1
|
Thirulogachandar V, Govind G, Hensel G, Kale SM, Kuhlmann M, Eschen-Lippold L, Rutten T, Koppolu R, Rajaraman J, Palakolanu SR, Seiler C, Sakuma S, Jayakodi M, Lee J, Kumlehn J, Komatsuda T, Schnurbusch T, Sreenivasulu N. HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2900-2916. [PMID: 38366171 PMCID: PMC11358255 DOI: 10.1093/jxb/erae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Collapse
Affiliation(s)
- Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Geetha Govind
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sandip M Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sudhakar Reddy Palakolanu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Christiane Seiler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
3
|
Gallagher JP, Man J, Chiaramida A, Rozza IK, Patterson EL, Powell MM, Schrager-Lavelle A, Multani DS, Meeley RB, Bartlett ME. GRASSY TILLERS1 ( GT1) and SIX-ROWED SPIKE1 ( VRS1) homologs share conserved roles in growth repression. Proc Natl Acad Sci U S A 2023; 120:e2311961120. [PMID: 38096411 PMCID: PMC10742383 DOI: 10.1073/pnas.2311961120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.
Collapse
Affiliation(s)
- Joseph P. Gallagher
- Biology Department, University of Massachusetts, Amherst, MA01003
- Forage Seed and Cereal Research Unit, US Department of Agriculture, Agricultural Research Service, Corvallis, OR97331
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | | | | | - Morgan M. Powell
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | - Dilbag S. Multani
- Corteva Agriscience, Johnston, IA50131
- Napigen, Inc., Wilmington, DE19803
| | | | | |
Collapse
|
4
|
Żyła N, Babula-Skowrońska D. Evolutionary Consequences of Functional and Regulatory Divergence of HD-Zip I Transcription Factors as a Source of Diversity in Protein Interaction Networks in Plants. J Mol Evol 2023; 91:581-597. [PMID: 37351602 PMCID: PMC10598176 DOI: 10.1007/s00239-023-10121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
The HD superfamily has been studied in detail for several decades. The plant-specific HD-Zip I subfamily attracts the most attention because of its involvement in plant development and stress responses. In this review, we provide a comprehensive insight into the evolutionary events responsible for the functional redundancy and diversification of the HD-Zip I genes in regulating various biological processes. We summarized the evolutionary history of the HD-Zip family, highlighting the important role of WGDs in its expansion and divergence of retained duplicates in the genome. To determine the relationship between the evolutionary origin and functional conservation of HD-Zip I in different species, we performed a phylogenetic analysis, compared their expression profiles in different tissues and under stress and traced the role of orthologs and paralogs in regulating developmental processes. We found that HD-Zip I from different species have similar gene structures with a highly conserved HD and Zip, bind to the same DNA sequences and are involved in similar biological processes. However, they exhibit a functional diversity, which is manifested in altered expression patterns. Some of them are involved in the regulation of species-specific leaf morphology and phenotypes. Here, we discuss the role of changes in functional domains involved in DNA binding and protein interaction of HD-Zip I and in cis-regulated regions of its target genes in promoting adaptive innovations through the formation of de novo regulatory systems. Understanding the role of the HD-Zip I subfamily in organism-environment interactions remains a challenge for evolutionary developmental biology (evo-devo).
Collapse
Affiliation(s)
- Natalia Żyła
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland
| | - Danuta Babula-Skowrońska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland.
| |
Collapse
|
5
|
Pourkheirandish M, Komatsuda T. Grain Disarticulation in Wild Wheat and Barley. PLANT & CELL PHYSIOLOGY 2022; 63:1584-1591. [PMID: 35765920 PMCID: PMC9680857 DOI: 10.1093/pcp/pcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Our industrial-scale crop monocultures, which are necessary to provide grain for large-scale food and feed production, are highly vulnerable to biotic and abiotic stresses. Crop wild relatives have adapted to harsh environmental conditions over millennia; thus, they are an important source of genetic variation and crop diversification. Despite several examples where significant yield increases have been achieved through the introgression of genomic regions from wild relatives, more detailed understanding of the differences between wild and cultivated species for favorable and unfavorable traits is still required to harness these valuable resources. Recently, as an alternative to the introgression of beneficial alleles from the wild into domesticated species, a radical suggestion is to domesticate wild relatives to generate new crops. A first and critical step for the domestication of cereal wild relatives would be to prevent grain disarticulation from the inflorescence at maturity. Discovering the molecular mechanisms and understanding the network of interactions behind grain retention/disarticulation would enable the implementation of approaches to select for this character in targeted species. Brittle rachis 1 and Brittle rachis 2 are major genes responsible for grain disarticulation in the wild progenitors of wheat and barley that were the target of mutations during domestication. These two genes are only found in the Triticeae tribe and are hypothesized to have evolved by a duplication followed by neo-functionalization. Current knowledge gaps include the molecular mechanisms controlling grain retention in cereals and the genomic consequences of strong selection for this essential character.
