1
|
Attallah C, Conti G, Zuljan F, Zavallo D, Ariel F. Noncoding RNAs as tools for advancing translational biology in plants. THE PLANT CELL 2025; 37:koaf054. [PMID: 40090356 PMCID: PMC12079378 DOI: 10.1093/plcell/koaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
Noncoding RNAs (ncRNAs), once considered the "dark matter" of the genome, have emerged as critical regulators of gene expression in plants. Research initially focused on model organisms has laid the groundwork for harnessing the potential of ncRNAs in agriculture, particularly for crop protection, improvement, and modulation. This review explores the role of long and small ncRNAs in plant biology, highlighting their application as powerful tools in agricultural biotechnology. We examine the latest strategies for ncRNA expression and delivery in crops, including transgenic and nontransgenic approaches, as well as emerging technologies that enable precise and efficient modulation of gene activity in plants and pathogens. Additionally, we provide a comprehensive overview of the current state-of-the-art in the regulation of RNA-based products, addressing the challenges and opportunities for integrating these innovations into sustainable agricultural practices. As the regulatory landscape evolves, understanding the safety, efficacy, and environmental impact of ncRNA-based technologies will be crucial for their successful deployment. By leveraging the advances in plant science research, long and small ncRNAs hold promise for designing highly specific tools to boost crop productivity while preserving genetic diversity, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Carolina Attallah
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP1425 Buenos Aires, Argentina
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)—Instituto Nacional de Tecnología Agropecuaria (INTA) -CONICET, CP1686 Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía-Universidad de Buenos Aires (UBA), CP1417 Buenos Aires, Argentina
| | - Federico Zuljan
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Diego Zavallo
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Federico Ariel
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, CP1428 Buenos Aires, Argentina
| |
Collapse
|
2
|
Balcerowicz M. A cut above: the critical roles of DICER-LIKE genes in Marchantia development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70121. [PMID: 40153255 DOI: 10.1111/tpj.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 03/30/2025]
|
3
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
4
|
Csicsely E, Oberender A, Georgiadou A, Alz J, Kiel S, Gutsche N, Zachgo S, Grünert J, Klingl A, Top O, Frank W. Identification and characterization of DICER-LIKE genes and their roles in Marchantia polymorpha development and salt stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17236. [PMID: 39910986 PMCID: PMC11799827 DOI: 10.1111/tpj.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
DICER-LIKE (DCL) proteins play a central role in plant small RNA (sRNA) biogenesis. The genome of the early land plant Marchantia polymorpha encodes four DCL proteins: MpDCL1a, MpDCL1b, MpDCL3, and MpDCL4. While MpDCL1a, MpDCL3 and MpDCL4 show high similarities to their orthologs in Physcomitrium patens and Arabidopsis thaliana, MpDCL1b shares only a limited homology with PpDCL1b, but it is very similar, in terms of functional domains, to orthologs in other moss and fern species. We generated Mpdclge mutant lines for all MpDCL genes with the CRISPR/Cas9 system and conducted phenotypic analyses under control, salt stress, and phytohormone treatments to uncover specific MpDCL functions. The mutants displayed severe developmental aberrations, altered responses to salt and phytohormones, and disturbed sexual organ development. By combining mRNA and sRNA analyses, we demonstrate that MpDCLs and their associated sRNAs play pivotal roles in regulating development, abiotic stress tolerance and phytohormone response in M. polymorpha. We identified MpDCL1a in microRNA biogenesis, MpDCL4 in trans-acting small interfering RNA generation, and MpDCL3 in the regulation of pathogen-related genes. Notably, salt sensitivity in M. polymorpha is dependent on MpDCL1b and Mpdcl1bge mutants display enhanced tolerance and reduced miRNA expression in response to salt stress. We propose that M. polymorpha employs specific mechanisms for regulating MpDCL1b associated miRNAs under high salinity conditions, potentially shared with other species harboring MpDCL1b homologs.
Collapse
Affiliation(s)
- Erika Csicsely
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anja Oberender
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anastasia‐Styliani Georgiadou
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Johanna Alz
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Sebastian Kiel
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Nora Gutsche
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Sabine Zachgo
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Jennifer Grünert
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Andreas Klingl
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| |
Collapse
|
5
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
6
|
López-Virgen AG, Dautt-Castro M, Ulloa-Llanes LK, Casas-Flores S, Contreras-Vergara CA, Hernández-Oñate MA, Sotelo-Mundo RR, Vélez-de la Rocha R, Islas-Osuna MA. Genome-wide identification of gene families related to miRNA biogenesis in Mangifera indica L. and their possible role during heat stress. PeerJ 2024; 12:e17737. [PMID: 39035161 PMCID: PMC11260077 DOI: 10.7717/peerj.17737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.
Collapse
Affiliation(s)
- Andrés G. López-Virgen
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Mitzuko Dautt-Castro
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Lourdes K. Ulloa-Llanes
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Sergio Casas-Flores
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, San Luis Potosi, México
| | | | | | - Rogerio R. Sotelo-Mundo
- CTAOA, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Rosabel Vélez-de la Rocha
- Unidad Culiacán, Centro de Investigación en Alimentación y Desarrollo, A.C., Culiacán, Sinaloa, México
| | - Maria A. Islas-Osuna
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| |
Collapse
|
7
|
Naim D, Ahsan A, Imtiaj A, Mollah NH. Genome-wide identification and in silico characterization of major RNAi gene families in date palm (Phoenix dactylifera). BMC Genom Data 2024; 25:31. [PMID: 38491426 PMCID: PMC10943882 DOI: 10.1186/s12863-024-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, this study has explored major RNAi genes and their characteristics in date palm. RESULTS We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses. CONCLUSION The results of this study might be valuable resources for the improvement of different characteristics in date palm by further studies in wet-lab.
Collapse
Affiliation(s)
- Darun Naim
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Asif Ahsan
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Ahmed Imtiaj
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, 6205, Rajshahi, Bangladesh
| | - Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, 6205, Rajshahi, Bangladesh.
| |
Collapse
|
8
|
Hasan MN, Mosharaf MP, Uddin KS, Das KR, Sultana N, Noorunnahar M, Naim D, Mollah MNH. Genome-Wide Identification and Characterization of Major RNAi Genes Highlighting Their Associated Factors in Cowpea ( Vigna unguiculata (L.) Walp.). BIOMED RESEARCH INTERNATIONAL 2023; 2023:8832406. [PMID: 38046903 PMCID: PMC10691899 DOI: 10.1155/2023/8832406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
In different regions of the world, cowpea (Vigna unguiculata (L.) Walp.) is an important vegetable and an excellent source of protein. It lessens the malnutrition of the underprivileged in developing nations and has some positive effects on health, such as a reduction in the prevalence of cancer and cardiovascular disease. However, occasionally, certain biotic and abiotic stresses caused a sharp fall in cowpea yield. Major RNA interference (RNAi) genes like Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are essential for the synthesis of their associated factors like domain, small RNAs (sRNAs), transcription factors, micro-RNAs, and cis-acting factors that shield plants from biotic and abiotic stresses. In this study, applying BLASTP search and phylogenetic tree analysis with reference to the Arabidopsis RNAi (AtRNAi) genes, we discovered 28 VuRNAi genes, including 7 VuDCL, 14 VuAGO, and 7 VuRDR genes in cowpea. We looked at the domains, motifs, gene structures, chromosomal locations, subcellular locations, gene ontology (GO) terms, and regulatory factors (transcription factors, micro-RNAs, and cis-acting elements (CAEs)) to characterize the VuRNAi genes and proteins in cowpea in response to stresses. Predicted VuDCL1, VuDCL2(a, b), VuAGO7, VuAGO10, and VuRDR6 genes might have an impact on cowpea growth, development of the vegetative and flowering stages, and antiviral defense. The VuRNAi gene regulatory features miR395 and miR396 might contribute to grain quality improvement, immunity boosting, and pathogen infection resistance under salinity and drought conditions. Predicted CAEs from the VuRNAi genes might play a role in plant growth and development, improving grain quality and production and protecting plants from biotic and abiotic stresses. Therefore, our study provides crucial information about the functional roles of VuRNAi genes and their associated components, which would aid in the development of future cowpeas that are more resilient to biotic and abiotic stress. The manuscript is available as a preprint at this link: doi:10.1101/2023.02.15.528631v1.
