1
|
Zheng K, Lv M, Qian J, Lian Y, Liu R, Huo S, Rehman OU, Lin Q, Zhou Z, Liu X, Cao S. Identification and Characterization of the DOF Gene Family in Phoebe bournei and Its Role in Abiotic Stress-Drought, Heat and Light Stress. Int J Mol Sci 2024; 25:11147. [PMID: 39456929 PMCID: PMC11508201 DOI: 10.3390/ijms252011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, development and responses to abiotic stress. In this study, we identified and analyzed 34 PbDof gene members at the whole-genome level. The results indicated that the 34 PbDof genes were unevenly distributed across 12 chromosomes. We utilized the Dof genes from Arabidopsis thaliana and P. bournei to construct a phylogenetic tree and categorized these genes into eight subgroups. In the collinearity analysis, there were 16 homologous gene pairs between AtDof and PbDof and nine homologous gene pairs between ZmDof and PbDof. We conducted a cis-acting element analysis and found that cis-acting elements involved in light response were the most abundant in PbDof genes. Through SSR site prediction, we analyzed that the evolution level of Dof genes is low. Additionally, we assessed the expression profiles of eight PbDof genes under high temperature, drought, and light stress using qRT-PCR. In particular, PbDof08 and PbDof16 are significantly upregulated under the three stresses. This study provides foundational information for PbDof genes and offers new insights for further research on the mechanism of Dof transcription factors responding to stress, as well as the adaptation of P. bournei to environmental changes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Jiaying Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Zhongyang Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
2
|
Fu C, Liao Z, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof transcription factors in Cyperus esculentus. BMC Genomics 2024; 25:667. [PMID: 38961361 PMCID: PMC11223408 DOI: 10.1186/s12864-024-10565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Dof transcription factor family in Cyperus esculentus genome was identified and analyzed using bioinformatics. The analysis results revealed that C.esculentus genome contains 29 Dof genes (CesDof), all of which are located in the nucleus according to subcellular localization prediction. CesDof proteinrs have a range of 124 to 512 amino acids, with most being basic proteins. Their secondary structure was mainly irregular curl. The promoter sequence of CesDof genes contains cis-acting elements that respond to light, drought, hormones, low temperature, and circadian rhythm. Codon preference analysis showed that CesDof genes' codon preference ends in T/A. Collinearity analysis revealed that C.esculentus had three pairs of collinear CesDof genes. Additionally, there were 15 pairs of collinear genes between C.esculentus and Arabidopsis thaliana. The genetic relationship between C.esculentus and Rhynchospora pubera was found to be the closest. Phylogenetic tree analysis revealed that 29 CesDof genes of C.esculentus can be classified into 4 subgroups. Additionally, 144 miRNAs were predicted to target these CesDof genes. Furthermore, protein interaction analysis indicated that 15 Dof proteins in C.esculentus had interactions. The qRT-PCR verification results of drought stress and salt stress treatment experiments showed that most CesDof genes were involved in drought stress and salt stress responses, and the gene expression trends under drought stress and salt stress conditions were consistent. These results lay a theoretical foundation for further studying the molecular functions of Dof gene family in C.esculentus and its molecular mechanisms in regulating the life activities of C.esculentus.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - ZiHui Liao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| |
Collapse
|
3
|
Aksoy E, Yavuz C, Yagiz AK, Unel NM, Baloğlu MC. Genome-wide characterization and expression analysis of GATA transcription factors under combination of light wavelengths and drought stress in potato. PLANT DIRECT 2024; 8:e569. [PMID: 38659972 PMCID: PMC11042883 DOI: 10.1002/pld3.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
GATA is one of the prominent transcription factor families conserved among many organisms in eukaryotes and has different biological roles in many pathways, particularly in light regulation in plants. Although GATA transcription factors (TFs) have been identified in different crop species, their roles in abiotic stress tolerance have not been studied in potato. In this study, we identified 32 GATA TFs in potato (Solanum tuberosum) by in silico analyses, and expression levels of selected six genes were investigated in drought-tolerant (Sante) and sensitive (Agria) cultivars under light, drought, and combined (light + drought) stress conditions. According to the phylogenetic results, StGATA TFs were divided into four main groups (I, II, III, and IV) and different sub-groups in I and II (eight and five, respectively). StGATA genes were uniformly localized to each chromosome with a conserved exon/intron structure. The presence of cis-elements within the StGATA family further supported the possible involvement in abiotic stress tolerance and light response, tissue-specific expression, and hormonal regulation. Additional PPI investigations showed that these networks, especially for Groups I, II, and IV, play a significant role in response to light and drought stress. Six StGATAs were chosen from these groups for expressional profiling, and their expression in both Sante and Agria was mainly downregulated under purple and red lights, drought, and combined stress (blue + drought and purple + drought). The interactomes of selected StGATAs, StGATA3, StGATA24, and StGATA29 were analyzed, and the accessions with GATA motifs were checked for expression. The results showed that the target proteins, cyclin-P3-1, SPX domain-containing protein 1, mitochondrial calcium uniporter protein 2, mitogen-activated protein kinase kinase kinase YODA, and splicing factor 3 B subunit 4-like, mainly play a role in phytochrome-mediated stomatal patterning, development, and activity. Understanding the interactions between drought stress and the light response mechanisms in potato plants is essential. It will eventually be possible to enhance potato resilience to climate change by manipulating the TFs that play a role in these pathways.
Collapse
Affiliation(s)
- Emre Aksoy
- Faculty of Arts and Sciences, Department of BiologyMiddle East Technical UniversityAnkaraTürkiye
| | - Caner Yavuz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Ayten Kübra Yagiz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Necdet Mehmet Unel
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Research and Application CenterKastamonu UniversityKastamonuTürkiye
| | - Mehmet Cengiz Baloğlu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Sabancı University Nanotechnology Research and Application Center (SUNUM)Sabancı UniversityTuzlaTürkiye
| |
Collapse
|
4
|
Waschburger EL, Filgueiras JPC, Turchetto-Zolet AC. DOF gene family expansion and diversification. Genet Mol Biol 2024; 46:e20230109. [PMID: 38315880 PMCID: PMC10842470 DOI: 10.1590/1678-4685-gmb-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
DOF (DNA binding with one finger) proteins are part of a plant-specific transcription factor (TF) gene family widely involved in plant development and stress responses. Many studies have uncovered their structural and functional characteristics in recent years, leading to a rising number of genome-wide identification study approaches, unveiling the DOF family expansion in angiosperm species. Nonetheless, these studies primarily concentrate on particular taxonomic groups. Identifying DOF TFs within less-represented groups is equally crucial, as it enhances our comprehension of their evolutionary history, contributions to plant phenotypic diversity, and role in adaptation. This review summarizes the main findings and progress of genome-wide identification and characterization studies of DOF TFs in Viridiplantae, exposing their roles as players in plant adaptation and a glimpse of their evolutionary history. We also present updated data on the identification and number of DOF genes in native and wild species. Altogether, these data, comprising a phylogenetic analysis of 2124 DOF homologs spanning 83 different species, will contribute to identifying new functional DOF groups, adding to our understanding of the mechanisms driving plant evolution and offering valuable insights into their potential applications.
