models and to carry out genome‐wide association studies (GWAS) to dissect the genetic architecture of economically vital growth‐related traits (body weight, total length, and body depth) in the O. fasciatus population. After quality control, genotypes for 16,162 SNPs were acquired for 455 fish. Heritability was estimated to be moderate for the three traits (0.38 for BW, 0.33 for TL, and 0.24 for BD), and results of GWAS indicated that the underlying genetic architecture was polygenic. Six statistic models (GBLUP, BayesA, BayesB, BayesC, Bayesian Ridge‐Regression, and Bayesian LASSO) showed similar performance for the predictability of genomic estimated breeding value (GEBV). The low SNP density (around 1 K selected SNP based on GWAS) is sufficient for accurate prediction on the breeding value for the three growth‐related traits in the current studied population, which will provide a good compromise between genotyping costs and predictability in such standard breeding populations advanced. These consequences illustrate that the employment of genomic selection in O. fasciatus breeding could provide advantages for the selection of breeding candidates to facilitate complex economic growth traits.
Collapse
Affiliation(s)
- Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
- State Key Laboratory of Large Yellow Croaker Breeding Ningde Fufa Fisheries Company Limited Ningde China
| | - Bijun Li
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Jiaying Wang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding Ningde Fufa Fisheries Company Limited Ningde China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
- State Key Laboratory of Large Yellow Croaker Breeding Ningde Fufa Fisheries Company Limited Ningde China
| |
Collapse
|
7
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Shi Y, Zhou Z, Liu B, Kong S, Chen B, Bai H, Li L, Pu F, Xu P. Construction of a High-Density Genetic Linkage Map and QTL Mapping for Growth-Related Traits in Takifugu bimaculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:130-144. [PMID: 31900733 DOI: 10.1007/s10126-019-09938-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Takifugu bimaculatus is a euryhaline species, distributed ranging from the southern Yellow Sea to the South China Sea. Their tolerance to a wide range of salinity and temperature, coupled with a desirable firm texture, makes T. bimaculatus a strong candidate for Takifugu aquaculture in subtropics areas. Due to the increasing demand in markets and emerging of the Takifugu aquaculture industry, close attention has been paid to improvement on the T. bimaculatus production. In aquaculture, the great effort has been put into marker-assisted selective breeding, and efficient improvement was realized. However, few genetic resources on T. bimaculatus are provided so far. Aiming at understanding the genetic basis underlying important economic growth traits, facilitating genetic improvement and enriching the genetic resource in T. bimaculatus, we constructed the first genetic linkage map for T. bimaculatus via double digestion restriction-site association DNA sequencing and conducted quantitative traits locus (QTL) mapping for growth-related traits. The map comprised 1976 single nucleotide polymorphism markers distributed on 22 linkage groups (LG), with a total genetic distance of 2039.74 cM. Based on the linkage map, a chromosome-level assembly was constructed whereby we carried out comparative genomics analysis, verifying the high accuracy on contigs ordering of the linkage map. On the other hand, 18 QTLs associated with growth traits were detected on LG6, LG7, LG8, LG10, LG20, and LG21 with phenotypical variance ranging from 15.1 to 56.4%. Candidate genes participating in cartilage development, fat accumulation, and other growth-related regulation activities were identified from these QTLs, including col11a1, foxa2, and thrap3. The linkage map provided a solid foundation for chromosomes assembly and refinement. QTLs reported here unraveled the genomic architecture of some growth traits, which will advance the investigation of aquaculture breeding efforts in T. bimaculatus.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bo Liu
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Shengnan Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Leibin Li
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
9
|
Wang L, Chua E, Sun F, Wan ZY, Ye B, Pang H, Wen Y, Yue GH. Mapping and Validating QTL for Fatty Acid Compositions and Growth Traits in Asian Seabass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:643-654. [PMID: 31273567 DOI: 10.1007/s10126-019-09909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Asian seabass is an important food fish species. While improving growth, increasing the nutritional value is important, omega-3 fatty acids are indispensable to human health. Identifying and validating DNA markers associated with traits is the first step towards marker-assisted selection (MAS). We quantified 13 different fatty acids and three growth traits in 213 F2 Asian seabass from a family at the age 270 days post hatch, and screened QTL for these traits. The content of total fatty acids in 100 g flesh was 2.57 ± 0.80 g, while the proportions of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 16.96 ± 2.20% and 5.42 ± 0.90%, respectively. A linkage map with 2424 SNPs was constructed and used for QTL mapping. For fatty acid compositions, 14 significant QTL were identified on three linkage groups (LG5, LG11 and LG14), with phenotypic variance explained (PVE) from 12.8 to 24.6%. Thirty-nine suggestive QTL were detected on 16 LGs. Two significant QTL for EPA were identified on LG5 and LG14, with PVE of 15.2% and 15.1%, respectively. No significant QTL was identified for DHA. For growth traits, six significant and 13 suggestive QTL were identified on two and seven LGs, respectively. Only a few significant QTL for fatty acids overlapped with previously mapped QTL for these traits, suggesting that most QTL detected in a family are family-specific and could only be used in MAS in the family per se. To facilitate population-wide molecular breeding, more powerful methods (e.g. GWAS) should be used to identify SNPs for genomic selection.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Elaine Chua