Collapse
Affiliation(s)
- Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Khandoker Saif Uddin
- Department of Quantitative Science (Statistics), International University of Business Agriculture and Technology (IUBAT), Uttara, Bangladesh
| | - Keya Rani Das
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nasrin Sultana
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mst. Noorunnahar
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Darun Naim
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
9
|
Elhefnawi HT, Abdel Salam Rashed M, Atta A, Alshegaihi RM, Alwutayd KM, Abd El-Moneim D, Magdy M. Genomic assembly, characterization, and quantification of DICER-like gene family in Okra plants under dehydration conditions. PeerJ 2023; 11:e16232. [PMID: 38025717 PMCID: PMC10668803 DOI: 10.7717/peerj.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
Background Okra is a plant farmed for its pods, leaves, and stems all of which are edible. It is famous for its ability to tolerate long desiccation periods. It belongs to the Malvaceae family and is a sister species to hibiscus, cotton, and cacao plants. Methods In the current study, okra plants were used as a model to sequence, assemble, and analyze the evolutionary and functional characteristics of the Dicer-like protein gene family (DCL) based on DNAseq and qPCR techniques. Results Four Dicer-like (DCL) single-copy genes of the okra plant Abelmoschus esculentus (L.) Moench (AeDCL) were successfully assembled. The lengths of the AeDCL copies were 8,494, 5,214, 4,731, and 9,329 bp. The detected exons in these samples ranged from a single exon in AeDCL3 to 24 exons in AeDCL4. AeDCLs had five functional domains of two DEAD-like helicase superfamilies, N and C; one Dicer domain; one ribonuclease III domain (a and b); and one double-stranded RNA-binding domain. The PAZ domain was completely annotated only for AeDCL1 and AeDCL3. All AeDCLs were up-regulated under drought conditions, with leaves showing more extensive fold changes than roots. The study focused on a comprehensive genome-wide identification and analysis of the DCL gene family in naturally drought-tolerant okra plants, an orphan crop that can be used as a model for further genomic and transcriptomic studies on drought-tolerance mechanisms in plants.
Collapse
Affiliation(s)
| | | | - Ayman Atta
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Podder A, Ahmed FF, Suman MZH, Mim AY, Hasan K. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PLoS One 2023; 18:e0286994. [PMID: 37294803 PMCID: PMC10256174 DOI: 10.1371/journal.pone.0286994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 06/11/2023] Open
Abstract
RNA interference (RNAi) regulates a variety of eukaryotic gene expressions that are engaged in response to stress, growth, and the conservation of genomic stability during developmental phases. It is also intimately connected to the post-transcriptional gene silencing (PTGS) process and chromatin modification levels. The entire process of RNA interference (RNAi) pathway gene families mediates RNA silencing. The main factors of RNA silencing are the Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) gene families. To the best of our knowledge, genome-wide identification of RNAi gene families like DCL, AGO, and RDR in sunflower (Helianthus annuus) has not yet been studied despite being discovered in some species. So, the goal of this study is to find the RNAi gene families like DCL, AGO, and RDR in sunflower based on bioinformatics approaches. Therefore, we accomplished an inclusive in silico investigation for genome-wide identification of RNAi pathway gene families DCL, AGO, and RDR through bioinformatics approaches such as (sequence homogeneity, phylogenetic relationship, gene structure, chromosomal localization, PPIs, GO, sub-cellular localization). In this study, we have identified five DCL (HaDCLs), fifteen AGO (HaAGOs), and ten RDR (HaRDRs) in the sunflower genome database corresponding to the RNAi genes of model plant Arabidopsis thaliana based on genome-wide analysis and a phylogenetic method. The analysis of the gene structure that contains exon-intron numbers, conserved domain, and motif composition analyses for all HaDCL, HaAGO, and HaRDR gene families indicated almost homogeneity among the same gene family. The protein-protein interaction (PPI) network analysis illustrated that there exists interconnection among identified three gene families. The analysis of the Gene Ontology (GO) enrichment showed that the detected genes directly contribute to the RNA gene-silencing and were involved in crucial pathways. It was observed that the cis-acting regulatory components connected to the identified genes were shown to be responsive to hormone, light, stress, and other functions. That was found in HaDCL, HaAGO, and HaRDR genes associated with the development and growth of plants. Finally, we are able to provide some essential information about the components of sunflower RNA silencing through our genome-wide comparison and integrated bioinformatics analysis, which open the door for further research into the functional mechanisms of the identified genes and their regulatory elements.
Collapse
Affiliation(s)
- Anamika Podder
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Zahid Hasan Suman
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Afsana Yeasmin Mim
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khadiza Hasan
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
11
|
Yao Z, Jin H, Li C, Ma W, Zhang W, Lin Y. Knockdown of Dcr1 and Dcr2 limits the lethal effect of C-factor in Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22004. [PMID: 36780173 DOI: 10.1002/arch.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Dicer is a highly conserved ribonuclease in evolution. It belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In this study, the genome and transcriptome of Chilo suppressalis were analyzed, and it was found that there were two members in the Dicer family, named Dcr1 and Dcr2. The dsRNAs of Dcr1 and Dcr2 genes were synthesized and fed to C. suppressalis larvae. The C-factor of C. suppressalis was selected as the marker gene. The results showed that both Dcr1 and Dcr2 genes were significantly knocked down. The larval mortality was significantly reduced by 43.50% (p < 0.05) after feeding on dsC-factor and dsDcr1. The transcription levels of C-factor genes were significantly increased by 33.95% (p < 0.05) and 32.94% (p < 0.05) when the larvae fed with dsDcr2 + dsC-factor for 72 h and 96 h, respectively. Furthermore, the mortality was significantly decreased by 79% (p < 0.05) after feeding dsC-factor and dsDcr2. These findings imply that Dcr1 can decrease the lethal effect of C-factor gene but cannot affect its RNAi efficiency and Dcr2 can decrease the lethal effect of C-factor gene by inhibiting RNAi efficiency.
