1
|
Li L, Yang D, Wu Y, Sun R, Qin Y, Kang M, Deng X, Bu M, Li Z, Zeng Z, Zeng X, Jiang M, Chen BT. Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma. Radiography (Lond) 2025; 31:102989. [PMID: 40424664 DOI: 10.1016/j.radi.2025.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (NPC). METHODS This prospective single-center study enrolled patients with NPC and the study assessment included both DECT and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Radiomics features were extracted from each region of interest (ROI) for cervical lymph nodes using arterial and venous phase images at 100 keV and 150 keV, either individually as non-fusion models or combined as fusion models on the DECT images. The performance of the random forest (RF) models, combined with radiomics features, was evaluated by area under the receiver operating characteristic curve (AUC) analysis. DeLong's test was employed to compare model performances, while decision curve analysis (DCA) assessed the clinical utility of the predictive models. RESULTS Sixty-six patients with NPC were included for analysis, which was divided into a training set (n = 42) and a validation set (n = 22). A total of 13 radiomic models were constructed (4 non-fusion models and 9 fusion models). In the non-fusion models, when the threshold value exceeded 0.4, the venous phase at 100 keV (V100) (AUC, 0.9667; 95 % confidence interval [95 % CI], 0.9363-0.9901) model exhibited a higher net benefit than other non-fusion models. The V100 + V150 fusion model achieved the best performance, with an AUC of 0.9697 (95 % CI, 0.9393-0.9907). CONCLUSION DECT-based radiomics effectively diagnosed CLNM in patients with NPC and may potentially be a valuable tool for clinical decision-making. IMPLICATIONS FOR PRACTICE This study improved pre-operative evaluation, treatment strategy selection, and prognostic evaluation for patients with nasopharyngeal carcinoma by combining DECT and radiomics to predict cervical lymph node status prior to treatment.
Collapse
Affiliation(s)
- L Li
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - D Yang
- Department of Radiology, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, Guizhou Province, 550000, Guiyang, PR China; Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, No. 2870, Huaxi Avenue South, Guiyang, 550025, Guizhou, PR China
| | - Y Wu
- Department of Radiology, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, Guizhou Province, 550000, Guiyang, PR China
| | - R Sun
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Y Qin
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - M Kang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - X Deng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - M Bu
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Z Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Z Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - X Zeng
- Department of Radiology, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, Guizhou Province, 550000, Guiyang, PR China.
| | - M Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China.
| | - B T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
2
|
Karius A, Strnad V, Bert C, Fietkau R, Merten R, Schweizer C. Establishing an intraoperative, mobile CBCT-based workflow for gynecologic brachytherapy: primary experience and benefit assessment. Front Oncol 2025; 15:1562670. [PMID: 40308506 PMCID: PMC12040815 DOI: 10.3389/fonc.2025.1562670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Background and purpose In the brachytherapy of cervical cancer, creating a suitable implant based on ultrasound guidance may be impacted by imaging limitations. To validate the implant if ultrasound is not sufficient, we implemented a new workflow utilizing additional intraoperative cone-beam computed tomography (CBCT). The aims of this work were to describe the newly established workflow, reflect associated (dis)advantages, and assess geometric and dosimetric benefits compared to the previous solely ultrasound-guided workflow. Materials and methods We report the establishment of our new workflow utilizing mobile CBCT during interventions and corresponding experiences for 26 consecutive patients. Image quality was assessed by considering the applicator visualization and contrast-noise ratio (CNR) between tissues. Implant changes based on CBCT scans were analyzed with respect to the enhanced insertion depths (EIDs) of needles and their tip distances to target volume borders. Dosimetric effects were evaluated by calculating common dose-volume parameters for target volume and organs at risk (OARs) and comparing them in both a previous patient cohort and scenarios simulating sole ultrasound guidance. Implant uncertainties between intra- and postoperative imaging were analyzed using a corresponding registration as well. Results Implementing intraoperative CBCT was associated with clinical challenges but increased safety feeling during interventions and resulted in geometric as well as dosimetric benefits. Needles could be shifted deeper into the pelvis by an EID of 14 ± 11 mm based on CBCT, associated with corresponding significant dose improvements for target volume and OARs with a mean tradeoff increase of up to 4.8 Gy. With a reasonable CNR between tissues up to 8.5 ± 3.6 and clear detectability of applicators, image quality was sufficient to fulfill intraoperative intentions. Furthermore, the CBCT scans were suitable for treatment planning purposes from a geometric uncertainty perspective. Conclusion The implementation of intraoperative CBCT can substantially improve the quality and safety of image-guided gynecologic brachytherapy.