Collapse
Affiliation(s)
| | - Takao Komatsuda
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Zwirek M, Waugh R, McKim SM. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. THE NEW PHYTOLOGIST 2019; 221:1950-1965. [PMID: 30339269 PMCID: PMC6492131 DOI: 10.1111/nph.15548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/22/2018] [Indexed: 05/24/2023]
Abstract
Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.
Collapse
Affiliation(s)
- Monika Zwirek
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robbie Waugh
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Sarah M. McKim
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
8
|
Gauley A, Boden SA. Genetic pathways controlling inflorescence architecture and development in wheat and barley. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:296-309. [PMID: 30325110 PMCID: PMC6900778 DOI: 10.1111/jipb.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful. The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.
Collapse
Affiliation(s)
- Adam Gauley
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| | - Scott A. Boden
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| |
Collapse
|
9
|
Abstract
Floret fertility is a key determinant of the number of grains per inflorescence in cereals. During the evolution of wheat (Triticum sp.), floret fertility has increased, such that current bread wheat (Triticum aestivum) cultivars set three to five grains per spikelet. However, little is known regarding the genetic basis of floret fertility. The locus Grain Number Increase 1 (GNI1) is shown here to be an important contributor to floret fertility. GNI1 evolved in the Triticeae through gene duplication. The gene, which encodes a homeodomain leucine zipper class I (HD-Zip I) transcription factor, was expressed most abundantly in the most apical floret primordia and in parts of the rachilla, suggesting that it acts to inhibit rachilla growth and development. The level of GNI1 expression has decreased over the course of wheat evolution under domestication, leading to the production of spikes bearing more fertile florets and setting more grains per spikelet. Genetic analysis has revealed that the reduced-function allele GNI-A1 contributes to the increased number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 allele out-yielded WT allele carriers under field conditions. The data show that gene duplication generated evolutionary novelty affecting floret fertility while mutations favoring increased grain production have been under selection during wheat evolution under domestication.
Collapse
|
10
|
Shao J, Haider I, Xiong L, Zhu X, Hussain RMF, Övernäs E, Meijer AH, Zhang G, Wang M, Bouwmeester HJ, Ouwerkerk PBF. Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One 2018; 13:e0199248. [PMID: 30028850 PMCID: PMC6054374 DOI: 10.1371/journal.pone.0199248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in plant development and morphogenesis as well as responses to biotic and abiotic stresses. In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I transcription factor. Phylogenetic analysis has shown that the rice HD-Zip I genes Oshox12 and Oshox14 are the closest homologues of Vrs1. Here, we show that Oshox12 and Oshox14 are ubiquitously expressed with higher levels in developing panicles. Trans-activation assays in yeast and rice protoplasts demonstrated that Oshox12 and Oshox14 can bind to a specific DNA sequence, AH1 (CAAT(A/T)ATTG), and activate reporter gene expression. Overexpression of Oshox12 and Oshox14 in rice resulted in reduced panicle length and a dwarf phenotype. In addition, Oshox14 overexpression lines showed a deficiency in panicle exsertion. Our findings suggest that Oshox12 and Oshox14 may be involved in the regulation of panicle development. This study provides a significant advancement in understanding the functions of HD-Zip transcription factors in rice.
Collapse
Affiliation(s)
- Jingxia Shao
- College of Life Sciences, Northwest A&F University, Shaanxi, People’s Republic of China
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Imran Haider
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoyi Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | | | - Elin Övernäs
- Department of Physiological Botany, EBC, Uppsala University, Uppsala, Sweden
| | | | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, People’s Republic of China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Leiden University European Center for Chinese Medicine and Natural Compounds, Leiden, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
11
|
Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T, Hori K, Wu J, Tagiri A, Rutten T, Koppolu R, Shimada Y, Houston K, Thomas WTB, Waugh R, Schnurbusch T, Komatsuda T. Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor. PLANT PHYSIOLOGY 2017; 175:1720-1731. [PMID: 29101279 PMCID: PMC5717734 DOI: 10.1104/pp.17.01149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 05/17/2023]
Abstract
Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships.