Collapse
Affiliation(s)
- Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - João Pedro Carmo Filgueiras
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Li Y, Tian M, Feng Z, Zhang J, Lu J, Fu X, Ma L, Wei H, Wang H. GhDof1.7, a Dof Transcription Factor, Plays Positive Regulatory Role under Salinity Stress in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3740. [PMID: 37960096 PMCID: PMC10649836 DOI: 10.3390/plants12213740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.
Collapse
Affiliation(s)
- Yi Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Miaomiao Tian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Zhen Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jingjing Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jianhua Lu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Xiaokang Fu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Liang Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hengling Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hantao Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
6
|
Merlino M, Gaudin JC, Dardevet M, Martre P, Ravel C, Boudet J. Wheat DOF transcription factors TaSAD and WPBF regulate glutenin gene expression in cooperation with SPA. PLoS One 2023; 18:e0287645. [PMID: 37352279 PMCID: PMC10289392 DOI: 10.1371/journal.pone.0287645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Grain storage proteins (GSPs) quantity and composition determine the end-use value of wheat flour. GSPs consists of low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins. GSP gene expression is controlled by a complex network of DNA-protein and protein-protein interactions, which coordinate the tissue-specific protein expression during grain development. The regulatory network has been most extensively studied in barley, particularly the two transcription factors (TFs) of the DNA binding with One Finger (DOF) family, barley Prolamin-box Binding Factor (BPBF) and Scutellum and Aleurone-expressed DOF (SAD). They activate hordein synthesis by binding to the Prolamin box, a motif in the hordein promoter. The BPBF ortholog previously identified in wheat, WPBF, has a transcriptional activity in expression of some GSP genes. Here, the wheat ortholog of SAD, named TaSAD, was identified. The binding of TaSAD to GSP gene promoter sequences in vitro and its transcriptional activity in vivo were investigated. In electrophoretic mobility shift assays, recombinant TaSAD and WPBF proteins bound to cis-motifs like those located on HMW-GS and LMW-GS gene promoters known to bind DOF TFs. We showed by transient expression assays in wheat endosperms that TaSAD and WPBF activate GSP gene expression. Moreover, co-bombardment of Storage Protein Activator (SPA) with WPBF or TaSAD had an additive effect on the expression of GSP genes, possibly through conserved cooperative protein-protein interactions.
Collapse
Affiliation(s)
- Marielle Merlino
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | | | - Mireille Dardevet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Pierre Martre
- LEPSE, Univ. Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Catherine Ravel
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Julie Boudet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| |
Collapse
|
7
|
Zou X, Sun H. DOF transcription factors: Specific regulators of plant biological processes. FRONTIERS IN PLANT SCIENCE 2023; 14:1044918. [PMID: 36743498 PMCID: PMC9897228 DOI: 10.3389/fpls.2023.1044918] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 06/12/2023]
Abstract
Plant biological processes, such as growth and metabolism, hormone signal transduction, and stress responses, are affected by gene transcriptional regulation. As gene expression regulators, transcription factors activate or inhibit target gene transcription by directly binding to downstream promoter elements. DOF (DNA binding with One Finger) is a classic transcription factor family exclusive to plants that is characterized by its single zinc finger structure. With breakthroughs in taxonomic studies of different species in recent years, many DOF members have been reported to play vital roles throughout the plant life cycle. They are not only involved in regulating hormone signals and various biotic or abiotic stress responses but are also reported to regulate many plant biological processes, such as dormancy, tissue differentiation, carbon and nitrogen assimilation, and carbohydrate metabolism. Nevertheless, some outstanding issues remain. This article mainly reviews the origin and evolution, protein structure, and functions of DOF members reported in studies published in many fields to clarify the direction for future research on DOF transcription factors.
Collapse
Affiliation(s)
- Xiaoman Zou
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| |
Collapse
|
8
|
Zhang F, Fan R, Yan L, Hu L, Su F, Yang D, Li J. Genome-wide identification of black pepper (Piper nigrum L.) Dof gene family and the differential gene screening in resistance to Phytophthora capsici. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Gomez-Vargas AD, Hernández-Martínez KM, López-Rosas ME, Alejo Jacuinde G, Simpson J. Evidence for Light and Tissue Specific Regulation of Genes Involved in Fructan Metabolism in Agave tequilana. PLANTS 2022; 11:plants11162153. [PMID: 36015458 PMCID: PMC9412663 DOI: 10.3390/plants11162153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Plant Glycoside Hydrolase Family 32 (PGHF32) contains the fructosyltransferases and fructan exohydrolase enzymes responsible for fructan metabolism, in addition to closely related vacuolar and cell wall acid invertases. Agave species produce complex and dynamic fructan molecules (agavins) requiring 4 different fructosyltransferase activities (1-SST, 1-FFT, 6G-FFT and 6-SFT) for their synthesis. Combined analysis of RNAseq and genome data for A. tequilana led to the characterization of the genes encoding 3 fructosyltransferases for this species and support the hypothesis that no separate 6-SFT type enzyme exists in A. tequilana, suggesting that at least one of the fructosyltransferases identified may have multiple enzymatic activities. Structures for PGHF32 genes varied for A. tequilana and between other plant species but were conserved for different enzyme types within a species. The observed patterns are consistent with the formation of distinct gene structures by intron loss. Promoter analysis of the PGHF32 genes identified abundant putative regulatory motifs for light regulation and tissue-specific expression, and these regulatory mechanisms were confirmed experimentally for leaf tissue. Motifs for phytohormone response, carbohydrate metabolism and dehydration responses were also uncovered. Based on the regulatory motifs, full-length cDNAs for MYB, GATA, DOF and GBF transcription factors were identified and their phylogenetic distribution determined by comparison with other plant species. In silico expression analysis for the selected transcription factors revealed both tissue-specific and developmental patterns of expression, allowing candidates to be identified for detailed analysis of the regulation of fructan metabolism in A. tequilana at the molecular level.
Collapse
|
10
|
Gandass N, Salvi P. Intrinsically disordered protein, DNA binding with one finger transcription factor ( OsDOF27) implicates thermotolerance in yeast and rice. FRONTIERS IN PLANT SCIENCE 2022; 13:956299. [PMID: 35968137 PMCID: PMC9372624 DOI: 10.3389/fpls.2022.956299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset of the eukaryotic proteome, which challenges the protein structure-function paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial role in the diverse biological process of plants. This study represents the intrinsically disordered nature of a plant-specific DNA binding with one finger transcription factor (DOF-TF). Here, we have investigated the role of OsDOF27 and characterized it as an intrinsically disordered protein. Furthermore, the molecular role of OsDOF27 in thermal stress tolerance has been elucidated. The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated under different abiotic stress treatments in rice, particularly under heat stress. The stress-responsive transcript induction of OsDOF27 was further correlated with enriched abiotic stress-related cis-regulatory elements present in its promoter region. The in vivo functional analysis of the potential role of OsDOF27 in thermotolerance was further studied in yeast and in planta. Ectopic expression of OsDOF27 in yeast implicates thermotolerance response. Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed a positive role in mitigating heat stress tolerance. Collectively, our results evidently show the intrinsically disorderedness in OsDOF27 and its role in thermal stress response in rice.
