1
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Han Z, Moh ESX, Santos ALS, Barcellos IC, Peng Y, Huang W, Ye J. Dechlorination of wastewater from shell-based glucosamine processing by mangrove wetland-derived fungi. Front Microbiol 2023; 14:1271286. [PMID: 37901808 PMCID: PMC10613029 DOI: 10.3389/fmicb.2023.1271286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Wastewater from processing crustacean shell features ultrahigh chloride content. Bioremediation of the wastewater is challenging due to the high chloride ion content, making it inhospitable for most microorganisms to survive and growth. In this study, mangrove wetland-derived fungi were first tested for their salt tolerance, and the highly tolerant isolates were cultured in shrimp processing wastewater and the chloride concentration was monitored. Notably, the filamentous fungal species Aspergillus piperis could remove over 70% of the chloride in the wastewater within 3 days, with the fastest biomass increase (2.01 times heavier) and chloride removal occurring between day one and two. The chloride ions were sequestered into the fungal cells. The genome of this fungal species contained Cl- conversion enzymes, which may have contributed to the ion removal. The fungal strain was found to be of low virulence in larval models and could serve as a starting point for further considerations in bioremediation of shell processing wastewater, promoting the development of green technology in the shell processing industry.
Collapse
Affiliation(s)
- Zhiping Han
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Edward S. X. Moh
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - André L. S. Santos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Iuri C. Barcellos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Yuanhuai Peng
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Weicong Huang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jianzhi Ye
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Jiang J, Deng JL, Wang ZG, Chen XY, Wang SJ, Wang YC. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023; 28:molecules28073037. [PMID: 37049802 PMCID: PMC10096025 DOI: 10.3390/molecules28073037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5–10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.
Collapse
Affiliation(s)
- Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Jing-Ling Deng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Gang Wang
- Training Center, Qingdao Harbour Vocational & Technical College, Qingdao 266404, China
| | - Xiao-Yu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu-Jie Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong-Chuang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Biochemical and Structural Properties of a High-Temperature-Active Laccase from Bacillus pumilus and Its Application in the Decolorization of Food Dyes. Foods 2022; 11:foods11101387. [PMID: 35626959 PMCID: PMC9141572 DOI: 10.3390/foods11101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
A novel laccase gene isolated from Bacillus pumilus TCCC 11568 was expressed, and the recombinant laccase (rLAC) displayed maximal activity at 80 °C and at pH 6.0 against ABTS. rLAC maintained its structural integrity at a high temperature (355 K) compared to its tertiary structure at a low temperature (325 K), except for some minor adjustments of certain loops. However, those adjustments were presumed to be responsible for the formation of a more open access aisle that facilitated the binding of ABTS in the active site, resulting in a shorter distance between the catalytic residue and the elevated binding energy. Additionally, rLAC showed good thermostability (≤70 °C) and pH stability over a wide range (3.0–10.0), and displayed high efficiency in decolorizing azo dyes that are applicable to the food industry. This work will improve our knowledge on the relationship of structure–function for thermophilic laccase, and provide a candidate for dye effluent treatment in the food industry.
Collapse
|
5
|
|
6
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
7
|
Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Novel Cold-Adapted Recombinant Laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a Green Catalyst in Biotransformation. Int J Mol Sci 2021; 22:9593. [PMID: 34502503 PMCID: PMC8431773 DOI: 10.3390/ijms22179593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap-Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.W.); (A.T.-C.)
| |
Collapse
|
8
|
Cloning Method for Stress-Resistant Gene of Conringia planisiliqua under Drought Stress. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3517002. [PMID: 34221296 PMCID: PMC8219435 DOI: 10.1155/2021/3517002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
The low temperature, drought, high salt, and other environments influence crop production and development directly, so the gene cloning method has become an effective biological means. In order to effectively improve the cloning effect, a gene cloning method for Conringia planisiliqua based on mRNA differential display technology was proposed. Based on mRNA differential display technology, the gene of Conringia planisiliqua was transcribed. The present study expects gene cloning to be better than the traditional method. This will lay the basis for gene cloning and functional verification of the transcription and disease-resistant proteins in Conringia planisiliqua. According to homologous identification results, the homologous drought-resistant genes were determined and screened. The data of Conringia planisiliqua in the existing biological database were used to extract ESTs data of Conringia planisiliqua. Then, the heating environment was established and the concept of integral function was introduced to express the influence of growth environment of different genomes. The mass, momentum, energy, and turbulent flow situation of stress-resistant gene of Conringia planisiliqua during the growth were satisfied. Finally, the data search was carried out in the NCBI database and gene cloning was achieved by ESTs data sequence. Experimental results show that the proposed method can effectively reduce the gene data fitting and improve the quantity of gene fragments cloned in a cycle, so the overall cloning effect is better.