Collapse
Affiliation(s)
- Shun Sakuma
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305 8602, Japan
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466 Stadt Seeland, Germany
- Faculty of Agriculture, Tottori University, Tottori 680 8550, Japan
| | | | - Yusuke Kakei
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244 0813, Japan
| | | | - Takako Suzuki
- Agricultural Research Department, Hokkaido Research Organization, Chuo Agricultural Experiment Station, Naganuma, Hokkaido 069 1395, Japan
| | - Kiyosumi Hori
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305 8602, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305 8518, Japan
| | - Jianzhong Wu
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305 8602, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305 8518, Japan
| | - Akemi Tagiri
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305 8602, Japan
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244 0813, Japan
| | - Kelly Houston
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | | | - Robbie Waugh
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba 305 8602, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305 8518, Japan
| |
Collapse
|
12
|
Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M. Leaf primordium size specifies leaf width and vein number among row-type classes in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:601-612. [PMID: 28482117 DOI: 10.1111/tpj.13590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number.
Collapse
Affiliation(s)
- Venkatasubbu Thirulogachandar
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Ahmad M Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ravi Koppolu
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Research Group Structural Cell Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andreas Graner
- Research Group Genome Diversity, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Goetz Hensel
- Research Group Plant Reproductive Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jochen Kumlehn
- Research Group Plant Reproductive Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andrea Bräutigam
- Research Group Network Analysis and Modeling, Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nese Sreenivasulu
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Markus Kuhlmann
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| |
Collapse
|
13
|
Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S. Major genes determining yield-related traits in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1081-1098. [PMID: 28314933 PMCID: PMC5440550 DOI: 10.1007/s00122-017-2880-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 02/17/2017] [Indexed: 05/20/2023]
Abstract
Current development of advanced biotechnology tools allows us to characterize the role of key genes in plant productivity. The implementation of this knowledge in breeding strategies might accelerate the progress in obtaining high-yielding cultivars. The achievements of the Green Revolution were based on a specific plant ideotype, determined by a single gene involved in gibberellin signaling or metabolism. Compared with the 1950s, an enormous increase in our knowledge about the biological basis of plant productivity has opened new avenues for novel breeding strategies. The large and complex genomes of diploid barley and hexaploid wheat represent a great challenge, but they also offer a large reservoir of genes that can be targeted for breeding. We summarize examples of productivity-related genes/mutants in wheat and barley, identified or characterized by means of modern biology. The genes are classified functionally into several groups, including the following: (1) transcription factors, regulating spike development, which mainly affect grain number; (2) genes involved in metabolism or signaling of growth regulators-cytokinins, gibberellins, and brassinosteroids-which control plant architecture and in consequence stem hardiness and grain yield; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism having an impact on plant architecture and grain yield. The implementation of selected genes in breeding programs is discussed, considering specific genotypes, agronomic and climate conditions, and taking into account that many of the genes are members of multigene families.
Collapse
Affiliation(s)
- Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland.
| | - Izabela K Rajchel
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
14
|
Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching. PLoS One 2015; 10:e0140246. [PMID: 26465604 PMCID: PMC4605766 DOI: 10.1371/journal.pone.0140246] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022] Open
Abstract
Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants), in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a) or reduced tillering only at full maturity (group 1b). Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b) is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2) suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.