Collapse
|
11
|
Wang Z, Wong DCJ, Chen Z, Bai W, Si H, Jin X. Emerging Roles of Plant DNA-Binding With One Finger Transcription Factors in Various Hormone and Stress Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:844201. [PMID: 35668792 PMCID: PMC9165642 DOI: 10.3389/fpls.2022.844201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2022] [Indexed: 05/24/2023]
Abstract
Coordinated transcriptional regulation of stress-responsive genes orchestrated by a complex network of transcription factors (TFs) and the reprogramming of metabolism ensure a plant's continued growth and survival under adverse environmental conditions (e.g., abiotic stress). DNA-binding with one finger (Dof) proteins, a group of plant-specific TF, were identified as one of several key components of the transcriptional regulatory network involved in abiotic stress responses. In many plant species, Dofs are often activated in response to a wide range of adverse environmental conditions. Dofs play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Moreover, Dofs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid, jasmonate, SA and redox signaling in response to many abiotic stresses. Taken together, we highlight a unique role of Dofs in hormone and stress signaling that integrates plant response to adverse environmental conditions with different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Zhengliang Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Liu J, Meng Q, Xiang H, Shi F, Ma L, Li Y, Liu C, Liu Y, Su B. Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.). BMC Genomics 2021; 22:800. [PMID: 34742240 PMCID: PMC8572462 DOI: 10.1186/s12864-021-08104-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Rice (Oryza sativa L.) is a food crop for humans worldwide. However, temperature has an effect during the vegetative and reproductive stages. In high-latitude regions where rice is cultivated, cold stress is a major cause of yield loss and plant death. Research has identified a group of plant-specific transcription factors, DNA binding with one zinc fingers (DOFs), with a diverse range of functions, including stress signaling and stress response during plant growth. The aim of this study was to identify Dof genes in two rice subspecies, indica and japonica, and screen for Dof genes that may be involved in cold tolerance during plant growth. Results A total of 30 rice Dofs (OsDofs) were identified using bioinformatics and genome-wide analyses and phylogenetically analyzed. The 30 OsDOFs were classified into six subfamilies, and 24 motifs were identified based on protein sequence alignment. The chromosome locations of OsDofs were determined and nine gene duplication events were identified. A joint phylogenetic analysis was performed on DOF protein sequences obtained from four monocotyledon species to examine the evolutionary relationship of DOF proteins. Expression profiling of OsDofs from two japonica cultivars (Longdao5, which is cold-tolerant, and Longjing11, which is cold-sensitive) revealed that OsDof1 and OsDof19 are cold-inducible genes. We examined the seed setting rates in OsDof1- and OsDof19-overexpression and RNAi lines and found that OsDof1 showed a response to cold stress. Conclusions Our investigation identified OsDof1 as a potential target for genetic breeding of rice with enhanced cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08104-0.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Qinglin Meng
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China.
| | - Hongtao Xiang
- Institute of Farming and Cultivation, Heilongjiang Academy of Agricultural Sciences, 150086, Harbin, China
| | - Fengmei Shi
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Ligong Ma
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yichu Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Chunlai Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yu Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Baohua Su
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| |
Collapse
|
13
|
Wang P, Yan Z, Zong X, Yan Q, Zhang J. Genome-Wide Analysis and Expression Profiles of the Dof Family in Cleistogenes songorica under Temperature, Salt and ABA Treatment. PLANTS 2021; 10:plants10050850. [PMID: 33922432 PMCID: PMC8146245 DOI: 10.3390/plants10050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022]
Abstract
The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.
Collapse
Affiliation(s)
| | | | | | | | - Jiyu Zhang
- Correspondence: ; Tel.: +86-138-9332-9958
| |
Collapse
|
14
|
Genome-Wide In Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus. PLANTS 2021; 10:plants10040709. [PMID: 33916912 PMCID: PMC8067633 DOI: 10.3390/plants10040709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023]
Abstract
DNA binding with one finger (DOF) proteins are plant-specific transcription factors that play roles in diverse plant functions. However, little is known about the DOF protein repertoire of the allopolyploid crop, Brassica napus. This in silico study identified 117 Brassica napus Dof genes (BnaDofs) and classified them into nine groups (A, B1, B2, C1, C2.1, C2.2, C3, D1, and D2), based on phylogenetic analysis. Most members belonging to a particular group displayed conserved gene structural organisation and protein motif distribution. Evolutionary analysis exemplified that the divergence of the Brassica genus from Arabidopsis, the whole-genome triplication event, and the hybridisation of Brassica oleracea and Brassica rapa to form B. napus, followed by gene loss and rearrangements, led to the expansion and divergence of the Dof transcription factor (TF) gene family in B. napus. So far, this is the largest number of Dof genes reported in a single eudicot species. Functional annotation of BnaDof proteins, cis-element analysis of their promoters, and transcriptomic analysis suggested potential roles in organ development, the transition from the vegetative to the reproductive stage, light responsiveness, phytohormone responsiveness, as well as potential regulatory roles in abiotic stress. Overall, our results provide a comprehensive understanding of the molecular structure, evolution, and possible functional roles of Dof genes in plant development and abiotic stress response.
Collapse
|
15
|
Chen P, Yan M, Li L, He J, Zhou S, Li Z, Niu C, Bao C, Zhi F, Ma F, Guan Q. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. HORTICULTURE RESEARCH 2020; 7:195. [PMID: 33328433 PMCID: PMC7704620 DOI: 10.1038/s41438-020-00419-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
DNA-binding one zinc-finger (Dof) proteins constitute a family of transcription factors with a highly conserved Dof domain that contains a C2C2 zinc-finger motif. Although several studies have demonstrated that Dof proteins are involved in multiple plant processes, including development and stress resistance, the functions of these proteins in drought stress resistance are largely unknown. Here, we report the identification of the MdDof54 gene from apple and document its positive roles in apple drought resistance. After long-term drought stress, compared with nontransgenic plants, MdDof54 RNAi plants had significantly shorter heights and weaker root systems; the transgenic plants also had lower shoot and root hydraulic conductivity, as well as lower photosynthesis rates. By contrast, compared with nontransgenic plants, MdDof54-overexpressing plants had higher photosynthesis rates and shoot hydraulic conductivity under long-term drought stress. Moreover, compared with nontransgenic plants, MdDof54-overexpressing plants had higher survival percentages under short-term drought stress, whereas MdDof54 RNAi plants had lower survival percentages. MdDof54 RNAi plants showed significant downregulation of 99 genes and significant upregulation of 992 genes in response to drought, and 366 of these genes were responsive to drought. We used DAP-seq and ChIP-seq analyses to demonstrate that MdDof54 recognizes cis-elements that contain an AAAG motif. Taken together, our results provide new information on the functions of MdDof54 in plant drought stress resistance as well as resources for apple breeding aimed at the improvement of drought resistance.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Lei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Limited, Hawke's Bay, New Zealand
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China.
| |
Collapse
|
16
|
Cao B, Cui Y, Lou K, Luo D, Liu Z, Zhou Q. Genome-Wide Identification and Expression Analysis of the Dof Gene Family in Medicago sativa L. Under Various Abiotic Stresses. DNA Cell Biol 2020; 39:1976-1989. [PMID: 33001712 DOI: 10.1089/dna.2020.5652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Dof transcription factor is a plant-specific transcriptional regulator that plays important roles in plant development and acts as a mediator in plant external stress responses. However, Dofs have previously been identified in several plants but not in alfalfa (Medicago sativa L.), one of the most widely cultivated forage legumes. In the present study, a total of 40 MsDof genes were identified, and the phylogenetic reconstruction, classification, conserved motifs, and expression patterns under abscisic acid (ABA), cold, heat, drought and salt stresses of these Dof genes were comprehensively analyzed. The Dof genes family in alfalfa could be classified into eight classes. Gene ontology (GO) and tissue-specific analysis indicated that most MsDof genes may be involved in biological functions during plant growth. Moreover, the expression profiles and quantitative real-time PCR analysis indicated that eight candidate abiotic tolerance genes were induced in response to four abiotic stresses. This study identified the possibility of abiotic tolerance candidate genes playing various roles in stress resistance at the whole genome level, which would provide new information on the Dof family in alfalfa.