Collapse
Affiliation(s)
- Andre Karius
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ricarda Merten
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
3
|
Afifah M, Bulthuis MC, Goudschaal KN, Verbeek-Spijkerman JM, Rosario TS, den Boer D, Hinnen KA, Bel A, van Kesteren Z. Virtual unenhanced dual-energy computed tomography for photon radiotherapy: The effect on dose distribution and cone-beam computed tomography based position verification. Phys Imaging Radiat Oncol 2024; 29:100545. [PMID: 38369991 PMCID: PMC10869258 DOI: 10.1016/j.phro.2024.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background and Purpose Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images. Materials and Methods A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm.. Results Planning target volume (PTV) dose agreement with CECT was within 0.35% for D2%, Dmean, and D98%. Organs at risk (OARs) D2% agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (<0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations. Conclusions VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.
Collapse
Affiliation(s)
- Maryam Afifah
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Marloes C. Bulthuis
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Karin N. Goudschaal
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jolanda M. Verbeek-Spijkerman
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tezontl S. Rosario
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Duncan den Boer
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Karel A. Hinnen
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arjan Bel
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Zdenko van Kesteren
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Jeong J, Wentland A, Mastrodicasa D, Fananapazir G, Wang A, Banerjee I, Patel BN. Synthetic dual-energy CT reconstruction from single-energy CT Using artificial intelligence. Abdom Radiol (NY) 2023; 48:3537-3549. [PMID: 37665385 DOI: 10.1007/s00261-023-04004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To develop and assess the utility of synthetic dual-energy CT (sDECT) images generated from single-energy CT (SECT) using two state-of-the-art generative adversarial network (GAN) architectures for artificial intelligence-based image translation. METHODS In this retrospective study, 734 patients (389F; 62.8 years ± 14.9) who underwent enhanced DECT of the chest, abdomen, and pelvis between January 2018 and June 2019 were included. Using 70-keV as the input images (n = 141,009) and 50-keV, iodine, and virtual unenhanced (VUE) images as outputs, separate models were trained using Pix2PixHD and CycleGAN. Model performance on the test set (n = 17,839) was evaluated using mean squared error, structural similarity index, and peak signal-to-noise ratio. To objectively test the utility of these models, synthetic iodine material density and 50-keV images were generated from SECT images of 16 patients with gastrointestinal bleeding performed at another institution. The conspicuity of gastrointestinal bleeding using sDECT was compared to portal venous phase SECT. Synthetic VUE images were generated from 37 patients who underwent a CT urogram at another institution and model performance was compared to true unenhanced images. RESULTS sDECT from both Pix2PixHD and CycleGAN were qualitatively indistinguishable from true DECT by a board-certified radiologist (avg accuracy 64.5%). Pix2PixHD had better quantitative performance compared to CycleGAN (e.g., structural similarity index for iodine: 87% vs. 46%, p-value < 0.001). sDECT using Pix2PixHD showed increased bleeding conspicuity for gastrointestinal bleeding and better removal of iodine on synthetic VUE compared to CycleGAN. CONCLUSIONS sDECT from SECT using Pix2PixHD may afford some of the advantages of DECT.