Collapse
Affiliation(s)
- Corinna Brit Liller
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - René Neuhaus
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany
| | - Maarten Koornneef
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Wilma van Esse
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
15
|
Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC PLANT BIOLOGY 2015; 15:190. [PMID: 26245644 PMCID: PMC4527363 DOI: 10.1186/s12870-015-0574-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea plants (Camellia sinensis) are used to produce one of the most important beverages worldwide. The nutritional value and healthful properties of tea are closely related to the large amounts of three major characteristic constituents including polyphenols (mainly catechins), theanine and caffeine. Although oil tea (Camellia oleifera) belongs to the genus Camellia, this plant lacks these three characteristic constituents. Comparative analysis of tea and oil tea via RNA-Seq would help uncover the genetic components underlying the biosynthesis of characteristic metabolites in tea. RESULTS We found that 3,787 and 3,359 bud genes, as well as 4,042 and 3,302 leaf genes, were up-regulated in tea and oil tea, respectively. High-performance liquid chromatography (HPLC) analysis revealed high levels of all types of catechins, theanine and caffeine in tea compared to those in oil tea. Activation of the genes involved in the biosynthesis of these characteristic compounds was detected by RNA-Seq analysis. In particular, genes encoding enzymes involved in flavonoid, theanine and caffeine pathways exhibited considerably different expression levels in tea compared to oil tea, which were also confirmed by quantitative RT-PCR (qRT-PCR). CONCLUSION We assembled 81,826 and 78,863 unigenes for tea and oil tea, respectively, based on their differences at the transcriptomic level. A potential connection was observed between gene expression and content variation for catechins, theanine and caffeine in tea and oil tea. The results demonstrated that the metabolism was activated during the accumulation of characteristic metabolites in tea, which were present at low levels in oil tea. From the molecular biological perspective, our comparison of the transcriptomes and related metabolites revealed differential regulatory mechanisms underlying secondary metabolic pathways in tea versus oil tea.
Collapse
Affiliation(s)
- Yuling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Congbing Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Chitang Ho
- Department of Food Science, Rutgers University, Rutgers, NJ, USA.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
16
|
Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. FRONTIERS IN PLANT SCIENCE 2015; 6:514. [PMID: 26217365 PMCID: PMC4496560 DOI: 10.3389/fpls.2015.00514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant growth, roots to shoots Fe translocation, and increases in PS release were found. Experiments on DNA methylation highlighted significant differences between fully and hemy-methylated sequences in Fe deficient plants, with respect to Fe sufficient plants. Eleven DNA bands differently methylated were found in starved plants. Of these, five sequences showed significant alignment to barley genes encoding for a glucosyltransferase, a putative acyl carrier protein, a peroxidase, a β-glucosidase and a transcription factor containing a Homeodomin. A resupply experiment was carried out on starved barley re-fed at 13 days after sowing (DAS), and it showed that plants did not recover after Fe addition. In fact, Fe absorption and root to shoot translocation capacities were impaired. In addition, resupplied barley showed DNA methylation/demethylation patterns very similar to that of barley grown in Fe deprivation. This last finding is very encouraging because it indicates as these variations/modifications could be transmitted to progenies.
Collapse
Affiliation(s)
- Marika Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Maria Luce Bartucca
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
- *Correspondence: Emidio Albertini, Department of Agriculture, Food and Environmental Sciences, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Daniele Del Buono
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| |
Collapse
|
17
|
Akagi T, Henry IM, Tao R, Comai L. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014; 346:646-50. [PMID: 25359977 DOI: 10.1126/science.1257225] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.
Collapse
Affiliation(s)
- Takashi Akagi
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
18
|
|
19
|
Capella M, Ré DA, Arce AL, Chan RL. Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB. PLANT CELL REPORTS 2014; 33:955-67. [PMID: 24531799 DOI: 10.1007/s00299-014-1576-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/23/2014] [Indexed: 05/05/2023]
Abstract
Different members of the HD-Zip I family of transcription factors exhibit differential AHA-like activation motifs, able to interact with proteins of the basal transcriptional machinery. Homeodomain-leucine zipper proteins are transcription factors unique to plants, classified in four subfamilies. Subfamily I members have been mainly associated to abiotic stress responses. Several ones have been characterized using knockout or overexpressors plants, indicating that they take part in different signal transduction pathways even when their expression patterns are similar and they bind the same DNA sequence. A bioinformatic analysis has revealed the existence of conserved motifs outside the HD-Zip domain, including transactivation AHA motifs. Here, we demonstrate that these putative activation motifs are functional. Four members of the Arabidopsis family were chosen: AtHB1, AtHB7, AtHB12 and AtHB13. All of them exhibited activation activity in yeast and in plants but with different degrees. The protein segment necessary for such activation was different for these four transcription factors as well as the role of the tryptophans they present. When interaction with components of the basal transcription machinery was tested, AtHB1 was able to interact with TBP, AtHB12 interacted with TFIIB, AtHB7 interacted with both, TBP and TFIIB while AtHB13 showed weak interactions with any of them, in yeast two-hybrid as well as in pull-down assays. Transient transformation of Arabidopsis seedlings confirmed the activation capacity and specificity of these transcription factors and showed some differences with the results obtained in yeast. In conclusion, the differential activation functionality of these transcription factors adds an important level of functional divergence of these proteins, and together with their expression patterns, these differences could explain, at least in part, their functional divergence.