Collapse
Affiliation(s)
- Bo Cao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yue Cui
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keke Lou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Renau-Morata B, Carrillo L, Dominguez-Figueroa J, Vicente-Carbajosa J, Molina RV, Nebauer SG, Medina J. CDF transcription factors: plant regulators to deal with extreme environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3803-3815. [PMID: 32072179 DOI: 10.1093/jxb/eraa088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 05/23/2023]
Abstract
In terrestrial environments, water and nutrient availabilities and temperature conditions are highly variable, and especially in extreme environments limit survival, growth, and reproduction of plants. To sustain growth and maintain cell integrity under unfavourable environmental conditions, plants have developed a variety of biochemical and physiological mechanisms, orchestrated by a large set of stress-responsive genes and a complex network of transcription factors. Recently, cycling DOF factors (CDFs), a group of plant-specific transcription factors (TFs), were identified as components of the transcriptional regulatory networks involved in the control of abiotic stress responses. The majority of the members of this TF family are activated in response to a wide range of adverse environmental conditions in different plant species. CDFs regulate different aspects of plant growth and development such as photoperiodic flowering-time control and root and shoot growth. While most of the functional characterization of CDFs has been reported in Arabidopsis, recent data suggest that their diverse roles extend to other plant species. In this review, we integrate information related to structure and functions of CDFs in plants, with special emphasis on their role in plant responses to adverse environmental conditions.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jose Dominguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Rosa V Molina
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| |
Collapse
|
18
|
Liu Y, Liu N, Deng X, Liu D, Li M, Cui D, Hu Y, Yan Y. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 2020; 21:276. [PMID: 32245398 PMCID: PMC7118883 DOI: 10.1186/s12864-020-6691-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.0), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31 T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.
Collapse
Affiliation(s)
- Yue Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Nannan Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dada Cui
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China. .,Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
19
|
Yu YH, Bian L, Wan YT, Jiao ZL, Yu KK, Zhang GH, Guo DL. Grape (Vitis vinifera) VvDOF3 functions as a transcription activator and enhances powdery mildew resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:183-189. [PMID: 31513952 DOI: 10.1016/j.plaphy.2019.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
DOF proteins are plant-specific transcription factors that play vital roles in plant development and defense responses. However, DOFs have primarily been investigated in model plants, and fairly limited research has been performed on grape (Vitis vinifera). In this study, we isolated and characterized a C2-C2 zinc finger structural DOF gene, VvDOF3, from the grape cultivar Jingxiu. The VvDOF3 protein showed nuclear localization and transcriptional activation ability, indicating that it functions as a transcription factor. The VvDOF3 gene was rapidly induced by exogenous salicylic acid (SA), jasmonic acid (JA), and powdery mildew infection. Overexpression of VvDOF3 in Arabidopsis thaliana enhanced resistance to Golovinomyces cichoracearum. Expression of the SA-responsive defense-related gene PR1 and the concentration of SA were up-regulated in transgenic Arabidopsis plants overexpressing VvDOF3. Together, these data suggest that VvDOF3 functions as a transcription factor in grape and enhances powdery mildew resistance through the SA signaling pathway.
Collapse
Affiliation(s)
- Yi-He Yu
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Lu Bian
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yu-Tong Wan
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Ze-Ling Jiao
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Ke-Ke Yu
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Guo-Hai Zhang
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Da-Long Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
| |
Collapse
|
20
|
Multifaceted Role of PheDof12-1 in the Regulation of Flowering Time and Abiotic Stress Responses in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2019; 20:ijms20020424. [PMID: 30669467 PMCID: PMC6358834 DOI: 10.3390/ijms20020424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA₃) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.
Collapse
|
21
|
Wang L, Du Q, Xie J, Zhou D, Chen B, Yang H, Zhang D. Genetic variation in transcription factors and photosynthesis light-reaction genes regulates photosynthetic traits. TREE PHYSIOLOGY 2018; 38:1871-1885. [PMID: 30032300 DOI: 10.1093/treephys/tpy079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Transcription factors (TFs) play crucial roles in regulating the production of the components required for photosynthesis; elucidating the mechanisms by which underlying genetic variation in TFs affects complex photosynthesis-related traits may improve our understanding of photosynthesis and identify ways to improve photosynthetic efficiency. Promoter analysis of 96 nuclear-encoded Populus tomentosa Carr. genes within this pathway revealed 47 motifs responsive to light, stress, hormones and organ-specific regulation, as well as 86 TFs that might bind these motifs. Using phenotype-genotype associations, we identified 244 single-nucleotide polymorphisms (SNPs) within 105 genes associated with 12 photosynthesis-related traits. Most (30.33%) of these SNPs were located in intronic regions and these SNPs explained 18.66% of the mean phenotypic variation in the photosynthesis-related traits. Additionally, expression quantitative trait loci (eQTL) mapping identified 216 eQTLs associated with 110 eGenes (genes regulated by eQTLs), explaining 14.12% of the variability of gene expression. The lead SNPs of 12.04% of the eQTLs also contributed to phenotypic variation. Among these, a SNP in zf-Dof 5.6 (G120_9287) affected photosynthesis by modulating the expression of a sub-regulatory network of eight other TFs, which in turn regulate 55 photosynthesis-related genes. Furthermore, epistasis analysis identified a large interacting network representing 732 SNP-SNP pairs, of which 354 were photosynthesis gene-TF pairs, emphasizing the important roles of TFs in affecting photosynthesis-related traits. We combined eQTL and epistasis analysis and found 32 TFs harboring eQTLs being epistatic to their targets (identified by eQTL analysis), of which 15 TFs were also associated with photosynthesis traits. We therefore constructed a schematic model of TFs involved in regulating the photosynthetic light reaction pathway. Taken together, our results provide insight into the genetic regulation of photosynthesis, and may drive progress in the marker-assisted selection of desirable P. tomentosa genotypes with more efficient photosynthesis.
Collapse
Affiliation(s)
- Longxin Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haijiao Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
22
|
Zhang J, Zhao W, Fu R, Fu C, Wang L, Liu H, Li S, Deng Q, Wang S, Zhu J, Liang Y, Li P, Zheng A. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection. Funct Integr Genomics 2018; 18:545-557. [PMID: 29730773 PMCID: PMC6097106 DOI: 10.1007/s10142-018-0607-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Rong Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chenglin Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
23
|
Wang P, Li J, Gao X, Zhang D, Li A, Liu C. Genome-Wide Screening and Characterization of the Dof Gene Family in Physic Nut ( Jatropha curcas L.). Int J Mol Sci 2018; 19:E1598. [PMID: 29844264 PMCID: PMC6032415 DOI: 10.3390/ijms19061598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Physic nut (Jatropha curcas L.) is a species of flowering plant with great potential for biofuel production and as an emerging model organism for functional genomic analysis, particularly in the Euphorbiaceae family. DNA binding with one finger (Dof) transcription factors play critical roles in numerous biological processes in plants. Nevertheless, the knowledge about members, and the evolutionary and functional characteristics of the Dof gene family in physic nut is insufficient. Therefore, we performed a genome-wide screening and characterization of the Dof gene family within the physic nut draft genome. In total, 24 JcDof genes (encoding 33 JcDof proteins) were identified. All the JcDof genes were divided into three major groups based on phylogenetic inference, which was further validated by the subsequent gene structure and motif analysis. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcDof gene family, and gene expansion was mainly subjected to positive selection. The expression profile demonstrated the broad involvement of JcDof genes in response to various abiotic stresses, hormonal treatments and functional divergence. This study provides valuable information for better understanding the evolution of JcDof genes, and lays a foundation for future functional exploration of JcDof genes.