Collapse
Affiliation(s)
- Jiwoong Jeong
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Andrew Wentland
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| | - Adam Wang
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Imon Banerjee
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Bhavik N Patel
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| |
Collapse
|
5
|
Multi-Energy CT Applications. Radiol Clin North Am 2023; 61:1-21. [DOI: 10.1016/j.rcl.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Kim J, Kim JY, Oh SW, Kim HG. Evaluating the Image Quality of Neck Structures Scanned on Chest CT with Low-Concentration-Iodine Contrast Media. Tomography 2022; 8:2854-2863. [PMID: 36548531 PMCID: PMC9785131 DOI: 10.3390/tomography8060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate and compare the image quality of low-concentration-iodine (240 mgI/mL) contrast media (CM) and high-concentration-iodine (320 mgI/mL) CM according to the radiation dose. METHODS A total of 366 CT examinations were examined. Based on an assessment of quantitative and qualitative parameters by two radiologists, the quality was compared between Group A (low-concentration-iodine CM) and Group B (high-concentration-iodine CM) images of thyroid gland, sternocleidomastoid muscle (SCM), internal jugular vein (IJV), and common carotid artery (CCA). Another subgroup analysis compared Group a, (using ≤90 kVp in Group A), and Group b, (using ≥100 kVp in Group B) for finding the difference in image quality when the tube voltage is lowered. RESULTS Image quality did not differ between Groups A and B or between Groups a and b. The signal-to-noise ratio and contrast-to-noise ratio were significantly higher for Group B than Group A for the thyroid gland, IJV, and CCA. No statistical differences were found in the comparison of all structures between Groups a and b. CONCLUSION There was no significant difference in image quality based on CM concentration with variable radiation doses. Therefore, if an appropriate CT protocol is applied, clinically feasible neck CT images can be obtained even using low-concentration-iodine CM.
Collapse
Affiliation(s)
| | - Jee-Young Kim
- Department of Radiology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | | | | |
Collapse
|
7
|
Dual-energy CT of acute bowel ischemia. Abdom Radiol (NY) 2022; 47:1660-1683. [PMID: 34191075 DOI: 10.1007/s00261-021-03188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Acute bowel ischemia is a condition with high mortality and requires rapid intervention to avoid catastrophic outcomes. Swift and accurate imaging diagnosis is essential because clinical findings are commonly nonspecific. Conventional contrast enhanced CT of the abdomen has been the imaging modality of choice to evaluate suspected acute bowel ischemia. However, subtlety of image findings and lack of non-contrast or arterial phase images can make correct diagnosis challenging. Dual-energy CT provides valuable information toward assessing bowel ischemia. Dual-energy CT exploits the differential X-ray attenuation at two different photon energy levels to characterize the composition of tissues and reveal the presence or absence of faint intravenous iodinated contrast to improve reader confidence in detecting subtle bowel wall enhancement. With the same underlying technique, virtual non-contrast images can help to show non-enhancing hyperdense hemorrhage of the bowel wall in intravenous contrast-enhanced scans without the need to acquire actual non-contrast scans. Dual-energy CT derived low photon energy (keV) virtual monoenergetic images emphasize iodine contrast and provide CT angiography-like images from portal venous phase scans to better evaluate abdominal arterial patency. In Summary, dual-energy CT aids diagnosing acute bowel ischemia in multiple ways, including improving visualization of the bowel wall and mesenteric vasculature, revealing intramural hemorrhage in contrast enhanced scans, or possibly reducing intravenous contrast dose.
Collapse
|
8
|
Ahmed HM, Borg M, Saleem AEA, Ragab A. Multi-detector computed tomography in traumatic abdominal lesions: value and radiation control. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background, The context
A prospective study was conducted involving 81 patients (mean age, 20.79 years) with abdominal trauma who underwent ultrasonography and post-contrast CT on MDCT scanner. The total DLP for each patient was reviewed, and the effective dose was calculated. Purpose of the study to: explore the role of MDCT in assessing traumatic abdominal lesions, demonstrate radiation dose delivered by MDCT, and describe specific CT technical features to minimize radiation.
Results
The spleen was the most commonly injured organ (49.4%) followed by liver (39.5%) and kidney (24.7%). Pancreatic injury occurred in seven patients, whereas only two patients had intestinal injuries. One patient had adrenal injury. Minimal, mild and moderate free intra-peritoneal fluid collection was detected in 21 (25.9%), 47 (58%) and 10 (12.3%) patients, respectively. Only three (3.7%) patients had no collection. One patient had active uncontrolled bleeding and died. Radiation dose was below the detrimental level (calculated effective dose), with optimal image quality.
Conclusions
MDCT is sensitive to all types of traumatic abdominal lesions. Not only in determining the injury, but also in its grading. MDCT has affected the treatment directions, spotting a focus on conservative treatment by raising the diagnostic confidence.