Collapse
Affiliation(s)
- Matías Capella
- Instituto de Agrobiotecnología del Litoral, CONICET-UNL, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
20
|
Ré DA, Capella M, Bonaventure G, Chan RL. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC PLANT BIOLOGY 2014; 14:150. [PMID: 24884528 PMCID: PMC4064807 DOI: 10.1186/1471-2229-14-150] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arabidopsis AtHB7 and AtHB12 transcription factors (TFs) belong to the homeodomain-leucine zipper subfamily I (HD-Zip I) and present 62% amino acid identity. These TFs have been associated with the control of plant development and abiotic stress responses; however, at present it is not completely understood how AtHB7 and AtHB12 regulate these processes. RESULTS By using different expression analysis approaches, we found that AtHB12 is expressed at higher levels during early Arabidopsis thaliana development whereas AtHB7 during later developmental stages. Moreover, by analysing gene expression in single and double Arabidopsis mutants and in transgenic plants ectopically expressing these TFs, we discovered a complex mechanism dependent on the plant developmental stage and in which AtHB7 and AtHB12 affect the expression of each other. Phenotypic analysis of transgenic plants revealed that AtHB12 induces root elongation and leaf development in young plants under standard growth conditions, and seed production in water-stressed plants. In contrast, AtHB7 promotes leaf development, chlorophyll levels and photosynthesis and reduces stomatal conductance in mature plants. Moreover AtHB7 delays senescence processes in standard growth conditions. CONCLUSIONS We demonstrate that AtHB7 and AtHB12 have overlapping yet specific roles in several processes related to development and water stress responses. The analysis of mutant and transgenic plants indicated that the expression of AtHB7 and AtHB12 is regulated in a coordinated manner, depending on the plant developmental stage and the environmental conditions. The results suggested that AtHB7 and AtHB12 evolved divergently to fine tune processes associated with development and responses to mild water stress.
Collapse
Affiliation(s)
- Delfina A Ré
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | | | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| |
Collapse
|
21
|
Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3-GENES GENOMES GENETICS 2013; 3:783-93. [PMID: 23704283 PMCID: PMC3656726 DOI: 10.1534/g3.112.004861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10-30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5-35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication.
Collapse
|
22
|
Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 2013; 31:375-83. [PMID: 23601269 DOI: 10.1016/j.tibtech.2013.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 12/17/2022]
Abstract
Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding.
Collapse
Affiliation(s)
- Nancy Podevin
- The European Food Safety Authority-EFSA, Via Carlo Magno 1A, Parma, Italy
| | | | | | | | | |
Collapse
|
23
|
Sakuma S, Pourkheirandish M, Hensel G, Kumlehn J, Stein N, Tagiri A, Yamaji N, Ma JF, Sassa H, Koba T, Komatsuda T. Divergence of expression pattern contributed to neofunctionalization of duplicated HD-Zip I transcription factor in barley. THE NEW PHYTOLOGIST 2013; 197:939-948. [PMID: 23293955 DOI: 10.1111/nph.12068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/25/2012] [Indexed: 05/08/2023]
Abstract
Barley (Hordeum vulgare) spikes are developmentally switched from two-rowed to six-rowed by a single recessive gene, six-rowed spike 1 (vrs1), which encodes a homeodomain-leucine zipper I class transcription factor. Vrs1 is a paralog of HvHox2 and both were generated by duplication of an ancestral gene. HvHox2 is conserved among cereals, whereas Vrs1 acquired its current function during the evolution of barley. It was unclear whether divergence of expression pattern or protein function accounted for the functionalization of Vrs1. Here, we conducted a comparative analysis of protein functions and gene expression between HvHox2 and Vrs1 to clarify the functionalization mechanism. We revealed that the transcriptional activation activity of HvHOX2 and VRS1 was conserved. In situ hybridization analysis showed that HvHox2 is localized in vascular bundles in developing spikes, whereas Vrs1 is expressed exclusively in the pistil, lemma, palea and lodicule of lateral spikelets. The transcript abundance of Vrs1 was > 10-fold greater than that of HvHox2 during the pistil developmental stage, suggesting that the essential function of Vrs1 is to inhibit gynoecial development. We demonstrated the quantitative function of Vrs1 using RNAi transgenic plants and Vrs1 expression variants. Expression analysis of six-rowed spike mutants that are nonallelic to vrs1 showed that Vrs1 expression was up-regulated by Vrs4, whereas HvHox2 expression was not. These data demonstrate that the divergence of gene expression pattern contributed to the neofunctionalization of Vrs1.