Collapse
Affiliation(s)
- Peipei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
- Faculty of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xiaoyang Gao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
| | - Di Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
- Faculty of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Anlin Li
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
- Faculty of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changning Liu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
24
|
Wei Q, Wang W, Hu T, Hu H, Mao W, Zhu Q, Bao C. Genome-wide identification and characterization of Dof transcription factors in eggplant ( Solanum melongena L.). PeerJ 2018. [PMID: 29527420 PMCID: PMC5844252 DOI: 10.7717/peerj.4481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eggplant (Solanum melongena L.) is an important vegetable cultivated in Asia, Africa and southern Europe and, following tomato and pepper, ranks as the third most important solanaceous vegetable crop. The Dof (DNA-binding with one finger) family is a group of plant-specific transcription factors that play important roles in plant growth, development, and response to biotic and abiotic stresses. The genes in the Dof family have been identified and analysed in many plant species, but the information remains lacking for eggplant. In the present study, we identified 29 SmeDof members from the eggplant genome database, which were classifed into nine subgroups. The phylogeny, gene structure, conserved motifs and homologous genes of SmeDof genes were comprehensively investigated. Subsequently, we analysed the expression patterns of SmeDof genes in six different eggplant subspecies. The results provide novel insights into the family of SmeDof genes and will promote the understanding of the structure and function of Dof genes in eggplant, and the role of Dof expression during stress.
Collapse
Affiliation(s)
- Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Wuhong Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Tianhua Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Haijiao Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Weihai Mao
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Qinmei Zhu
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultrual Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Cheng Z, Hou D, Liu J, Li X, Xie L, Ma Y, Gao J. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses. Genome 2018; 61:151-156. [DOI: 10.1139/gen-2017-0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Dof transcription factor (TF) family belongs to a class of plant-specific TFs and is involved in plant growth, development, and response to abiotic stresses. However, there are only very limited reports on the characterization of Dof TFs in moso bamboo (Phyllostachys edulis). In the present research, PheDof TFs showed specific expression profiles based on RNA-seq data analyses. The co-expression network indicated that PheDof12, PheDof14, and PheDof16 might play vital roles during flower development. Cis-regulatory element analysis of these PheDof genes suggested diverse functions. Expression patterns of 12 selected genes from seven different classes under three abiotic stresses (cold, salt, and drought) are further investigated by quantitative real-time PCR. This work will provide useful information for functional analysis and regulation mechanisms of Dof TFs in moso bamboo.
Collapse
Affiliation(s)
- Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Yanjun Ma
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| |
Collapse
|
26
|
Chen D, Chai S, McIntyre CL, Xue GP. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. PLANT CELL REPORTS 2018; 37:225-237. [PMID: 29079898 DOI: 10.1007/s00299-017-2224-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
Collapse
Affiliation(s)
- Dandan Chen
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Shoucheng Chai
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - C Lynne McIntyre
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia.
| |
Collapse
|
27
|
Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L. 3 Biotech 2018; 8:82. [PMID: 29430346 DOI: 10.1007/s13205-017-1068-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023] Open
Abstract
We report 48 putative DNA binding with one finger (Dof) TF genes from genome and transcriptome data of finger millet (Eleusine coracana L.; FM), involved in plant developmental process. To characterize seed-specific Dof genes, transcript profiles of 32 EcDof identified from transcriptome data of developing spikes of FM genotypes were further analyzed in different tissues (root, stem, and leaf) and developmental stages of spikes (S1, S2, S3, and S4) in two FM genotypes [GE1437 (low protein genotype; LPG) and GE3885 (high protein genotype; HPG)]. More than 50% of identified EcDof genes showed expression during seed development processes. Among these, seven genes (EcDof 3, EcDof 5, EcDof 15, EcDof 18, EcDof 22, EcDof 23, and EcDof 31) expressed maximally at specific stages of seed development. Fourteen EcDof genes showed that differential transcript accumulation in vegetative tissue as well as in developing spikes suggests involvement during seed filling and also throughout the plant development. In addition, three EcDof genes (EcDof 9, EcDof 25, and EcDof 28) expressed preferentially at root and stem tissue. The 3D structural prediction of EcDof proteins showed variability in structural attributes. Molecular docking results showed strong binding affinity for seed-specific EcDof-EcO2 with α-prolamine promoters. The identified and characterized EcDof genes will help to dissect the roles of FM seed-specific Dof genes.
Collapse
|
28
|
Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J, Kalaipandian S, Chang H, Xue GP. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. PLANT, CELL & ENVIRONMENT 2018; 41:79-98. [PMID: 28370204 DOI: 10.1111/pce.12957] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
High temperature at grain filling can severely reduce wheat yield. Heat shock factors (Hsfs) are central regulators in heat acclimation. This study investigated the role of TaHsfC2a, a member of the monocot-specific HsfC2 subclass, in the regulation of heat protection genes in Triticum aestivum. Three TaHsfC2a homoeologous genes were highly expressed in wheat grains during grain filling and showed only transient up-regulation in the leaves by heat stress but were markedly up-regulated by drought and abscisic acid (ABA) treatment. Overexpression of TaHsfC2a-B in transgenic wheat resulted in up-regulation of a suite of heat protection genes (e.g. TaHSP70d and TaGalSyn). Most TaHsfC2a-B target genes were heat, drought and ABA inducible. Transactivation analysis of two representative targets (TaHSP70d and TaGalSyn) showed that TaHsfC2a-B activated expression of reporters driven by these target promoters. Promoter mutagenesis analyses revealed that heat shock element is responsible for transactivation by TaHsfC2a-B and heat/drought induction. TaHsfC2a-B-overexpressing wheat showed improved thermotolerance but not dehydration tolerance. Most TaHsfC2a-B target genes were co-up-regulated in developing grains with TaHsfC2a genes. These data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Xiao-Jun Hu
- Linyi University, Middle of Shuangling Road, Linyi, Shandong, 276000, China
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Dandan Chen
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - C Lynne Mclntyre
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - M Fernanda Dreccer
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Zheng-Bin Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang, 050021, China
| | - Janneke Drenth
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | | | - Hongping Chang
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
29
|
Shivalingamurthy SG, Anangi R, Kalaipandian S, Glassop D, King GF, Rae AL. Identification and Functional Characterization of Sugarcane Invertase Inhibitor ( ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane. FRONTIERS IN PLANT SCIENCE 2018; 9:598. [PMID: 29774044 PMCID: PMC5944049 DOI: 10.3389/fpls.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.