Collapse
Affiliation(s)
- Zhuotian Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huihui Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zeng Q, Long G, Yang H, Zhou C, Yang X, Wang Z, Jin D. SfDicer1 participates in the regulation of molting development and reproduction in the white-backed planthopper, Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105347. [PMID: 36963929 DOI: 10.1016/j.pestbp.2023.105347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Dicer1 plays a vital role in the formation of mature miRNA and regulates the growth, development, and reproduction of insects. However, it remains to be clarified whether Dicer1 is involved in regulating the biological processes underlying molting and reproduction of Sogatella furcifera (Horváth). Herein, SfDicer1 expression fluctuated in all the developmental stages of S. furcifera and increased as molting progressed. SfDicer1 exhibited high expression in the integument, head, fat body, and ovary of the insects. SfDicer1 dsRNA injection into 1-day-old fourth instar nymphs of S. furcifera substantially decreased the survival rate and expression of the lethal phenotypes of wing malformation and molting defects and significantly inhibited the expression of four conserved miRNAs associated with molting development. Subsequently, following the knockdown of SfDicer1 in the newly emerged (1-12 h) females of S. furcifera, SfVg and SfVgR expression levels were decreased, thereby delaying ovarian development, decreasing the number of eggs, and considerably reducing the hatching rate compared with those of the control. Finally, after silencing SfDicer1 for 48 h, the comparative transcriptome analysis of differentially expressed genes revealed considerable enrichment of the Gene Ontology terms structural constituent of cuticle, structural molecule activity, chitin metabolic process, amino sugar metabolic process, and intracellular anatomical structure, indicating that SfDicer1 inhibition affects the transcription of genes associated with growth and development. Thus, our results suggest that SfDicer1 is essential in the molting, survival, ovarian development, and fecundity of S. furcifera and is a suitable target gene for developing an RNAi-based strategy targeting the most destructive rice insect pest.
Collapse
Affiliation(s)
- Qinghui Zeng
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Guiyun Long
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| | - Cao Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xibin Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
13
|
Yun S, Zhang X. Genome-wide identification, characterization and expression analysis of AGO, DCL, and RDR families in Chenopodium quinoa. Sci Rep 2023; 13:3647. [PMID: 36871121 PMCID: PMC9985633 DOI: 10.1038/s41598-023-30827-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
RNA interference is a highly conserved mechanism wherein several types of non-coding small RNAs regulate gene expression at the transcriptional or post-transcriptional level, modulating plant growth, development, antiviral defence, and stress responses. Argonaute (AGO), DCL (Dicer-like), and RNA-dependent RNA polymerase (RDR) are key proteins in this process. Here, these three protein families were identified in Chenopodium quinoa. Further, their phylogenetic relationships with Arabidopsis, their domains, three-dimensional structure modelling, subcellular localization, and functional annotation and expression were analysed. Whole-genome sequence analysis predicted 21 CqAGO, eight CqDCL, and 11 CqRDR genes in quinoa. All three protein families clustered into phylogenetic clades corresponding to those of Arabidopsis, including three AGO clades, four DCL clades, and four RDR clades, suggesting evolutionary conservation. Domain and protein structure analyses of the three gene families showed almost complete homogeneity among members of the same group. Gene ontology annotation revealed that the predicted gene families might be directly involved in RNAi and other important pathways. Largely, these gene families showed significant tissue-specific expression patterns, RNA-sequencing (RNA-seq) data revealed that 20 CqAGO, seven CqDCL, and ten CqRDR genes tended to have preferential expression in inflorescences. Most of them being downregulated in response to drought, cold, salt and low phosphate stress. To our knowledge, this is the first study to elucidate these key protein families involved in the RNAi pathway in quinoa, which are significant for understanding the mechanisms underlying stress responses in this plant.
Collapse
Affiliation(s)
- Shiyu Yun
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
14
|
Hong SF, Fang RY, Wei WL, Jirawitchalert S, Pan ZJ, Hung YL, Pham TH, Chiu YH, Shen TL, Huang CK, Lin SS. Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. Virol J 2023; 20:10. [PMID: 36650505 PMCID: PMC9844029 DOI: 10.1186/s12985-022-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.
Collapse
Affiliation(s)
- Syuan-Fei Hong
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Ru-Ying Fang
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Lun Wei
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Supidcha Jirawitchalert
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Zhao-Jun Pan
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yu-Ling Hung
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Thanh Ha Pham
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yen-Hsin Chiu
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan ,grid.453140.70000 0001 1957 0060Seed Improvement and Propagation Station, Council of Agriculture, Taichung, 427 Taiwan
| | - Tang-Long Shen
- grid.19188.390000 0004 0546 0241Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Center of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Chien-Kang Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
15
|
Alcaide C, Donaire L, Aranda MA. Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains. MOLECULAR PLANT PATHOLOGY 2022; 23:1592-1607. [PMID: 35852033 PMCID: PMC9562736 DOI: 10.1111/mpp.13249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| |
Collapse
|
16
|
Comparative phylogeny and evolutionary analysis of Dicer-like protein family in two plant monophyletic lineages. J Genet Eng Biotechnol 2022; 20:103. [PMID: 35821291 PMCID: PMC9276914 DOI: 10.1186/s43141-022-00380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Small RNAs (sRNAs) that do not get untranslated into proteins exhibit a pivotal role in the expression regulation of their cognate gene(s) in almost all eukaryotic lineages, including plants. Hitherto, numerous protein families such as Dicer, a unique class of Ribonuclease III, have been reported to be involved in sRNAs processing pathways and silencing. In this study, we aimed to investigate the phylogenetic relationship and evolutionary history of the DCL protein family. RESULTS Our results illustrated the DCL family of proteins grouped into four main subfamilies (DCLs 1-4) presented in either Eudicotyledons or Liliopsids. The accurate observation of the phylogenetic trees supports the independent expansion of DCL proteins among the Eudicotyledons and Liliopsids species. They share the common origin, and the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsids split from their ancestral DCL. In addition, shreds of evidence revealed that the divergence happened when multicellularization started and since the need for complex gene regulation considered being a necessity by organisms. At that time, they have evolved independently among the monophyletic lineages. The other finding was that the combination of DCL protein subfamilies bears several highly conserved functional domains in plant species that originated from their ancestor architecture. The conservation of these domains happens to be both lineage-specific and inter lineage-specific. CONCLUSIONS DCL subfamilies (i.e., DCL1-DCL4) distribute in their single clades after diverging from their common ancestor and before emerging into higher plants. Therefore, it seems that the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsida split and before the appearance of moss, and after the single-cell green algae. We also observed the same trends among the main DCL subfamilies from functional unit composition and architecture. Despite the long evolutionary course from the divergence of Liliopsida lineage from the Eudicotyledons, a significant diversifying force to domain composition and orientation was absent. The results of this study provide a deeper insight into DCL protein evolutionary history and possible sequence and structural relationships between DCL protein subfamilies in the main higher plant monophyletic lineages; i.e., Eudicotyledons and Liliopsida.