Collapse
Affiliation(s)
- Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Mohammad Pourkheirandish
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany
| | - Akemi Tagiri
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Takato Koba
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
24
|
Yuan Y, Song L, Li M, Liu G, Chu Y, Ma L, Zhou Y, Wang X, Gao W, Qin S, Yu J, Wang X, Huang L. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics 2012; 13:195. [PMID: 22607188 PMCID: PMC3443457 DOI: 10.1186/1471-2164-13-195] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022] Open
Abstract
Background Traditional Chinese medicine uses various herbs for the treatment of various diseases for thousands of years and it is now time to assess the characteristics and effectiveness of these medicinal plants based on modern genetic and molecular tools. The herb Flos Lonicerae Japonicae (FLJ or Lonicera japonica Thunb.) is used as an anti-inflammatory agent but the chemical quality of FLJ and its medicinal efficacy has not been consistent. Here, we analyzed the transcriptomes and metabolic pathways to evaluate the active medicinal compounds in FLJ and hope that this approach can be used for a variety of medicinal herbs in the future. Results We assess transcriptomic differences between FLJ and L. japonica Thunb. var. chinensis (Watts) (rFLJ), which may explain the variable medicinal effects. We acquired transcriptomic data (over 100 million reads) from the two herbs, using RNA-seq method and the Illumina GAII platform. The transcriptomic profiles contain over 6,000 expressed sequence tags (ESTs) for each of the three flower development stages from FLJ, as well as comparable amount of ESTs from the rFLJ flower bud. To elucidate enzymatic divergence on biosynthetic pathways between the two varieties, we correlated genes and their expression profiles to known metabolic activities involving the relevant active compounds, including phenolic acids, flavonoids, terpenoids, and fatty acids. We also analyzed the diversification of genes that process the active compounds to distinguish orthologs and paralogs together with the pathways concerning biosynthesis of phenolic acid and its connections with other related pathways. Conclusions Our study provides both an initial description of gene expression profiles in flowers of FLJ and its counterfeit rFLJ and the enzyme pool that can be used to evaluate FLJ quality. Detailed molecular-level analyses allow us to decipher the relationship between metabolic pathways involved in processing active medicinal compounds and gene expressions of their processing enzymes. Our evolutionary analysis revealed specific functional divergence of orthologs and paralogs, which lead to variation in gene functions that govern the profile of active compounds.
Collapse
Affiliation(s)
- Yuan Yuan
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. PLANT & CELL PHYSIOLOGY 2011; 52:738-49. [PMID: 21389058 PMCID: PMC3093126 DOI: 10.1093/pcp/pcr025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The process of crop domestication began 10,000 years ago in the transition of early humans from hunter/gatherers to pastoralists/farmers. Recent research has revealed the identity of some of the main genes responsible for domestication. Two of the major domestication events in barley were (i) the failure of the spike to disarticulate and (ii) the six-rowed spike. The former mutation increased grain yield by preventing grain loss after maturity, while the latter resulted in an up to 3-fold increase in yield potential. Here we provide an overview of the disarticulation systems and inflorescence characteristics, along with the genes underlying these traits, occurring in the Triticeae tribe.