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Fei Sun
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Hongyan Pang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Yanfei Wen
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Wu L, Yang Y, Li B, Huang W, Wang X, Liu X, Meng Z, Xia J. First Genome-wide Association Analysis for Growth Traits in the Largest Coral Reef-Dwelling Bony Fishes, the Giant Grouper (Epinephelus lanceolatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:707-717. [PMID: 31392592 DOI: 10.1007/s10126-019-09916-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The giant grouper, Epinephelus lanceolatus, is the largest coral reef-dwelling bony fish species. However, despite extremely fast growth performance and the considerable economic importance in this species, its genetic regulation of growth remains unknown. Here, we performed the first genome-wide association study (GWAS) for five growth traits in 289 giant groupers using 42,323 single nucleotide polymorphisms (SNPs) obtained by genotyping-by-sequencing (GBS). We identified a total of 36 growth-related SNPs, of which 11 SNPs reached a genome-wide significance level. The phenotypic variance explained by these SNPs varied from 7.09% for body height to 18.42% for body length. Moreover, 22 quantitative trait loci (QTLs) for growth traits, including nine significant QTLs and 13 suggestive QTLs, were found on multiple chromosomes. Interestingly, the QTL (LG17: 6934451) was shared between body weight and body height, while two significant QTLs (LG7: 22596399 and LG15: 11877836) for body length were consistent with the associated regions of total length at the genome-wide suggestive level. Eight potential candidate genes close to the associated SNPs were selected for expression analysis, of which four genes (phosphatidylinositol transfer protein cytoplasmic 1, protein tyrosine phosphatase receptor type E, alpha/beta hydrolase domain-containing protein 17C, and vascular endothelial growth factor A-A) were differentially expressed and involved in metabolism, development, response stress, etc. This study improves our understanding of the complex genetic architecture of growth in the giant grouper. The results contribute to the selective breeding of grouper species and the conservation of coral reef fishes.
Collapse
Affiliation(s)
- Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xi Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Zhang Q, Yu Y, Wang Q, Liu F, Luo Z, Zhang C, Zhang X, Huang H, Xiang J, Li F. Identification of Single Nucleotide Polymorphisms Related to the Resistance Against Acute Hepatopancreatic Necrosis Disease in the Pacific White Shrimp Litopenaeus vannamei by Target Sequencing Approach. Front Genet 2019; 10:700. [PMID: 31428134 PMCID: PMC6688095 DOI: 10.3389/fgene.2019.00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a major bacterial disease in Pacific white shrimp Litopenaeus vannamei farming, which is caused by Vibrio parahaemolyticus. AHPND has led to a significant reduction of shrimp output since its outbreak. Selective breeding of disease-resistant broodstock is regarded as a key strategy in solving the disease problem. Understanding the relationship between genetic variance and AHPND resistance is the basis for marker-assisted selection in shrimp. The purpose of this study was to identify single nucleotide polymorphisms (SNPs) associated with the resistance against AHPND in L. vannamei. In this work, two independent populations were used for V. parahaemolyticus challenge and the resistant or susceptible shrimp were evaluated according to the survival time after Vibrio infection. The above two populations were genotyped separately by a SNP panel designed based on the target sequencing platform using a pooling strategy. The SNP panel contained 508 amplicons from DNA fragments distributed evenly along the genome and some immune-related genes of L. vannamei. By analyzing the allele frequency in the resistant and susceptible groups, 30 SNPs were found to be significantly associated with the resistance of the shrimp against V. parahaemolyticus infection (false discovery rate corrected at P < 0.05). Three SNPs were further validated by individual genotyping in all samples of population 1. Our study illustrated that target sequencing and pooling sequencing were effective in identifying the markers associated with economic traits, and the SNPs identified in this study could be used as molecular markers for breeding disease-resistant shrimp.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Hainan Grand Suntop Ocean Breeding Co., Ltd., Wenchang, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
12
|