Collapse
|
17
|
Belal MA, Ezzat M, Zhang Y, Xu Z, Cao Y, Han Y. Integrative Analysis of the DICER-like (DCL) Genes From Peach (Prunus persica): A Critical Role in Response to Drought Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DICER-likes (DCLs) proteins are the core component for non-coding RNA (ncRNA) biogenesis, playing essential roles in some biological processes. The DCL family has been characterized in model plants, such as Arabidopsis, rice, and poplar. However, the evolutionary aspect and the expression mechanism under drought stress were scarce and have never been reported and characterized in one of the most important worldwide cultivated fruit trees, peach (Prunus persica). Eight DCLs genes in the Prunus persica genome were detected, in addition to 51 DCLs in the other seven Rosaceae genomes. The phylogenetic analysis with Arabidopsis thaliana and RTL1 gene as outgroups suggested that DCL members are divided into four clades: DCL1, DCL2, DCL3, and DCL4 with several gene gain/loss events of DCL gene copies through the evolutionary tract of the Rosacea family. The number of homologous DCL copies within each clade, along with the chromosomal location indicated gene duplication event of the DCL2 gene occurred once for the subfamily Amygdaloideae and twice for Pyrus communis and Prunus dulics and trice for the P. persica on Chromosome number 7 genes. Another duplication event was found for the DCL3 gene that occurred once for all the eight Rosaceae species with no match in A. thaliana. The DCL genetic similarity and activity was evaluated using BLASTp and previously published RNA-seq data among different tissues and over different time points of peach trees exposed to drought conditions. Finally, the expression pattern of PrupeDCLs in response to drought stress was identified, and two of these members, Prupe.7G047900 and Prupe.6G363600, were found as main candidate genes for response to drought stress. Our data presented here provide useful information for a better understanding of the molecular evolution of DCL genes in Rosaceae genomes, and the function of DCLs in P. persica.
Collapse
|
18
|
Xue H, Liu J, Oo S, Patterson C, Liu W, Li Q, Wang G, Li L, Zhang Z, Pan X, Zhang B. Differential Responses of Wheat ( Triticum aestivum L.) and Cotton ( Gossypium hirsutum L.) to Nitrogen Deficiency in the Root Morpho-Physiological Characteristics and Potential MicroRNA-Mediated Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:928229. [PMID: 35845660 PMCID: PMC9281546 DOI: 10.3389/fpls.2022.928229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Understanding the mechanism of crop response to nitrogen (N) deficiency is very important for developing sustainable agriculture. In addition, it is unclear if the microRNA-mediated mechanism related to root growth complies with a common mechanism in monocots and dicots under N deficiency. Therefore, the root morpho-physiological characteristics and microRNA-mediated mechanisms were studied under N deficiency in wheat (Triticum aestivum L.) and cotton (Gossypium hirsutum L.). For both crops, shoot dry weight, plant dry weight and total leaf area as well as some physiological traits, i.e., the oxygen consuming rate in leaf and root, the performance index based on light energy absorption were significantly decreased after 8 days of N deficiency. Although N deficiency did not significantly impact the root biomass, an obvious change on the root morphological traits was observed in both wheat and cotton. After 8 days of treatment with N deficiency, the total root length, root surface area, root volume of both crops showed an opposite trend with significantly decreasing in wheat but significantly increasing in cotton, while the lateral root density was significantly increased in wheat but significantly decreased in cotton. At the same time, the seminal root length in wheat and the primary root length in cotton were increased after 8 days of N deficiency treatment. Additionally, the two crops had different root regulatory mechanisms of microRNAs (miRNAs) to N deficiency. In wheat, the expressions of miR167, miR319, miR390, miR827, miR847, and miR165/166 were induced by N treatment; these miRNAs inhibited the total root growth but promoted the seminal roots growth and lateral root formation to tolerate N deficiency. In cotton, the expressions of miR156, miR167, miR171, miR172, miR390, miR396 were induced and the expressions of miR162 and miR393 were inhibited; which contributed to increasing in the total root length and primary root growth and to decreasing in the lateral root formation to adapt the N deficiency. In conclusion, N deficiency significantly affected the morpho-physiological characteristics of roots that were regulated by miRNAs, but the miRNA-mediated mechanisms were different in wheat and cotton.
Collapse
Affiliation(s)
- Huiyun Xue
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Jia Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Sando Oo
- Department of Biology, East Carolina University, Greenville, NC, United States
- Department of Biology, Elizabeth City State University, Elizabeth City, NC, United States
| | - Caitlin Patterson
- Department of Biology, East Carolina University, Greenville, NC, United States
- Department of Biology, Elizabeth City State University, Elizabeth City, NC, United States
| | - Wanying Liu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qian Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guo Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
19
|
Delgado-Martín J, Ruiz L, Janssen D, Velasco L. Exogenous Application of dsRNA for the Control of Viruses in Cucurbits. FRONTIERS IN PLANT SCIENCE 2022; 13:895953. [PMID: 35832223 PMCID: PMC9272007 DOI: 10.3389/fpls.2022.895953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The recurrent emergence of viral diseases in intensive horticultural crops requires alternative control strategies. The topical application of double-stranded RNA (dsRNA) molecules homologous to pathogens has been proposed as a tool for virus control in plants. These dsRNAs induce the silencing mechanism, the RNA interference (RNAi), that degrades homologous dsRNAs. Cucumber green mottle mosaic virus (CGMMV) represents a serious threat to cucurbit crops. Since genetic resistance to the virus is not yet available in commercial varieties, we aimed to control this virus by RNAi. For this purpose, we obtained constructions both for expressing dsRNA in bacteria to treat cucumber plants by topical application and for agroinoculation in experiments done in the growth chamber. Besides, greenhouse tests were performed in spring and in summer when plants were challenged with the virus, and differences in several parameters were investigated, including the severity of symptoms, dry weight, total height, virus accumulation, and virus-derived small interfering RNAs (vsiRNAs). Spraying of plants with dsRNA reduced significatively CGMMV symptoms in the plants in growth chamber tests. Agroinfiltration experiments done under identical conditions were also effective in limiting the progress of CGMMV disease. In the greenhouse assay performed in spring, symptoms were significantly reduced in dsRNA-sprayed plants, and the development of the plants improved with respect to non-treated plants. Virus titers and vsiRNAs were clearly reduced in dsRNA-treated plants. The effect of protection of the dsRNA was less evident in the greenhouse assay carried out in the summer. Besides, we investigated the mobility of long (ds)RNA derived from spraying or agroinfiltrated dsRNA and found that it could be detected in local, close distal, and far distal points from the site of application. VsiRNAs were also detected in local and distal points and the differences in accumulation were compared. In parallel, we investigated the capacity of dsRNAs derived from genes of tomato leaf curl New Delhi virus (ToLCNDV), another economically important virus in cucurbits, to limit the disease in zucchini, both by agroinfiltration or by direct spraying, but found no protective effect. In view of the results, the topical application of dsRNAs is postulated as a promising strategy for CGMMV control in the cucumber.
Collapse
Affiliation(s)
- Josemaría Delgado-Martín
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro de Málaga, Málaga, Spain
- Universidad de Málaga, Málaga, Spain
| | - Leticia Ruiz
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro La Mojonera, Almería, Spain
| | - Dirk Janssen
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro La Mojonera, Almería, Spain
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA) Centro de Málaga, Málaga, Spain
| |
Collapse
|
20
|
Liu F, Chern M, Jain R, Martin JA, Schakwitz WS, Ronald PC. Silencing of Dicer-like protein 2a restores the resistance phenotype in the rice mutant, sxi4 (suppressor of Xa21-mediated immunity 4). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:646-657. [PMID: 35106860 DOI: 10.1111/tpj.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Mawsheng Chern
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Joel A Martin
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Wendy S Schakwitz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| |
Collapse
|
21
|
Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics 2022; 23:144. [PMID: 35176993 PMCID: PMC8855596 DOI: 10.1186/s12864-022-08312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. Results In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08312-2.