Collapse
Affiliation(s)
| | - Raveendra Anangi
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Glenn F. King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Anne L. Rae
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- *Correspondence: Anne L. Rae
| |
Collapse
|
30
|
Zhang Z, Yuan L, Liu X, Chen X, Wang X. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 2017; 639:137-148. [PMID: 28986315 DOI: 10.1016/j.gene.2017.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As a family of transcription factors, DNA binding with one figure (Dof) proteins play important roles in various biological processes in plants. Here, a total of 60 putative apple (Malus domestica) Dof genes (MdDof) were identified and mapped to different chromosomes. Chromosomal distribution and synteny analysis indicated that the expansion of the MdDof genes came primarily from segmental and duplication events, and from whole genome duplication, which lead to more Dof members in apples than in other plants. All 60 MdDof genes were classified into thirteen groups, according to multiple sequence alignment and the phylogenetic tree constructed of Dof genes from apple, peach (Prunus persica), Arabidopsis and rice. Within each group, the members shared a similar exon/intron and motif compositions, although the sizes of the MdDof genes and encoding proteins were quite different. Several Dof genes from the apple and peach were identified to be homologues based on their close synteny relationship, which suggested that these genes bear similar functions. Half of the MdDof genes were randomly selected to determine their responses to different stresses. The majority of MdDof genes were quite sensitive to PEG, NaCl, cold and exogenous ABA treatment. Our results suggested that MdDof family members may play important roles in plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Zhengrong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
31
|
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, Caballero JL, Rodríguez-Franco A, Blanco-Portales R, Muñoz-Blanco J, Moyano E. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4529-4543. [PMID: 28981772 DOI: 10.1093/jxb/erx257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Only a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals. When FaDOF2 expression was silenced in ripe strawberry receptacles, the expression of FaEOBII and FaEGS2, two key genes involved in eugenol production, were down-regulated. These fruits showed a concomitant decrease in eugenol content, which confirmed that FaDOF2 is a transcription factor that is involved in eugenol production in ripe fruit receptacles. By using the yeast two-hybrid system and bimolecular fluorescence complementation, we demonstrated that FaDOF2 interacts with FaEOBII, a previously reported regulator of eugenol production, which determines fine-tuning of the expression of key genes that are involved in eugenol production. These results provide evidence that FaDOF2 plays a subsidiary regulatory role with FaEOBII in the expression of genes encoding enzymes that control eugenol production. Taken together, our results provide new insights into the regulation of the volatile phenylpropanoid pathway in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Carlos Cañete-Gómez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | | | | | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049-Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| |
Collapse
|
32
|
Rouhian S, Ahmadi DN, Sorkheh K. Development of Dof (DNA binding with one finger) transcription factor gene-specific primers through data mining as a functional marker and their use for genetic diversity study in barley (Hordeum vulgare L.) germplasm. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Wang H, Zhao S, Gao Y, Yang J. Characterization of Dof Transcription Factors and Their Responses to Osmotic Stress in Poplar (Populus trichocarpa). PLoS One 2017; 12:e0170210. [PMID: 28095469 PMCID: PMC5241002 DOI: 10.1371/journal.pone.0170210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022] Open
Abstract
The DNA-binding One Zinc Finger (Dof) genes are ubiquitous in many plant species and are especial transcription regulators that participate in plant growth, development and various procedures, including biotic and abiotic stress reactions. In this study, we identified 41 PtrDof members from Populus trichocarpa genomes and classified them into four groups. The conserved motifs and gene structures of some PtrDof genes belonging to the same subgroup were almost the same. The 41 PtrDof genes were dispersed on 18 of the 19 Populus chromosomes. Many key stress- or phytohormone-related cis-elements were discovered in the PtrDof gene promoter regions. Consequently, we undertook expression profiling of the PtrDof genes in leaves and roots in response to osmotic stress and abscisic acid. A total of seven genes (PtrDof14, 16, 25, 27, 28, 37 and 39) in the Populus Dof gene family were consistently upregulated at point in all time in the leaves and roots under osmotic and abscisic acid (ABA) stress. We observed that 12 PtrDof genes could be targeted by 15 miRNAs. Moreover, we mapped the cleavage site in PtrDof30 using the 5’RLM-RACE. The results showed that PtrDofs may have a role in resistance to abiotic stress in Populus trichocarpa.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yuchi Gao
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
34
|
Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:231. [PMID: 29046718 PMCID: PMC5635583 DOI: 10.1186/s13068-017-0919-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic engineering of microalgae is necessary to produce economically feasible strains for biofuel production. Current efforts are focused on the manipulation of individual metabolic genes, but the outcomes are not sufficiently stable and/or efficient for large-scale production of biofuels and other materials. Transcription factors (TFs) are emerging as good alternatives for engineering of microalgae, not only to increase production of biomaterials but to enhance stress tolerance. Here, we investigated an AP2 type TF Wrinkled1 in Arabidopsis (AtWRI1) known as a key regulator of lipid biosynthesis in plants, and applied it to industrial microalgae, Nannochloropsis salina. RESULTS We expressed AtWRI1 TF heterologously in N. salina, named NsAtWRI1, in an effort to re-enact its key regulatory function of lipid accumulation. Stable integration AtWRI1 was confirmed by RESDA PCR, and its expression was confirmed by Western blotting using the FLAG tag. Characterizations of transformants revealed that the neutral and total lipid contents were greater in NsAtWRI1 transformants than in WT under both normal and stress conditions from day 8. Especially, total lipid contents were 36.5 and 44.7% higher in NsAtWRI1 2-3 than in WT under normal and osmotic stress condition, respectively. FAME contents of NsAtWRI1 2-3 were also increased compared to WT. As a result, FAME yield of NsAtWRI1 2-3 was increased to 768 mg/L/day, which was 64% higher than that of WT under the normal condition. We identified candidates of AtWRI1-regulated genes by searching for the presence of the AW-box in promoter regions, among which lipid metabolic genes were further analyzed by qRT-PCR. Overall, qRT-PCR results on day 1 indicated that AtWRI1 down-regulated TAGL and DAGK, and up-regulated PPDK, LPL, LPGAT1, and PDH, resulting in enhanced lipid production in NsAtWRI1 transformants from early growth phase. CONCLUSION AtWRI1 TF regulated several genes involved in lipid synthesis in N. salina, resulting in enhancement of neutral lipid and FAME production. These findings suggest that heterologous expression of AtWRI1 TF can be utilized for efficient biofuel production in industrial microalgae.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Young Uk Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
35
|
Peña PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE. Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum. FRONTIERS IN PLANT SCIENCE 2017; 8:434. [PMID: 28424717 PMCID: PMC5371680 DOI: 10.3389/fpls.2017.00434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 05/03/2023]
Abstract
Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops. To this end, the Zea mays Dof1 (ZmDof1) transcription factor was expressed in both wheat (Triticum aestivum) and sorghum (Sorghum bicolor) either constitutively, UBI4 promoter from sugarcane, or in a tissue specific fashion via the maize rbcS1 promoter. The primary transcription activation target of ZmDof1, phosphoenolpyruvate carboxylase (PEPC), is observed in transgenic wheat events. Expression ZmDof1 under control of the rbcs1 promoter translates to increase in biomass and yield components in wheat. However, constitutive expression of ZmDof1 led to the down-regulation of genes involved in photosynthesis and the functional apparatus of chloroplasts, and an outcome that negatively impacts photosynthesis, height, and biomass in wheat. Similar patterns were also observed in sorghum transgenic events harboring the constitutive expression cassette of ZmDof1. These results indicate that transcription factor strategies to boost agronomic phenotypic outcomes in crops need to consider expression patterns of the genetic elements to be introduced.