FAST cannot be the sole imaging modality. The individual radiation risk is small but real. Advancements in medical imaging reduce radiation risk.
Collapse
|
9
|
Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT Techniques in Vascular Calcification. Front Cardiovasc Med 2021; 8:716822. [PMID: 34660718 PMCID: PMC8511450 DOI: 10.3389/fcvm.2021.716822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingpan Fan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Sandhu R, Aslan M, Obuchowski N, Primak A, Karim W, Subhas N. Dual-energy CT arthrography: a feasibility study. Skeletal Radiol 2021; 50:693-703. [PMID: 32948903 DOI: 10.1007/s00256-020-03603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. MATERIALS AND METHODS VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). RESULTS Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower (p < 0.001 for all comparisons) than on VMI (overall mean ± SD, 107.7 ± 43.8 HU; knee, 104.6 ± 31.1 HU; shoulder, 109.6 ± 51.0 HU). The proportion of cases with optimal scores (0 or 1) was significantly higher with VUE than with VMI for both 2D and 3D images (p < 0.001). CONCLUSIONS DECT arthrography can be used to produce 2D virtual noncontrast images and to generate 3D bone models. The VUE technique is superior to VMI in producing virtual noncontrast images.
Collapse
Affiliation(s)
- Rashpal Sandhu
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mercan Aslan
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Andrew Primak
- Siemens Medical Solutions USA, Inc., Malvern, PA, 19355, USA
| | - Wadih Karim
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Naveen Subhas
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Schmidt B, Flohr T. Principles and applications of dual source CT. Phys Med 2020; 79:36-46. [PMID: 33115699 DOI: 10.1016/j.ejmp.2020.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023] Open
Abstract
This article describes the technical principles and clinical applications of dual source CT. A dual source CT (DSCT) is a CT system with two x-ray tubes and two detectors at an angle of approximately 90°. Both measurement systems acquire CT scan data simultaneously at the same anatomical level of the patient (same z-position). DSCT provides temporal resolution of approximately a quarter of the gantry rotation time for cardiac, cardio-thoracic and pediatric imaging. Successful imaging of the heart and the coronary arteries at high and variable heart rates has been demonstrated. DSCT systems can be operated at twice the spiral pitch of single source CT systems (up to pitch 3.2). The resulting high table speed is beneficial for pediatric applications and fast CT angiographic scans, e. g. of the aorta or the extremities. Operating both X-ray tubes at different tube potential (kV) enables the acquisition of dual energy data and the corresponding applications such as monoenergetic imaging and computation of material maps. Spectral separation can be improved by different filtration of the X-ray beams of both X-ray tubes. As a downside, DSCT systems have to cope with some challenges, among them the limited size of the second measurement system, and cross-scattered radiation.
Collapse
Affiliation(s)
- Bernhard Schmidt
- Siemens Healthcare GmbH, Computed Tomography, Siemensstr. 3, 91301 Forchheim, Germany.
| | - Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Siemensstr. 3, 91301 Forchheim, Germany
| |
Collapse
|
12
|
Dual energy CT in clinical routine: how it works and how it adds value. Emerg Radiol 2020; 28:103-117. [PMID: 32483665 DOI: 10.1007/s10140-020-01785-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Dual energy computed tomography (DECT), also known as spectral CT, refers to advanced CT technology that separately acquires high and low energy X-ray data to enable material characterization applications for substances that exhibit different energy-dependent x-ray absorption behavior. DECT supports a variety of post-processing applications that add value in routine clinical CT imaging, including material selective and virtual non-contrast images using two- and three-material decomposition algorithms, virtual monoenergetic imaging, and other material characterization techniques. Following a review of acquisition and post-processing techniques, we present a case-based approach to highlight the added value of DECT in common clinical scenarios. These scenarios include improved lesion detection, improved lesion characterization, improved ease of interpretation, improved prognostication, inherently more robust imaging protocols to account for unexpected pathology or suboptimal contrast opacification, length of stay reduction, reduced utilization by avoiding unnecessary follow-up examinations, and radiation dose reduction. A brief discussion of post-processing workflow approaches, challenges, and solutions is also included.
Collapse
|