Collapse
|
22
|
Taheri-Dehkordi A, Naderi R, Martinelli F, Salami SA. Computational screening of miRNAs and their targets in saffron (Crocus sativus L.) by transcriptome mining. PLANTA 2021; 254:117. [PMID: 34751821 DOI: 10.1007/s00425-021-03761-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
A robust workflow for the identification of miRNAs and their targets in saffron was developed. MicroRNA-mediated gene regulation in saffron is potentially involved in several biological processes, including the biosynthesis of highly valuable apocarotenoids. Saffron (Crocus sativus L.) is the most expensive spice in the world and a major source of apocarotenoids. Even though miRNAs (20-24 nt non-coding small RNAs) are important regulators of gene expression at transcriptional and post-transcriptional levels, their role in saffron has not been thoroughly investigated. As a result, a workflow for computational identification of miRNAs and their targets can be useful to uncover the regulatory networks underlying biological processes in this valuable plant. The efficiency of several assembly tools such as Trans-ABySS, Trinity, Bridger, rnaSPAdes, and EvidentialGene was evaluated based on both reference-based and reference-free metrics using transcriptome data. A reliable workflow for computational identification of miRNAs and their targets in saffron was described. The EvidentialGene was found to be the most efficient de novo transcriptome assembler for saffron as a complex triploid model, followed by the Trinity. In total, 66 miRNAs from 19 different families that target 2880 genes, including several transcription factors involved in the flowering transition, were identified. Three of the identified targets were involved in the terpenoids backbone biosynthesis. CsCCD and CsUGT genes involved in the apocarotenoids biosynthetic pathway were targeted by csa-miR156g and csa-miR156b-3p, revealing a unique post-transcriptional regulation dynamic in saffron. The identified miRNAs and their targets add to our understanding of the many biological roles of miRNAs in saffron and shed new light on the control of the apocarotenoid biosynthetic pathway in this valuable plant.
Collapse
Affiliation(s)
- Ayat Taheri-Dehkordi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | | | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| |
Collapse
|
23
|
Pérez-Cañamás M, Hevia E, Katsarou K, Hernández C. Genetic evidence for the involvement of Dicer-like 2 and 4 as well as Argonaute 2 in the Nicotiana benthamiana response against Pelargonium line pattern virus. J Gen Virol 2021; 102:001656. [PMID: 34623234 PMCID: PMC8604191 DOI: 10.1099/jgv.0.001656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Elizabeth Hevia
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, GR-7110 Heraklion, Crete, Greece
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
24
|
Ahmed FF, Hossen MI, Sarkar MAR, Konak JN, Zohra FT, Shoyeb M, Mondal S. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS One 2021; 16:e0256873. [PMID: 34473743 PMCID: PMC8412350 DOI: 10.1371/journal.pone.0256873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- * E-mail:
| | - Md. Imran Hossen
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Faculty of Life Science, Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Fatema Tuz Zohra
- Faculty of Agriculture, Laboratory of Fruit Science, Saga University, Honjo-machi, Saga, Japan
| | - Md. Shoyeb
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Mondal
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
25
|
Tarquini G, Pagliari L, Ermacora P, Musetti R, Firrao G. Trigger and Suppression of Antiviral Defenses by Grapevine Pinot Gris Virus (GPGV): Novel Insights into Virus-Host Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1010-1023. [PMID: 33983824 DOI: 10.1094/mpmi-04-21-0078-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grapevine Pinot gris virus (GPGV) is an emerging trichovirus that has been putatively associated with a novel grapevine disease known as grapevine leaf mottling and deformation (GLMD). Yet the role of GPGV in GLMD disease is poorly understood, since it has been detected both in symptomatic and symptomless grapevines. We exploited a recently constructed GPGV infectious clone (pRI::GPGV-vir) to induce an antiviral response in Nicotiana benthamiana plants. In silico prediction of virus-derived small interfering RNAs and gene expression analyses revealed the involvement of DCL4, AGO5, and RDR6 genes during GPGV infection, suggesting the activation of the posttranscriptional gene-silencing (PTGS) pathway as a plant antiviral defense. PTGS suppression assays in transgenic N. benthamiana 16c plants revealed the ability of the GPGV coat protein to suppress RNA silencing. This work provides novel insights on the interaction between GPGV and its host, revealing the ability of the virus to trigger and suppress antiviral RNA silencing.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Laura Pagliari
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Rita Musetti
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
| |
Collapse
|
26
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
27
|
Kunej U, Jakše J, Radišek S, Štajner N. Core RNA Interference Genes Involved in miRNA and Ta-siRNA Biogenesis in Hops and Their Expression Analysis after Challenging with Verticillium nonalfalfae. Int J Mol Sci 2021; 22:4224. [PMID: 33921761 PMCID: PMC8073709 DOI: 10.3390/ijms22084224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.
Collapse
Affiliation(s)
- Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (J.J.)
| |
Collapse
|
28
|
Wang S, Liang H, Xu Y, Li L, Wang H, Sahu DN, Petersen M, Melkonian M, Sahu SK, Liu H. Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes. Commun Biol 2021; 4:412. [PMID: 33767367 PMCID: PMC7994812 DOI: 10.1038/s42003-021-01933-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022] Open
Abstract
Small RNAs play a major role in the post-transcriptional regulation of gene expression in eukaryotes. Despite the evolutionary importance of streptophyte algae, knowledge on small RNAs in this group of green algae is almost non-existent. We used genome and transcriptome data of 34 algal and plant species, and performed genome-wide analyses of small RNA (miRNA & siRNA) biosynthetic and degradation pathways. The results suggest that Viridiplantae started to evolve plant-like miRNA biogenesis and degradation after the divergence of the Mesostigmatophyceae in the streptophyte algae. We identified two major evolutionary transitions in small RNA metabolism in streptophyte algae; during the first transition, the origin of DCL-New, DCL1, AGO1/5/10 and AGO4/6/9 in the last common ancestor of Klebsormidiophyceae and all other streptophytes could be linked to abiotic stress responses and evolution of multicellularity in streptophytes. During the second transition, the evolution of DCL 2,3,4, and AGO 2,3,7 as well as DRB1 in the last common ancestor of Zygnematophyceae and embryophytes, suggests their possible contribution to pathogen defense and antibacterial immunity. Overall, the origin and diversification of DICER and AGO along with several other small RNA pathway-related genes among streptophyte algae suggested progressive adaptations of streptophyte algae during evolution to a subaerial environment. Wang, Liang et al. conduct a genome-wide investigation into the origin of small RNA pathway-related genes in Viridiplantae. Their findings suggest that streptophyte algae progressively adapted to a subaerial environment through generation of these pathways.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Melkonian
- Integrative Bioinformatics, Department Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. .,Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
30
|
Rego-Machado CM, Nakasu EYT, Silva JMF, Lucinda N, Nagata T, Inoue-Nagata AK. siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Sci Rep 2020; 10:22277. [PMID: 33335295 PMCID: PMC7746768 DOI: 10.1038/s41598-020-79360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
A non-transgenic approach based on RNA interference was employed to induce protection against tomato mosaic virus (ToMV) infection in tomato plants. dsRNA molecules targeting the cp gene of ToMV were topically applied on plants prior to virus inoculation. Protection was dose-dependent and sequence-specific. While no protection was achieved when 0-16 µg dsRNA were used, maximum rates of resistance (60 and 63%) were observed in doses of 200 and 400 µg/plant, respectively. Similar rates were also obtained against potato virus Y when targeting its cp gene. The protection was quickly activated upon dsRNA application and lasted for up to 4 days. In contrast, no detectable antiviral response was triggered by the dsRNA from a begomovirus genome, suggesting the method is not effective against phloem-limited DNA viruses. Deep sequencing was performed to analyze the biogenesis of siRNA populations. Although long-dsRNA remained in the treated leaves for at least 10 days, its systemic movement was not observed. Conversely, dsRNA-derived siRNA populations (mainly 21- and 22-nt) were detected in non-treated leaves, which indicates endogenous processing and transport through the plant. Altogether, this study provides critical information for the development of novel tools against plant viruses; strengths and limitations inherent to the systems are discussed.