Collapse
Affiliation(s)
- Pamela A. Peña
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
| | - Truyen Quach
- Center for Biotechnology, University of Nebraska-LincolnLincoln, NE, USA
| | - Shirley Sato
- Center for Biotechnology, University of Nebraska-LincolnLincoln, NE, USA
| | - Zhengxiang Ge
- Center for Biotechnology, University of Nebraska-LincolnLincoln, NE, USA
| | - Natalya Nersesian
- Center for Biotechnology, University of Nebraska-LincolnLincoln, NE, USA
| | - Taity Changa
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
| | | | - Tom E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-LincolnLincoln, NE, USA
- *Correspondence: Tom E. Clemente
| |
Collapse
|
36
|
Soto-Suárez M, Serrato AJ, Rojas-González JA, Bautista R, Sahrawy M. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation. BMC PLANT BIOLOGY 2016; 16:258. [PMID: 27905870 PMCID: PMC5134223 DOI: 10.1186/s12870-016-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/22/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. RESULTS We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. CONCLUSION This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.
Collapse
Affiliation(s)
- Mauricio Soto-Suárez
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
- Present address: Corporación Colombiana de Investigación Agropecuaria, CORPOICA, Km 14 vía Mosquera, Mosquera, Cundinamarca Colombia
| | - Antonio J. Serrato
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - José A. Rojas-González
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática/SCBI, Edificio de Bioinnovación, Parque Tecnológico de Andalucía, Universidad de Málaga, C/ Severo Ochoa 34, 29590 Campanillas, Spain
| | - Mariam Sahrawy
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
37
|
Chen D, Richardson T, Chai S, Lynne McIntyre C, Rae AL, Xue GP. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat. PLANT & CELL PHYSIOLOGY 2016; 57:2076-2090. [PMID: 27440550 DOI: 10.1093/pcp/pcw126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 05/03/2023]
Abstract
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
Collapse
Affiliation(s)
- Dandan Chen
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, PR China
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Terese Richardson
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Shoucheng Chai
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, PR China
| | - C Lynne McIntyre
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Anne L Rae
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| |
Collapse
|
38
|
Kang WH, Kim S, Lee HA, Choi D, Yeom SI. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 2016; 6:33332. [PMID: 27653666 PMCID: PMC5032028 DOI: 10.1038/srep33332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| |
Collapse
|
39
|
Dong C, Hu H, Xie J. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome 2016; 59:1085-1100. [PMID: 27831816 DOI: 10.1139/gen-2016-0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.
Collapse
Affiliation(s)
- Chen Dong
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| |
Collapse
|
40
|
Gupta S, Arya GC, Malviya N, Bisht NC, Yadav D. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench. Mol Biol Rep 2016; 43:767-74. [PMID: 27230576 DOI: 10.1007/s11033-016-4019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
DNA binding with one finger (Dof) proteins represent a family of plant specific transcription factors associated with diverse biological processes, such as seed maturation and germination, phytohormone and light mediated regulation, and plant responses to biotic and abiotic stresses. In present study, a total of 21 Dof genes from Sorghum bicolor were cloned, sequenced and in silico characterized for homology search, revealing their identity to Dof like proteins. The expression profiling of SbDof genes using quantitative RT-PCR in different tissue types and also under drought and salt stresses was attempted. The SbDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth condition. Two of the SbDof genes namely SbDof8 and SbDof12 showed comparatively high level of transcript abundance in all the tissue types tested; whereas some of the SbDof genes showed a distinct tissue specific expression pattern. Further a total of 13 SbDof genes showed differential expression when subjected to either of the abiotic stress i.e. drought or salinity. Three of the SbDof genes namely SbDof12, SbDof19 and SbDof24 were found to be up-regulated in response to drought and salt stress. Comparative analysis of SbDof genes expression revealed existence of a complex transcriptional and functional diversity across plant growth and developmental stages.
Collapse
Affiliation(s)
- Shubhra Gupta
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Gulab C Arya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Neha Malviya
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India.
| |
Collapse
|
41
|
Cai X, Zhang C, Shu W, Ye Z, Li H, Zhang Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun 2016; 474:736-741. [PMID: 27157141 DOI: 10.1016/j.bbrc.2016.04.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Abstract
Ascorbic acid (AsA) is an important antioxidant and its biosynthesis in plants has extensively been investigated. However, the key regulatory factors controlling the accumulation of AsA remain elusive. Here we report that tomato SlDof22, a member of the Dof family, negatively regulated AsA accumulation in tomato. RNA interference (RNAi) of SlDof22 in transgenic lines induced AsA levels, and affected the expression of genes in the D-mannose/L-galactose pathway and AsA recycling. In addition, SlSOS1 was significantly down-regulated in SlDof22 RNAi plants which resulted in reduced tolerance to salt stress. We further found that SlDof22 could bind to the promoter sequence of SlSOS1 gene by yeast one-hybrid analysis. Taken together, our data suggested that the Dof transcription factor SIDof22 involved in ascorbate accumulation and salt stress response in tomato.
Collapse
Affiliation(s)
- Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chanjuan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo Shu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Genome-wide identification and characterization of the Dof gene family in moso bamboo (Phyllostachys heterocycla var. pubescens). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Feng BH, Han YC, Xiao YY, Kuang JF, Fan ZQ, Chen JY, Lu WJ. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2263-75. [PMID: 26889012 PMCID: PMC4809287 DOI: 10.1093/jxb/erw032] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening.
Collapse
Affiliation(s)
- Bi-hong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China College of Agriculture, GuangXi University, Nanning 530004, PR China
| | - Yan-chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yun-yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhong-qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
44
|
Xue GP, Rae AL, White RG, Drenth J, Richardson T, McIntyre CL. A strong root-specific expression system for stable transgene expression in bread wheat. PLANT CELL REPORTS 2016; 35:469-81. [PMID: 26563345 DOI: 10.1007/s00299-015-1897-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/24/2023]
Abstract
A strong, stable and root-specific expression system was developed from a rice root-specific GLYCINE - RICH PROTEIN 7 promoter for use as an enabling technology for genetic manipulation of wheat root traits. Root systems play an important role in wheat productivity. Genetic manipulation of wheat root traits often requires a root-specific or root-predominant expression system as an essential enabling technology. In this study, we investigated promoters from rice root-specific or root-predominant expressed genes for development of a root expression system in bread wheat. Transient expression analysis using a GREEN FLUORESCENT PROTEIN (GFP) reporter gene driven by rice promoters identified six promoters that were strongly expressed in wheat roots. Extensive organ specificity analysis of three rice promoters in transgenic wheat revealed that the promoter of rice GLYCINE-RICH PROTEIN 7 (OsGRP7) gene conferred a root-specific expression pattern in wheat. Strong GFP fluorescence in the seminal and branch roots of wheat expressing GFP reporter driven by the OsGRP7 promoter was detected in epidermal, cortical and endodermal cells in mature parts of the root. The GFP reporter driven by the promoter of rice METALLOTHIONEIN-LIKE PROTEIN 1 (OsMTL1) gene was mainly expressed in the roots with essentially no expression in the leaf, stem or seed. However, it was also expressed in floral organs including glume, lemma, palea and awn. In contrast, strong expression of rice RCg2 promoter-driven GFP was found in many tissues. The GFP expression driven by these three rice promoters was stable in transgenic wheat plants through three generations (T1-T3) examined. These data suggest that the OsGRP7 promoter can provide a strong, stable and root-specific expression system for use as an enabling technology for genetic manipulation of wheat root traits.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia.
| | - Anne L Rae
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Rosemary G White
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Janneke Drenth
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Terese Richardson
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - C Lynne McIntyre
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| |
Collapse
|
45
|
Wu Z, Cheng J, Cui J, Xu X, Liang G, Luo X, Chen X, Tang X, Hu K, Qin C. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:574. [PMID: 27200047 PMCID: PMC4850169 DOI: 10.3389/fpls.2016.00574] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 05/02/2023]
Abstract
Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper.