Yu Y, Wang Q, Zhang Q, Luo Z, Wang Y, Zhang X, Huang H, Xiang J, Li F. Genome Scan for Genomic Regions and Genes Associated with Growth Trait in Pacific White Shrimp Litopeneaus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:374-383. [PMID: 30887268 DOI: 10.1007/s10126-019-09887-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The Pacific white shrimp Litopeneaus vannmei (L. vannmei) is a predominant aquaculture shrimp species worldwide, and it is considered as the aquaculture species with the highest single output value. Advances in selective breeding have accelerated the development of L. vannmei aquaculture. Recently, the genome-wide association studies (GWAS) have been applied in aquaculture animals and markers associated with economic traits were identified. In this study, we focused on the growth trait of L. vannamei and performed GWAS to identify SNPs or genes associated with growth. Genomic regions in linkage group 7, 27, 33, and 38 were identified to be associated with body weight and body length of the shrimp. Further, candidate gene association analysis was performed in two independent populations and the result demonstrated that the SNPs in the genes protein kinase C delta type and ras-related protein Rap-2a were significantly associated with the growth trait of L. vannamei. This study showed that GWAS analysis is an efficient approach for screening trait-related markers or genes. The genomic regions and genes identified in this study are essential for further fine mapping of growth-related genes. The identified markers will provide useful information for marker-assisted selection in L. vannamei.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Hainan Grand Suntop Ocean Breeding Co., Ltd, Wenchang, 571300, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
13
|
Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH. QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:384-395. [PMID: 30863905 DOI: 10.1007/s10126-019-09888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
14
|
Wang L, Xie N, Shen Y, Ye B, Yue GH, Feng X. Constructing High-Density Genetic Maps and Developing Sexing Markers in Northern Snakehead (Channa argus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:348-358. [PMID: 30888532 DOI: 10.1007/s10126-019-09884-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
High-density genetic maps are essential for mapping QTL, improving genome assembly, comparative genomics, and studying sex chromosome evolution. The northern snakehead (Channa argus) is an economically important foodfish species with significant sexual dimorphism, where the males grow much faster and bigger than the females. However, to date, the sex determination pattern is still not clear, limiting identification of sex chromosomes, even sex determination genes and development of monosex populations that are valuable for both sex evolution of vertebrates and aquaculture practices. Here, a sex-averaged map and two sex-specific genetic maps were constructed with 2974, 2323, and 2338 SNPs, respectively. Little difference was observed in the pattern of sex-specific recombination between female- and male-specific genetic maps. Genome scan identified a major locus for sex determination at LG16. Females and males are, respectively, homogametic and heterogametic, suggesting an XY sex determination system for this species. By resequencing genomes, InDels in the sex-associated QTL region were discovered and used for developing sex-specific PCR assays for fast sexing of snakehead. These high-density genetic maps provide useful resources for future genomic studies in snakehead and its related species. The PCR assays for sexing are of importance in developing all male populations for aquaculture.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| | - Xiaoyu Feng
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China.
| |
Collapse
|
15
|
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS Analysis Indicated Importance of NF-κB Signaling Pathway in Host Resistance Against Motile Aeromonas Septicemia Disease in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:335-347. [PMID: 30895402 DOI: 10.1007/s10126-019-09883-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jian Luo
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
16
|
Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:248-255. [PMID: 30952021 DOI: 10.1016/j.cbd.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 11/21/2022]
Abstract
Polyadenylation plays important roles in gene expression regulation in eukaryotes, which typically involves cleavage and poly(A) tail addition at the polyadenylation site (PAS) of the pre-mature mRNA. Many eukaryotic genes contain more than one PASs, termed as alternative polyadenylation (APA). As a crucial post-transcriptional regulation, polyadenylation affects various aspects of RNA metabolism such as mRNA stability, translocation, and translation. However, polyadenylation has been rarely studied in teleosts. Here we conducted polyadenylation analysis in channel catfish, a commercially important aquaculture species around the world. Using RNA-Seq data, we identified 20,320 PASs which were classified into 14,500 clusters by merging adjacent PASs. Most of the PASs were found in 3' UTRs, followed by intron regions based on the annotation of channel catfish reference genome. No apparent difference in PAS distribution was observed between the sense and antisense strand of the channel catfish genome. The sequence analysis of nucleotide composition and motif around PASs yielded a highly similar profile among various organisms, suggesting the conservation and importance of polyadenylation in evolution. Using APA genes with more than two PASs, gene ontology enrichment revealed genes particularly involved in RNA binding. Reactome pathway analysis showed the enrichment of the innate immune system, especially neutrophil degranulation.