Collapse
Affiliation(s)
- Camila M Rego-Machado
- Department of Plant Pathology, University of Brasília, Federal District, Brazil
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
| | - Erich Y T Nakasu
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| | - João M F Silva
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Natália Lucinda
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil
- Department of Plant Pathology, University of Florida, Florida, USA
| | - Tatsuya Nagata
- Department of Molecular Biology, University of Brasília, Federal District, Brazil
| | - Alice K Inoue-Nagata
- Department of Plant Pathology, University of Brasília, Federal District, Brazil.
- Laboratory of Virology and Molecular Biology, Embrapa Vegetables, Federal District, Brazil.
| |
Collapse
|
31
|
RNA Interference (RNAi) in Tomato Crop Research. Methods Mol Biol 2020. [PMID: 33263909 DOI: 10.1007/978-1-0716-1201-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA interference (RNAi) is a posttranscriptional gene silencing phenomenon induced by double-stranded RNA. It has been widely used as a knockdown technology to analyze gene function in many organisms. In tomato, RNAi technology has widely been used as a reverse genetic tool for functional genomics study. Generally, RNAi is often achieved through transgenes producing hairpin RNA molecules. RNAi lines have the advantage with respect to more modern CRISPR/Cas9 mutants of different levels of downregulation of target gene, and allow the characterization of life-essential genes that cannot be knocked out without killing the organism. Also, RNAi allows to suppress gene expression in multigene families in a regulated manner. In this chapter, an efficient approach to create RNAi stable knockdown-transformed tomato lines is reported. In order, it describes the choice of the target silencing fragment, a highly efficient cloning strategy for the hairpin RNA construct production, a relatively easy procedure to transform and regenerate tomato plants using Agrobacterium tumefaciens and a methodology to test the goodness of the transformation procedure.
Collapse
|
32
|
Zhang W, Zhu Z, Du P, Zhang C, Yan H, Wang W, Li W. NtRBP45, a nuclear RNA-binding protein of Nicotiana tabacum, facilitates post-transcriptional gene silencing. PLANT DIRECT 2020; 4:e00294. [PMID: 33615112 PMCID: PMC7880056 DOI: 10.1002/pld3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The tobacco RBP45 is a nuclear RNA binding protein (RBP). In this study, we identified that the gene expression of NtRBP45 was significantly up-regulated upon the Tobacco mosaic virus infection and the central region of the protein accounted for its nuclear localization. In particular, using a green fluorescent protein-based transient suppression assay, we uncovered that the transiently overexpressed NtRBP45 was able to enhance local post-transcriptional gene silencing (PTGS), facilitate siRNA accumulation, and compromise the RNA silencing suppression mediated by Tomato aspermy virus 2b protein. Deletion mutagenesis showed that both the N- and C-terminal regions of NtRBP45 were necessary for enhancing PTGS. The data overall indicated a novel RNA silencing factor that might participate in antiviral defense.
Collapse
Affiliation(s)
- Wangbin Zhang
- College of Plant ScienceTarim UniversityAlarPR China
- Southern Xinjiang Key Laboratory of IPMTarim UniversityAlarPR China
| | - Zongcai Zhu
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Peixiu Du
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Chao Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Hailin Yan
- College of Plant ScienceTarim UniversityAlarPR China
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable EnergyMinistry of Agriculture and Rural AffairsChengduPR China
| | - Weimin Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPR China
| |
Collapse
|
33
|
Müller SY, Matthews NE, Valli AA, Baulcombe DC. The small RNA locus map for Chlamydomonas reinhardtii. PLoS One 2020; 15:e0242516. [PMID: 33211749 PMCID: PMC7676726 DOI: 10.1371/journal.pone.0242516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.
Collapse
Affiliation(s)
- Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas E. Matthews
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrian A. Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Cao Y, Xu X, Jiang L. Integrative analysis of the RNA interference toolbox in two Salicaceae willow species, and their roles in stress response in poplar (Populus trichocarpa Torr. & Gray). Int J Biol Macromol 2020; 162:1127-1139. [DOI: 10.1016/j.ijbiomac.2020.06.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
35
|
Fard EM, Moradi S, Salekdeh NN, Bakhshi B, Ghaffari MR, Zeinalabedini M, Salekdeh GH. Plant isomiRs: origins, biogenesis, and biological functions. Genomics 2020; 112:3382-3395. [DOI: 10.1016/j.ygeno.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
|
36
|
Cui DL, Meng JY, Ren XY, Yue JJ, Fu HY, Huang MT, Zhang QQ, Gao SJ. Genome-wide identification and characterization of DCL, AGO and RDR gene families in Saccharum spontaneum. Sci Rep 2020; 10:13202. [PMID: 32764599 PMCID: PMC7413343 DOI: 10.1038/s41598-020-70061-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
RNA silencing is a conserved mechanism in eukaryotic organisms to regulate gene expression. Argonaute (AGO), Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) proteins are critical components of RNA silencing, but how these gene families’ functions in sugarcane were largely unknown. Most stress-resistance genes in modern sugarcane cultivars (Saccharum spp.) were originated from wild species of Saccharum, for example S. spontaneum. Here, we used genome-wide analysis and a phylogenetic approach to identify four DCL, 21 AGO and 11 RDR genes in the S. spontaneum genome (termed SsDCL, SsAGO and SsRDR, respectively). Several genes, particularly some of the SsAGOs, appeared to have undergone tandem or segmental duplications events. RNA-sequencing data revealed that four SsAGO genes (SsAGO18c, SsAGO18b, SsAGO10e and SsAGO6b) and three SsRDR genes (SsRDR2b, SsRDR2d and SsRDR3) tended to have preferential expression in stem tissue, while SsRDR5 was preferentially expressed in leaves. qRT-PCR analysis showed that SsAGO10c, SsDCL2 and SsRDR6b expressions were strongly upregulated, whereas that of SsAGO18b, SsRDR1a, SsRDR2b/2d and SsRDR5 was significantly depressed in S. spontaneum plants exposed to PEG-induced dehydration stress or infected with Xanthomonas albilineans, causal agent of leaf scald disease of sugarcane, suggesting that these genes play important roles in responses of S. spontaneum to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Dong-Li Cui
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jian-Yu Meng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiao-Yan Ren
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jing-Jing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qing-Qi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
37
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
38
|
Yan G, Zhang J, Jiang M, Gao X, Yang H, Li L. Identification of Known and Novel MicroRNAs in Raspberry Organs Through High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:728. [PMID: 32582255 PMCID: PMC7284492 DOI: 10.3389/fpls.2020.00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in plants by negatively affecting gene expression. Studies on the identification of miRNAs and their functions in various plant species and organs have significantly contributed to plant development research. In the current study, we utilized high-throughput sequencing to detect the miRNAs in the root, stem, and leaf tissues of raspberry (Rubus idaeus). A total of more than 35 million small RNA reads ranging in size from 18 to 35 nucleotides were obtained, with 147 known miRNAs and 542 novel miRNAs identified among the three organs. Sequence verification and the relative expression profiles of the six known miRNAs were investigated by stem-loop quantitative real-time PCR. Furthermore, the potential target genes of the known and novel miRNAs were predicted and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Enrichment analysis of the GO-associated biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Moreover, the miRNA target prediction revealed that most of the targets predicted as transcription factor-coding genes are involved in cellular and metabolic processes. This report is the first to identify miRNAs in raspberry. The detected miRNAs were analyzed by cluster analysis according to their expression, which revealed that these conservative miRNAs are necessary for plant functioning. The results add novel miRNAs to the raspberry transcriptome, providing a useful resource for the further elucidation of the functional roles of miRNAs in raspberry growth and development.