Collapse
|
9
|
Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Screening of Novel Laccase Producers-Isolation and Characterization of Cold-Adapted Laccase from Kabatiella bupleuri G3 Capable of Synthetic Dye Decolorization. Biomolecules 2021; 11:828. [PMID: 34199365 PMCID: PMC8229335 DOI: 10.3390/biom11060828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Psychrophilic laccases catalyzing the bond formation in mild, environmentally friendly conditions are one of the biocatalysts at the focus of green chemistry. Screening of 41 cold-adapted strains of yeast and yeast-like fungi revealed a new laccase-producing strain, which was identified as Kabatiella bupleuri G3 IBMiP according to the morphological characteristics and analysis of sequences of the D1/D2 regions of 26S rDNA domain and the ITS1-5,8S-ITS2 region. The extracellular activity of laccase in reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the optimal pH 3.5 was 215 U/L after 15 days of growth in a medium with waste material and 126 U/L after 25 days of cultivation in a defined medium. Copper (II) ions (0.4 mM), Tween 80 (1.0 mM) and ascorbic acid (5.0 mM) increased the production of laccase. The optimum temperature for enzyme operation is in the range of 30-40 °C and retains over 60% of the maximum activity at 10 °C. New laccase shows high thermolability-half-life at 40 °C was only 60 min. Enzyme degradation of synthetic dyes was the highest for crystal violet, i.e., 48.6% after 1-h reaction with ABTS as a mediator. Outcomes of this study present the K. bupleuri laccase as a potential psychrozyme for environmental and industrial applications.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland; (K.M.W.); (A.T.-C.)
| |
Collapse
|
10
|
A novel acid-stable intracellular laccase from Aureobasidium pullulans: Purification, characterization and application in the removal of Bisphenol A from solutions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Sun K, Cheng X, Yu J, Chen L, Wei J, Chen W, Wang J, Li S, Liu Q, Si Y. Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114381. [PMID: 32203859 DOI: 10.1016/j.envpol.2020.114381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Estrogens, which are extensive in the eco-environments, are a category of high-toxic emerging contaminants that induce metabolic disorders and even carcinogenic risks in wildlife and humans. Here we investigate whether fungus-secreted laccase can be used as a green catalyst to eliminate a representative estrogen, 17β-estradiol (E2). A white-rot fungus Trametes hirsuta La-7 with high laccase-productivity, was isolated from pig manure-contaminated soil. Extracellular laccase activity expressed by strain La-7 was 65.4 U·mL-1 for a 3 d inoculation under the optimal fermentation parameters. The concentrated-crude laccase from Trametes hirsuta La-7 (CC-ThLac) was capable of effectively metabolizing E2 at pH 4-6, and the apparent pseudo first-order reaction rate constant and half-life values were respectively 0.027-0.055 min-1 and 25.86-12.67 min (R2 > 0.98). The mass measurement of high-resolution mass spectrometry in combination with 13C-isotope labeling identified that the main by-products of E2 metabolism were dimers, trimers, and tetramers, which are consistent with radical-driven C-C and/or C-O-C covalent coupling pathway, involving the initial enzymatic production of phenoxy radical intermediates and then the successive oxidative-oligomerization of radical intermediates. The formation of oligomers dramatically reduced the estrogenic activity of E2. Additionally, CC-ThLac also exhibited high-efficiency metabolism capability toward E2 in the natural water and pig manure, with more than 94.4% and 91.0% of E2 having been metabolized, respectively. These findings provide a broad prospect for the clean biotechnological applications of Trametes hirsuta La-7 in estrogen-contaminated ecosystems.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xing Cheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jialin Yu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Luojian Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jiajun Wei
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Wenjun Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
12
|