Collapse
|
17
|
Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Identifying a Long QTL Cluster Across chrLG18 Associated with Salt Tolerance in Tilapia Using GWAS and QTL-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:250-261. [PMID: 30737627 DOI: 10.1007/s10126-019-09877-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
Collapse
Affiliation(s)
- Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
18
|
Kong S, Ke Q, Chen L, Zhou Z, Pu F, Zhao J, Bai H, Peng W, Xu P. Constructing a High-Density Genetic Linkage Map for Large Yellow Croaker (Larimichthys crocea) and Mapping Resistance Trait Against Ciliate Parasite Cryptocaryon irritans. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:262-275. [PMID: 30783862 DOI: 10.1007/s10126-019-09878-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is the most economically important marine cage-farming fish in China in the past decade. However, the sustainable development of large yellow croaker aquaculture has been severely hampered by several diseases, of which, the white spot disease caused by ciliate protozoan parasite Cryptocaryon irritans ranks the most damaging disease in large yellow croaker cage farms. To better understand the genetic basis of parasite infection and disease resistance to C. irritans, it is vital to map the traits and localize the underlying candidate genes in L. crocea genome. Here, we constructed a high-density genetic linkage map using double-digest restriction-site associated DNA (ddRAD)-based high-throughput SNP genotyping data of a F1 mapping family, which had been challenged with C. irritans for resistant trait measure. A total of 5261 SNPs was grouped and oriented into 24 linkage groups (LGs), representing 24 chromosomes of L. crocea. The total genetic map length was 1885.67 cM with an average inter-locus distance of 0.36 cM. Quantitative trait loci (QTL) mapping identified seven significant QTLs in four LGs linked to C. irritans disease resistance. Candidate genes underlying disease resistance were identified from the reference genome, including ifnar1, ifngr2, ikbke, and CD112. Comparative genomic analysis between large yellow croaker and the four closely related species revealed high evolutionary conservation of chromosomes, though inter-chromosomal rearrangements do exist. Especially, the croaker genome structure was closer to the medaka genome than stickleback, indicating that the croaker genome might retain the teleost ancestral genome structure. The high-density genetic linkage map provides an important tool and resource for fine mapping, comparative genome analysis, and molecular selective breeding of large yellow croaker.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
19
|
Tan S, Wang W, Zhong X, Tian C, Niu D, Bao L, Zhou T, Jin Y, Yang Y, Yuan Z, Gao D, Dunham R, Liu Z. Increased Alternative Splicing as a Host Response to Edwardsiella ictaluri Infection in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:729-738. [PMID: 30014301 DOI: 10.1007/s10126-018-9844-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Alternative splicing is the process of generating multiple transcripts from a single pre-mRNA used by eukaryotes to regulate gene expression and increase proteomic complexity. Although alternative splicing profiles have been well studied in mammalian species, they have not been well studied in aquatic species, especially after biotic stresses. In the present study, genomic information and RNA-Seq datasets were utilized to characterize alternative splicing profiles and their induced changes after bacterial infection with Edwardsiella ictaluri in channel catfish (Ictalurus punctatus). A total of 27,476 alternative splicing events, derived from 9694 genes, were identified in channel catfish. Exon skipping was the most abundant while mutually exclusive exon was the least abundant type of alternative splicing. Alternative splicing was greatly induced by E. ictaluri infection with 21.9% increase in alternative splicing events. Interestingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced genes after infection. Sequence analyses of splice variants of a representative alternatively spliced gene, splicing factor srsf2, revealed that certain spliced transcripts may undergo nonsense-mediated decay (NMD), suggesting functional significance of the induced alternative splicing. Although statistical analysis was not possible with such large datasets, results from quantitative real-time PCR from representative differential alternative splicing events provided general validation of the bacterial infection-induced alternative splicing. This is the first comprehensive study of alternative splicing and its changes in response to bacterial infection in fish species, providing insights into the molecular mechanisms of host responses to biotic stresses.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
20
|
Chen L, Peng W, Kong S, Pu F, Chen B, Zhou Z, Feng J, Li X, Xu P. Genetic Mapping of Head Size Related Traits in Common Carp ( Cyprinus carpio). Front Genet 2018; 9:448. [PMID: 30356829 PMCID: PMC6190898 DOI: 10.3389/fgene.2018.00448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
Abstract