Collapse
Affiliation(s)
- Gengxuan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xince Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
| |
Collapse
|
39
|
Zumajo-Cardona C, Ambrose BA. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol 2020; 147:106778. [PMID: 32165160 DOI: 10.1016/j.ympev.2020.106778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Gene duplication plays a decisive role in organismal diversification and in the appearance of novel structures. In plants the megagametophyte covered by the integuments, which after fertilization becomes the seed constitutes a novel structure: the ovule. In Arabidopsis thaliana, genetic mechanisms regulating ovule development, including the genetics underlying ovule initiation, ovule patterning and integument development, have been identified. Among seed plants, integuments are not only a novelty in evolution, but integuments also present an enormous morphological variation. This study is focused on the evolution of gene families that play a role in the proper morphological development of the integuments, BELL1 (BEL1), KANADIs (KAN1, KAN2, and KAN4/ATS), UNICORN (UCN) and SHORT INTEGUMENTS1 (SIN1). In Arabidopsis, BEL1 establishes the initiation of integument development. KAN1 and 2 act in the proper development of the outer integument. While ABERRANT TESTA SHAPE (ATS), is involved in the correct separation of both integuments. UCN acts in planar growth of the outer integument repressing ATS. SIN1 is involved in cell elongation in the integuments. The results of our analyses show that each of these genes has a different evolutionary history and that while gymnosperms appear to have a simpler ovule morphology, they have more homologues of these candidate genes than angiosperms. In addition, we present the conserved and novel motifs for each of these genes among seed plants and their selection constraints, which may be related to functional changes and to the diversity of ovule morphologies.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, USA; The Graduate Center, City University of New York, New York, NY 10016, USA
| | | |
Collapse
|
40
|
Vyse K, Faivre L, Romich M, Pagter M, Schubert D, Hincha DK, Zuther E. Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature. FRONTIERS IN PLANT SCIENCE 2020; 11:39. [PMID: 32117378 PMCID: PMC7020257 DOI: 10.3389/fpls.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Chromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of stress-related genes after stress exposure. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We reveal that the repressive modification histone H3 lysine 27 trimethylation (H3K27me3) targets genes which are quickly activated upon cold exposure, however, H3K27me3 is not necessarily lost during a longer time in the cold. In addition, we have set-up a quantitative reverse transcription polymerase chain reaction-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of many of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyze large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS may result in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress.
Collapse
Affiliation(s)
- Kora Vyse
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Léa Faivre
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Melissa Romich
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| | - Dirk K. Hincha
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| |
Collapse
|
41
|
Lv X, Wang W, Han Z, Liu S, Yang W, Li M, Wang L, Song L. The Dicer from oyster Crassostrea gigas functions as an intracellular recognition molecule and effector in anti-viral immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 95:584-594. [PMID: 31678182 DOI: 10.1016/j.fsi.2019.10.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Dicer, as a member of ribonuclease III family, functions in RNA interference (RNAi) pathway to direct sequence-specific degradation of cognate mRNA. It plays important roles in antiviral immunity and production of microRNAs. In the present study, a Dicer gene was identified from oyster Crassostrea gigas, and its open reading frame (ORF) encoded a polypeptide (designed as CgDicer) of 1873 amino acids containing two conserved ribonuclease III domains (RIBOc) and a double-stranded RNA-binding motif (DSRM). The deduced amino acid sequence of CgDicer shared identities ranging from 18.5% to 46.6% with that of other identified Dicers. The mRNA transcripts of CgDicer were detectable in all the examined tissues of adult oysters, with the highest expression in hemocytes (11.21 ± 1.64 fold of that in mantle, p < 0.05). The mRNA expression level of CgDicer in hemocytes was significantly up-regulated (36.70 ± 11.10 fold, p < 0.01) after the oysters were treated with double-stranded RNA (dsRNA). In the primarily cultured oyster hemocytes, the mRNA transcripts of CgDicer were significantly induced at 12 h after the stimulation with poly(I:C), which were 2.04-fold (p < 0.05) higher than that in control group. Immunocytochemistry assay revealed that CgDicer proteins were mainly distributed in the cytoplasm of hemocytes. The two most important functional domains of CgDicer, DSRM and RIBOc, were recombinant expressed in Escherichia coli transetta (DE3), and the recombinant DSRM protein displayed significantly binding activity to dsRNA and poly(I:C) in vitro, while the recombinant RIBOc protein exhibited significantly dsRNase activity to cleave dsRNA in vitro. These results collectively suggested that CgDicer functioned as either an intracellular recognition molecule to bind dsRNA or an effector with ribonuclease activity, which might play a crucial role in anti-viral immunity of oyster.
Collapse
Affiliation(s)
- Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shujing Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
42
|
Moura MO, Fausto AKS, Fanelli A, Guedes FADF, Silva TDF, Romanel E, Vaslin MFS. Genome-wide identification of the Dicer-like family in cotton and analysis of the DCL expression modulation in response to biotic stress in two contrasting commercial cultivars. BMC PLANT BIOLOGY 2019; 19:503. [PMID: 31729948 PMCID: PMC6858778 DOI: 10.1186/s12870-019-2112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dicer-like proteins (DCLs) are essential players in RNA-silencing mechanisms, acting in gene regulation via miRNAs and in antiviral protection in plants and have also been associated to other biotic and abiotic stresses. To the best of our knowledge, despite being identified in some crops, cotton DCLs haven't been characterized until now. In this work, we characterized the DCLs of three cotton species and analyzed their expression profiles during biotic stress. RESULTS As main results, 11 DCLs in the allotetraploid cotton Gossypium hirsutum, 7 and 6 in the diploid G. arboreum and G. raimondii, were identified, respectively. Among some DCLs duplications observed in these genomes, the presence of an extra DCL3 in the three cotton species were detected, which haven't been found in others eudicots. All the DCL types identified by in silico analysis in the allotetraploid cotton genome were able to generate transcripts, as observed by gene expression analysis in distinct tissues. Based on the importance of DCLs for plant defense against virus, responses of cotton DCLs to virus infection and/or herbivore attack using two commercial cotton cultivars (cv.), one susceptible (FM966) and another resistant (DO) to polerovirus CLRDV infection, were analyzed. Both cvs. Responded differently to virus infection. At the inoculation site, the resistant cv. showed strong induction of DCL2a and b, while the susceptible cv. showed a down-regulation of these genes, wherever DCL4 expression was highly induced. A time course of DCL expression in aerial parts far from inoculation site along infection showed that DCL2b and DCL4 were repressed 24 h after infection in the susceptible cotton. As CLRDV is aphid-transmitted, herbivore attack was also checked. Opposite expression pattern of DCL2a and b and DCL4 was observed for R and S cottons, showing that aphid feeding alone may induce DCL modulation. CONCLUSIONS Almost all the DCLs of the allotetraploide G. hirsutum cotton were found in their relative diploids. Duplications of DCL2 and DCL3 were found in the three species. All four classes of DCL responded to aphid attack and virus infection in G. hirsutum. DCLs initial responses against the virus itself and/or herbivore attack may be contributing towards virus resistance.