Jia SL, Chi Z, Liu GL, Hu Z, Chi ZM. Fungi in mangrove ecosystems and their potential applications. Crit Rev Biotechnol 2020; 40:852-864. [PMID: 32633147 DOI: 10.1080/07388551.2020.1789063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mangrove fungi, their ecological role in mangrove ecosystems, their bioproducts, and potential applications are reviewed in this article. Mangrove ecosystems can play an important role in beach protection, accretion promotion, and sheltering coastlines and creeks as barriers against devastating tropical storms and waves, seawater, and air pollution. The ecosystems are characterized by high average and constant temperatures, high salinity, strong winds, and anaerobic muddy soil. The mangrove ecosystems also provide the unique habitats for the colonization of fungi which can produce different kinds of enzymes for industrial uses, recycling of plants and animals in the ecosystems, and the degradation of pollutants. Many mangrove ecosystem-associated fungi also can produce exopolysaccharides, Ca2+-gluconic acid, polymalate, liamocin, polyunsaturated fatty acids, biofuels, xylitol, enzymes, and bioactive substances, which have many potential applications in the bioenergy, food, agricultural, and pharmaceutical industries. Therefore, mangrove ecosystems are rich bioresources for bioindustries and ecology. It is necessary to identify more mangrove fungi and genetically edit them to produce a distinct array of novel chemical entities, enzymes, and bioactive substances.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Li T, Huang L, Li Y, Xu Z, Ge X, Zhang Y, Wang N, Wang S, Yang W, Lu F, Liu Y. The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136713. [PMID: 32019046 DOI: 10.1016/j.scitotenv.2020.136713] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Laccases have a huge potential in numerous environmental and industrial applications due to the ability to oxidized a wide range of substrates. Here, a novel laccase gene from the identified Bacillus velezensis TCCC 111904 was heterologously expressed in Escherichia coli. The optimal temperature and pH for oxidation by recombinant laccase (rLac) were 80 °C and 5.5, respectively, in the case of the substrate 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 80 °C and 7.0, respectively, in the case of 2,6-dimethoxyphenol (2,6-DMP). rLac exhibited high thermostability and pH stability over a wide range (pH 3.0, 7.0, and 9.0). Additionally, most of the metal ions did not inhibit the activity of rLac significantly. rLac showed great tolerance against high concentration of NaCl, and 50.8% of its initial activity remained in the reaction system containing 500 mM NaCl compared to the control. Moreover, rLac showed a high efficiency in decolorizing different types of dyes including azo, anthraquinonic, and triphenylmethane dyes at a high temperature (60 °C) and over an extensive pH range (pH 5.5, 7.0, and 9.0). These unique characteristics of rLac indicated that it could be a potential candidate for applications in treatment of dye effluents and other industrial processes.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Basic Science, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yanzhen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehua Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiuqi Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuanfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
14
|
Jia SL, Ma Y, Chi Z, Liu GL, Hu Z, Chi ZM. Genome sequencing of a yeast-like fungal strain P6, a novel species of Aureobasidium spp.: insights into its taxonomy, evolution, and biotechnological potentials. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Purpose
This study aimed to look insights into taxonomy, evolution, and biotechnological potentials of a yeast-like fungal strain P6 isolated from a mangrove ecosystem.
Methods
The genome sequencing for the yeast-like fungal strain P6 was conducted on a Hiseq sequencing platform, and the genomic characteristics and annotations were analyzed. The central metabolism and gluconate biosynthesis pathway were studied through the genome sequence data by using the GO, KOG, and KEGG databases. The secondary metabolite potentials were also evaluated.
Results
The whole genome size of the P6 strain was 25.41Mb and the G + C content of its genome was 50.69%. Totally, 6098 protein-coding genes and 264 non-coding RNA genes were predicted. The annotation results showed that the yeast-like fungal strain P6 had complete metabolic pathways of TCA cycle, EMP pathway, pentose phosphate pathway, glyoxylic acid cycle, and other central metabolic pathways. Furthermore, the inulinase activity associated with β-fructofuranosidase and high glucose oxidase activity in this strain have been demonstrated. It was found that this yeast-like fungal strain was located at root of most species of Aureobasidium spp. and at a separate cluster of all the phylogenetic trees. The P6 strain was predicted to contain three NRPS gene clusters, five type-I PKS gene clusters, and one type-I NRPS/PKS gene cluster via analysis at the antiSMASH Website. It may synthesize epichloenin A, fusaric acid, elsinochromes, and fusaridione A.
Conclusions
Based on its unique DNA sequence, taxonomic position in the phylogenetic tree and evolutional position, the yeast-like fungal strain P6 was identified as a novel species Aureobasidium hainanensis sp. nov. P6 isolate and had highly potential applications.
Collapse
|
15
|
Genome editing of different strains of Aureobasidium melanogenum using an efficient Cre/loxp site-specific recombination system. Fungal Biol 2019; 123:723-731. [DOI: 10.1016/j.funbio.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
|