Head size is important economic trait for many aquaculture fish which is directly linked to their carcass yield. The genetic basis of head size trait remains unclear in many widely cultured fish species. Common carp (Cyprinus carpio) is one of the most widely studied fish due to its importance on both economic and environmental aspects. In this study, we performed genome-wide association study using 433 Yellow River carp individuals from multiple families to identify loci and genes potentially associated with head size related traits including head length (HL), head length/body length ratio (HBR), eye diameter (ED), and eye cross (EC). QTL mapping was utilized to filter the effects of population stratification and improve power for the candidates identification in the largest surveyed family with a published genetic linkage map. Twelve SNPs showed significant for head size traits in GWAS and 18 QTLs were identified in QTL mapping. Our study combining both GWAS and QTL mapping could compensate the deficiency from each other and advance our understanding of head size traits in common carp. To acquire a better understanding of the correlation between head size and body growth, we also performed comparisons between QTLs of head size traits and growth-related traits. Candidate genes underlying head size traits were identified surrounding the significant SNPs, including parvalbumin, srpk2, fsrp5, igf1, igf3, grb10, igf1r, notch2, sfrp2. Many of these genes have been identified with potential functions on bone formation and growth. Igf1 was a putative gene associated with both head size and body growth in Yellow River carp. The teleost-specific igf3 was a candidate head size related gene, related to both HL and HBR. Our study also indicated the importance of Igf signaling pathway for both growth and head size determination in common carp, which could be potentially used in future selective breeding in common carp as well as other species.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Shengnan Kong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Fisheries, Henan Normal University, Xinxiang, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Feng
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Sun F, Tu R, Xia JH, Liu XJ, Yue GH. The FTO Gene Is Associated with Growth and Omega-3/-6 Ratio in Asian Seabass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:603-610. [PMID: 29766417 DOI: 10.1007/s10126-018-9831-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Polymorphisms in the FTO gene are associated with obesity and body mass index in humans and livestock. Little information of whether FTO plays an important role in aquaculture fish species is available. We cloned and characterized the FTO gene in an economically important food fish species: Asian seabass (Lates calcarifer). The full-length cDNA of the gene is 3679 bp, containing an ORF of 1935 bp encoding 644 amino acids, a 216 bp 5' UTR and a 1538 bp 3' UTR. The gene consisted of nine exons and eight introns and was 117,679 bp in length. Phylogenetic analysis revealed that the gene in Asian seabass was closely related to those of Japanese flounder and Nile tilapia. Analysis of its expressions using qRT-PCR showed that it was expressed ubiquitously, but was higher in the liver, stomach and intestine. Comparative analysis of the genomic sequences of part of intron 1 of the gene among 10 unrelated individuals identified two SNPs. Analysis of associations between SNPs and traits (i.e. growth, oil content, omega-3 and -6 contents) in an F2 family demonstrated that the two SNPs were significantly associated with growth, oil content, omega-3 content and omega-3/-6 ratio. Altogether, our data suggest that the gene or/and its linked genes play an important role in growth and fatty acid synthesis, and that the SNPs associated with traits may be used as markers for selecting quicker growth and higher omega-3/-6 ratio at the fingerling stage.
Collapse
Affiliation(s)
- Fei Sun
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Rongjian Tu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jun Hong Xia
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Jun Liu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
- School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
22
|
Liu Y, Lu S, Liu F, Shao C, Zhou Q, Wang N, Li Y, Yang Y, Zhang Y, Sun H, Zheng W, Chen S. Genomic Selection Using BayesCπ and GBLUP for Resistance Against Edwardsiella tarda in Japanese Flounder (Paralichthys olivaceus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:559-565. [PMID: 29943315 DOI: 10.1007/s10126-018-9839-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson's correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.
Collapse
Affiliation(s)
- Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Feng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine and Fishery Institute of Zhejiang Ocean University, Zhoushan, 316021, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingping Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hejun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Weiwei Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
23
|
Zhou T, Yuan Z, Tan S, Jin Y, Yang Y, Shi H, Wang W, Niu D, Gao L, Jiang W, Gao D, Liu Z. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front Physiol 2018; 9:1113. [PMID: 30210354 PMCID: PMC6119772 DOI: 10.3389/fphys.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.
Collapse
Affiliation(s)
- Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wansheng Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
24
|
Shi H, Zhou T, Wang X, Yang Y, Wu C, Liu S, Bao L, Li N, Yuan Z, Jin Y, Tan S, Wang W, Zhong X, Qin G, Geng X, Gao D, Dunham R, Liu Z. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1365-1378. [PMID: 29967962 DOI: 10.1007/s00438-018-1463-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.
Collapse
Affiliation(s)
- Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chenglong Wu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Guyu Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
25
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
26
|
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Genet Genomics 2017; 293:587-599. [PMID: 29230585 DOI: 10.1007/s00438-017-1406-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.
Collapse
Affiliation(s)
- Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|