Collapse
Affiliation(s)
- Marianna O. Moura
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Anna Karoline S. Fausto
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Amanda Fanelli
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Fernanda A. de F. Guedes
- Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Tatiane da F. Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Maite F. S. Vaslin
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| |
Collapse
|
43
|
Megel C, Hummel G, Lalande S, Ubrig E, Cognat V, Morelle G, Salinas-Giegé T, Duchêne AM, Maréchal-Drouard L. Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis. Nucleic Acids Res 2019; 47:941-952. [PMID: 30462257 PMCID: PMC6344867 DOI: 10.1093/nar/gky1156] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes.
Collapse
Affiliation(s)
- Cyrille Megel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéphanie Lalande
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Geoffrey Morelle
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
44
|
Wei S, Bian R, Andika IB, Niu E, Liu Q, Kondo H, Yang L, Zhou H, Pang T, Lian Z, Liu X, Wu Y, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc Natl Acad Sci U S A 2019; 116:13042-13050. [PMID: 31182602 PMCID: PMC6600922 DOI: 10.1073/pnas.1900762116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.
Collapse
Affiliation(s)
- Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 710-0046 Kurashiki, Japan
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
| |
Collapse
|
45
|
Suzuki T, Ikeda S, Kasai A, Taneda A, Fujibayashi M, Sugawara K, Okuta M, Maeda H, Sano T. RNAi-Mediated Down-Regulation of Dicer-Like 2 and 4 Changes the Response of 'Moneymaker' Tomato to Potato Spindle Tuber Viroid Infection from Tolerance to Lethal Systemic Necrosis, Accompanied by Up-Regulation of miR398, 398a-3p and Production of Excessive Amount of Reactive Oxygen Species. Viruses 2019; 11:v11040344. [PMID: 31013904 PMCID: PMC6521110 DOI: 10.3390/v11040344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
To examine the role of RNA silencing in plant defenses against viroids, a Dicer-like 2 and 4 (DCL2&4)–double knockdown transgenic tomato plant line, 72E, was created. The expression of endogenous SlDCL2s and SlDCL4 in line 72E decreased to about a half that of the empty cassette line, EC. When challenged with potato spindle tuber viroid (PSTVd), line 72E showed significantly higher levels of PSTVd accumulation early in the course of the infection and lethal systemic necrosis late in the infection. The size distribution of PSTVd-derived small RNAs was significantly different with the number of RNAs of 21 and 22 nucleotides (nt) in line 72E, at approximately 66.7% and 5% of those in line EC, respectively. Conversely, the numbers of 24 nt species increased by 1100%. Furthermore, expression of the stress-responsive microRNA species miR398 and miR398a-3p increased 770% and 868% in the PSTVd-infected line 72E compared with the PSTVd-infected EC. At the same time, the expression of cytosolic and chloroplast-localized Cu/Zn-superoxide dismutase 1 and 2 (SOD1 and SOD2) and the copper chaperon for SOD (CCS1) mRNAs, potential targets of miR398 or 398a-3p, decreased significantly in the PSTVd-infected line 72E leaves, showing necrosis. In concert with miR398 and 398a-3p, SODs control the detoxification of reactive oxygen species (ROS) generated in cells. Since high levels of ROS production were observed in PSTVd-infected line 72E plants, it is likely that the lack of full dicer-likes (DCL) activity in these plants made them unable to control excessive ROS production after PSTVd infection, as disruption in the ability of miR398 and miR398a-3p to regulate SODs resulted in the development of lethal systemic necrosis.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
- Union Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Sho Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Maki Okuta
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| |
Collapse
|
46
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
47
|
Cardoso TCDS, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN, Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, Gomes LAA, Gomes MDS, Gandolfi PE, Amaral LRD, Chalfun-Júnior A, Maluf WR, de Souza Gomes M. New insights into tomato microRNAs. Sci Rep 2018; 8:16069. [PMID: 30375421 PMCID: PMC6207730 DOI: 10.1038/s41598-018-34202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.
Collapse
Affiliation(s)
- Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Tamires Caixeta Alves
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Carolina Milagres Caneschi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Douglas Dos Reis Gomes Santana
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | | | - Gabriel Lasmar Dos Reis
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus Martins Daude
- Laboratory of Molecular Analysis, Federal University of Tocantins (UFT), Gurupi, 77402-970, Brazil
| | | | - Miguel Maurício Díaz Gómez
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | | | - Marcos de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Peterson Elizandro Gandolfi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Antonio Chalfun-Júnior
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | - Wilson Roberto Maluf
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil.
| |
Collapse
|
48
|
Yang Z, Li Y. Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 2018; 32:88-99. [PMID: 30388659 DOI: 10.1016/j.coviro.2018.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi)-based antiviral defense is a small RNA-dependent repression mechanism of plants to against viruses. Although the core components of antiviral RNAi are well known, it is unclear whether additional factors exist that regulate RNAi. Recently, a forward genetic screen identified two novel components of antiviral RNAi, providing important insights into the antiviral RNAi mechanism. Meanwhile, it was discovered that microRNAs make important contributions to host antiviral RNAi. On the other hand, to counteract host antiviral RNAi, most viruses encode viral suppressors of RNA silencing (VSRs). Recent studies have revealed the multiple functions of VSRs and the intricate interactions between plant hosts and viruses. These findings add to our knowledge of the sophisticated host antiviral defense mechanism in plants. Ongoing molecular functional studies will improve our understanding of the co-evolutionary arms race between viruses and plants, and thereby provide key information for the development of plant antiviral strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
49
|
Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS. Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution in Rhodophyta. Mol Biol Evol 2018; 35:1869-1886. [DOI: 10.1093/molbev/msy081] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Huan Qiu
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Udi Zelzion
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Duesseldorf, Germany
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kyeong Mi Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Younhee Shin
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | - Myunghee Jung
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | | | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
50
|
D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: Big Impact on Plant Development. TRENDS IN PLANT SCIENCE 2017; 22:1056-1068. [PMID: 29032035 DOI: 10.1016/j.tplants.2017.09.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
While the role of proteins in determining cell identity has been extensively studied, the contribution of small noncoding RNA molecules such as miRNAs and siRNAs has been also recognised. miRNAs bind to complementary sites in target mRNA molecules to trigger the degradation or translational inhibition of those targets. Recent studies have revealed that miRNAs play pivotal roles in key developmental processes such as patterning of the embryo, meristem, leaf, and flower. Furthermore, these miRNAs have been recruited throughout plant evolution into pathways that create diverse plant organ forms and shapes. This review focuses on the roles of miRNAs in establishing plant cell identity during key plant development processes and creating morphological diversity during plant evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Minsung Kim
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|