Collapse
Affiliation(s)
- Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Junjie Cui
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Xiaowan Xu
- Vegetable Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Guansheng Liang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Xirong Luo
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Xiaocui Chen
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Xiangqun Tang
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Kailin Hu
| | - Cheng Qin
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical UniversityZunyi, China
- Cheng Qin
| |
Collapse
|
46
|
da Silva DC, da Silveira Falavigna V, Fasoli M, Buffon V, Porto DD, Pappas GJ, Pezzotti M, Pasquali G, Revers LF. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development. HORTICULTURE RESEARCH 2016; 3:16042. [PMID: 27610237 PMCID: PMC5005469 DOI: 10.1038/hortres.2016.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 05/19/2023]
Abstract
The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.
Collapse
Affiliation(s)
- Danielle Costenaro da Silva
- Graduate Program in Cell and Molecular Biology, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Vítor da Silveira Falavigna
- Graduate Program in Cell and Molecular Biology, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Marianna Fasoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona 37134, Italy
| | - Vanessa Buffon
- Embrapa Uva e Vinho, Bento Gonçalves, RS 95701-008, Brazil
| | | | | | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona 37134, Italy
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | | |
Collapse
|
47
|
Fan J, Ning K, Zeng X, Luo Y, Wang D, Hu J, Li J, Xu H, Huang J, Wan M, Wang W, Zhang D, Shen G, Run C, Liao J, Fang L, Huang S, Jing X, Su X, Wang A, Bai L, Hu Z, Xu J, Li Y. Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp. PLANT PHYSIOLOGY 2015; 169:2444-61. [PMID: 26486592 PMCID: PMC4677908 DOI: 10.1104/pp.15.01174] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/20/2015] [Indexed: 05/17/2023]
Abstract
The ability to rapidly switch the intracellular energy storage form from starch to lipids is an advantageous trait for microalgae feedstock. To probe this mechanism, we sequenced the 56.8-Mbp genome of Chlorella pyrenoidosa FACHB-9, an industrial production strain for protein, starch, and lipids. The genome exhibits positive selection and gene family expansion in lipid and carbohydrate metabolism and genes related to cell cycle and stress response. Moreover, 10 lipid metabolism genes might be originated from bacteria via horizontal gene transfer. Transcriptomic dynamics tracked via messenger RNA sequencing over six time points during metabolic switch from starch-rich heterotrophy to lipid-rich photoautotrophy revealed that under heterotrophy, genes most strongly expressed were from the tricarboxylic acid cycle, respiratory chain, oxidative phosphorylation, gluconeogenesis, glyoxylate cycle, and amino acid metabolisms, whereas those most down-regulated were from fatty acid and oxidative pentose phosphate metabolism. The shift from heterotrophy into photoautotrophy highlights up-regulation of genes from carbon fixation, photosynthesis, fatty acid biosynthesis, the oxidative pentose phosphate pathway, and starch catabolism, which resulted in a marked redirection of metabolism, where the primary carbon source of glycine is no longer supplied to cell building blocks by the tricarboxylic acid cycle and gluconeogenesis, whereas carbon skeletons from photosynthesis and starch degradation may be directly channeled into fatty acid and protein biosynthesis. By establishing the first genetic transformation in industrial oleaginous C. pyrenoidosa, we further showed that overexpression of an NAD(H) kinase from Arabidopsis (Arabidopsis thaliana) increased cellular lipid content by 110.4%, yet without reducing growth rate. These findings provide a foundation for exploiting the metabolic switch in microalgae for improved photosynthetic production of food and fuels.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Kang Ning
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Xiaowei Zeng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Dongmei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Jianqiang Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Hui Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Jianke Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Minxi Wan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Weiliang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Daojing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Guomin Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Conglin Run
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Junjie Liao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Lei Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Shi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Xiaoyan Jing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Xiaoquan Su
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Anhui Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Lili Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Zanmin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Jian Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| | - Yuanguang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China (J.F., Y.Lu., H.X., J.Hua., M.W., W.W., D.Z., G.S., C.R., J.Lia., L.F., Y.Li.);Single-Cell Center, Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China (K.N., X.Z., D.W., J.Hu., J.Li., S.H., X.J., X.S., A.W., J.X.); andInstitute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (L.B., Z.H.)
| |
Collapse
|
48
|
Huang W, Huang Y, Li MY, Wang F, Xu ZS, Xiong AS. Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress. Biotechnol Lett 2015; 38:145-55. [PMID: 26466595 DOI: 10.1007/s10529-015-1966-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The DNA-binding one zinc finger (Dof) family transcription factors (TF) are involved in stress response. Dof TFs in carrot were identified and the responses of DcDof genes to abiotic stresses were analyzed. RESULTS 46 DcDofs in carrot were identified from carrot genome database. Based on the conserved domain in Dof TF family of Arabidopsis thaliana, the DcDof TFs were divided into four classes, named class A, B, C and D. Carrot and Arabidopsis shared most motifs in the same subgroup. Real-time quantification PCR analysis showed tissue-specific expression patterns in DcDofs. DcDofs from eight subgroups responded to four abiotic stress treatments. CONCLUSIONS The expression profiles were different with the abiotic stresses changed, indicating complicated regulatory mechanisms in Dof TF family in higher plant, and the response mechanisms of Dof genes may be influenced by different plant species.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Santopolo S, Boccaccini A, Lorrai R, Ruta V, Capauto D, Minutello E, Serino G, Costantino P, Vittorioso P. DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1. BMC PLANT BIOLOGY 2015; 15:72. [PMID: 25850831 PMCID: PMC4355143 DOI: 10.1186/s12870-015-0453-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/12/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1. The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1. While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles in seed germination. RESULTS We show here that DAG2 expression is positively regulated by environmental factors triggering germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP) analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces germination of dag2 mutant seeds. CONCLUSIONS In agreement with the seed germination phenotype of the dag2 mutant previously published, the present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B (phyB)-mediated pathway.
Collapse
Affiliation(s)
- Silvia Santopolo
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Boccaccini
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- />Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Lorrai
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- />Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Veronica Ruta
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davide Capauto
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emanuele Minutello
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Serino
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Costantino
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Vittorioso
- />Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- />Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
50
|
Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, Singh VK, Yadav D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. PLANTA 2015; 241:549-62. [PMID: 25564353 DOI: 10.1007/s00425-014-2239-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/25/2014] [Indexed: 05/18/2023]
Abstract
The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.
Collapse
Affiliation(s)
- S Gupta
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, 273 009, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|