1
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
2
|
Łopieńska-Biernat E, Stryiński R, Dmitryjuk M, Wasilewska B. Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol Open 2019; 8:bio040014. [PMID: 30824422 PMCID: PMC6451339 DOI: 10.1242/bio.040014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Anisakis simplex L3 larvae infect fish and other seafood species such as squid or octopi; therefore, humans consuming raw or undercooked fish may become accidental hosts for this parasite. These larvae are induced to enter hypometabolism by cold temperatures. It is assumed that sugars (in particular trehalose and glycogen) are instrumental for survival under environmental stress conditions. To elucidate the mechanisms of environmental stress response in A. simplex, we observed the effects of starvation and temperature on trehalose and glycogen content, the activity of enzymes metabolizing those sugars, and the relative expression of genes of trehalose and glycogen metabolic pathways. The L3 of A. simplex synthesize trehalose both in low (0°C) and high temperatures (45°C). The highest content of glycogen was observed at 45°C at 36 h of incubation. On the second day of incubation, tissue content of trehalose depended on the activity of the enzymes: TPS was more active at 45°C, and TPP was more active at 0°C. The changes in TPP activity were consistent with the transcript level changes of the TPP gene, and the trehalose level, while glycogen synthesis correlates with the expression of glycogen synthase gene at 45°C; this suggests that the synthesis of trehalose is more essential. These results show that trehalose plays a key role in providing energy during the thermotolerance and starvation processes through the molecular and biochemical regulation of trehalose and glycogen metabolism.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Barbara Wasilewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
3
|
Naviaux RK. Metabolic features and regulation of the healing cycle-A new model for chronic disease pathogenesis and treatment. Mitochondrion 2018; 46:278-297. [PMID: 30099222 DOI: 10.1016/j.mito.2018.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Without healing, multicellular life on Earth would not exist. Without healing, one injury predisposes to another, leading to disability, chronic disease, accelerated aging, and death. Over 60% of adults and 30% of children and teens in the United States now live with a chronic illness. Advances in mass spectrometry and metabolomics have given scientists a new lens for studying health and disease. This study defines the healing cycle in metabolic terms and reframes the pathophysiology of chronic illness as the result of metabolic signaling abnormalities that block healing and cause the normal stages of the cell danger response (CDR) to persist abnormally. Once an injury occurs, active progress through the stages of healing is driven by sequential changes in cellular bioenergetics and the disposition of oxygen and carbon skeletons used for fuel, signaling, defense, repair, and recovery. >100 chronic illnesses can be organized into three persistent stages of the CDR. One hundred and two targetable chemosensory G-protein coupled and ionotropic receptors are presented that regulate the CDR and healing. Metabokines are signaling molecules derived from metabolism that regulate these receptors. Reframing the pathogenesis of chronic illness in this way, as a systems problem that maintains disease, rather than focusing on remote trigger(s) that caused the initial injury, permits new research to focus on novel signaling therapies to unblock the healing cycle, and restore health when other approaches have failed.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC#8467, San Diego, CA 92103, United States.
| |
Collapse
|
4
|
Strain-specific effects of crowding on long-term memory formation in Lymnaea. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:43-51. [DOI: 10.1016/j.cbpa.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
|
5
|
Depuydt G, Xie F, Petyuk VA, Smolders A, Brewer HM, Camp DG, Smith RD, Braeckman BP. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism. J Proteome Res 2014; 13:1938-56. [PMID: 24555535 PMCID: PMC3993954 DOI: 10.1021/pr401081b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/11/2022]
Abstract
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC-MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.
Collapse
Affiliation(s)
- Geert Depuydt
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Fang Xie
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav A. Petyuk
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Arne Smolders
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Heather M. Brewer
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David G. Camp
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bart P. Braeckman
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Feng H, Hope IA. The Caenorhabditis elegans homeobox gene ceh-19 is required for MC motorneuron function. Genesis 2013; 51:163-78. [PMID: 23315936 PMCID: PMC3638342 DOI: 10.1002/dvg.22365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 12/29/2022]
Abstract
Simplicity has made C. elegans pharyngeal development a particularly well-studied subject. Nevertheless, here we add the previously uncharacterized homeobox gene F20D12.6/ceh-19 to the set of transcription factor genes involved. GFP reporter assays revealed that ceh-19 is expressed in three pairs of neurons, the pharyngeal pace-maker neurons MC, the amphid neurons ADF and the phasmid neurons PHA. ceh-19(tm452) mutants are viable and fertile, but grow slightly slower, produce less progeny over a prolonged period, and live longer than the wild type. These phenotypes are likely due to the moderately reduced pharyngeal pumping speed arising from the impairment of MC activity. MC neurons are still born in the ceh-19 mutants but display various morphological defects. ceh-19 expression in MC is completely lost in progeny from animals subject to RNAi for pha-4, which encodes an organ-specifying forkhead transcription factor. CEH-19 is required for the activation in MCs of the excitatory FMRFamide-like neuropeptide-encoding gene flp-2. A regulatory pathway from pha-4 through ceh-19 to flp-2 is thereby defined. The resilience of MC identity in the absence of CEH-19 may reflect the buffering qualities of transcription factor regulatory networks. genesis 51:163–178, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huiyun Feng
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
7
|
Minelli A, Fusco G. Developmental plasticity and the evolution of animal complex life cycles. Philos Trans R Soc Lond B Biol Sci 2010; 365:631-40. [PMID: 20083638 DOI: 10.1098/rstb.2009.0268] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Metazoan life cycles can be complex in different ways. A number of diverse phenotypes and reproductive events can sequentially occur along the cycle, and at certain stages a variety of developmental and reproductive options can be available to the animal, the choice among which depends on a combination of organismal and environmental conditions. We hypothesize that a diversity of phenotypes arranged in developmental sequence throughout an animal's life cycle may have evolved by genetic assimilation of alternative phenotypes originally triggered by environmental cues. This is supported by similarities between the developmental mechanisms mediating phenotype change and alternative phenotype determination during ontogeny and the common ecological condition that favour both forms of phenotypic variation. The comparison of transcription profiles from different developmental stages throughout a complex life cycle with those from alternative phenotypes in closely related polyphenic animals is expected to offer critical evidence upon which to evaluate our hypothesis.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy.
| | | |
Collapse
|
8
|
De Caigny P, Lukowiak K. Crowding, an environmental stressor, blocks long-term memory formation inLymnaea. J Exp Biol 2008; 211:2678-88. [DOI: 10.1242/jeb.020347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMMARYCrowding is an environmental stressor. We found that this stressor altered(i.e. prevented) the ability of Lymnaea to form long-term memory(LTM) following operant conditioning of aerial respiratory behaviour. The ability to form LTM was compared between snails that had been crowded (20 snails per 100 ml of pond water) and those maintained in uncrowded conditions(two snails per 100 ml of pond water). Crowding either immediately before or after two different operant conditioning procedures – the traditional training procedure and the memory augmentation procedure – blocked LTM formation. However, if crowding is delayed by more than 1h following training or if crowding stops 1h before training, LTM results. If memory is already formed, crowding does not block memory recall. Pond water from a crowded aquarium or crowding with clean shells from dead snails, or a combination of both, is insufficient to block LTM formation. Finally, crowding does not block intermediate-term memory (ITM) formation. Since ITM is dependent on new protein synthesis whereas LTM is dependent on both new protein synthesis and altered gene activity, we hypothesize that crowding alters the genomic activity in neurons necessary for LTM formation.
Collapse
Affiliation(s)
- Pascaline De Caigny
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW,Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW,Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|