Collapse
Affiliation(s)
- Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602 Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Björn Salomon
- Swedish University of Agricultural Sciences, Department of Plant Breeding and Biotechnology, PO Box 101, SE-23053 Alnarp, Sweden
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602 Japan
- *Corresponding author: E-mail, ; Fax, +81-29-838-7408
| |
Collapse
|
26
|
Arce AL, Raineri J, Capella M, Cabello JV, Chan RL. Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC PLANT BIOLOGY 2011; 11:42. [PMID: 21371298 PMCID: PMC3060862 DOI: 10.1186/1471-2229-11-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/03/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind in vitro the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an in silico analysis was performed. In addition, some of the results were also experimentally supported. RESULTS A phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein. CONCLUSIONS The bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
27
|
Yu C, Li Y, Li B, Liu X, Hao L, Chen J, Qian W, Li S, Wang G, Bai S, Ye H, Qin H, Shen Q, Chen L, Zhang A, Wang D. Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues. BMC PLANT BIOLOGY 2010; 10:214. [PMID: 20920368 PMCID: PMC3017832 DOI: 10.1186/1471-2229-10-214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/05/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Phosphomannomutase (PMM) is an essential enzyme in eukaryotes. However, little is known about PMM gene and function in crop plants. Here, we report molecular evolutionary and biochemical analysis of PMM genes in bread wheat and related Triticeae species. RESULTS Two sets of homologous PMM genes (TaPMM-1 and 2) were found in bread wheat, and two corresponding PMM genes were identified in the diploid progenitors of bread wheat and many other diploid Triticeae species. The duplication event yielding PMM-1 and 2 occurred before the radiation of diploid Triticeae genomes. The PMM gene family in wheat and relatives may evolve largely under purifying selection. Among the six TaPMM genes, the transcript levels of PMM-1 members were comparatively high and their recombinant proteins were all enzymatically active. However, PMM-2 homologs exhibited lower transcript levels, two of which were also inactive. TaPMM-A1, B1 and D1 were probably the main active isozymes in bread wheat tissues. The three isozymes differed from their counterparts in barley and Brachypodium distachyon in being more tolerant to elevated test temperatures. CONCLUSION Our work identified the genes encoding PMM isozymes in bread wheat and relatives, uncovered a unique PMM duplication event in diverse Triticeae species, and revealed the main active PMM isozymes in bread wheat tissues. The knowledge obtained here improves the understanding of PMM evolution in eukaryotic organisms, and may facilitate further investigations of PMM function in the temperature adaptability of bread wheat.
Collapse
Affiliation(s)
- Chunmei Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Life Science School, Nantong University, Nantong 226019, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bin Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lifang Hao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weiqiang Qian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiming Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanfeng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shiwei Bai
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qianhua Shen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liangbiao Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
28
|
Anatskaya OV, Vinogradov AE. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct Integr Genomics 2010; 10:433-46. [PMID: 20625914 DOI: 10.1007/s10142-010-0180-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 02/08/2023]
Abstract
Polyploid cells show great among-species and among-tissues diversity and relation to developmental mode, suggesting their importance in adaptive evolution and developmental programming. At the same time, excessive polyploidization is a hallmark of functional impairment, aging, growth disorders, and numerous pathologies including cancer and cardiac diseases. To shed light on this paradox and to find out how polyploidy contributes to organ functions, we review here the ploidy-associated shifts in activity of narrowly expressed (tissue specific) genes in human and mouse heart and liver, which have the reciprocal pattern of polyploidization. For this purpose, we use the modular biology approach and genome-scale cross-species comparison. It is evident from this review that heart and liver show similar traits in response to polyploidization. In both organs, polyploidy protects vitality (mainly due to the activation of sirtuin-mediated pathways), triggers the reserve adenosine-5'-triphosphate (ATP) production, and sustains tissue-specific functions by switching them to energy saving mode. In heart, the strongest effects consisted in the concerted up-regulation of contractile proteins and substitution of energy intensive proteins with energy economic ones. As a striking example, the energy intensive alpha myosin heavy chain (providing fast contraction) decreased its expression by a factor of 10, allowing a 270-fold increase of expression of beta myosin heavy chain (providing slow contraction), which has approximately threefold lower ATP-hydrolyzing activity. The liver showed the enhancement of immunity, reactive oxygen species and xenobiotic detoxication, and numerous metabolic adaptations to long-term energy depletion. Thus, somatic polyploidy may be an ingenious evolutionary instrument for fast adaptation to stress and new environments allowing trade-offs between high functional demand, stress, and energy depletion.
Collapse
Affiliation(s)
- Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Group of Bioinformatics and Functional Genomics, St Petersburg, Russia.
| | | |
Collapse
|
29
|
Namroud MC, Guillet-Claude C, Mackay J, Isabel N, Bousquet J. Molecular evolution of regulatory genes in spruces from different species and continents: heterogeneous patterns of linkage disequilibrium and selection but correlated recent demographic changes. J Mol Evol 2010; 70:371-86. [PMID: 20354847 PMCID: PMC2874021 DOI: 10.1007/s00239-010-9335-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 03/08/2010] [Indexed: 01/10/2023]
Abstract
Genes involved in transcription regulation may represent valuable targets in association genetics studies because of their key roles in plant development and potential selection at the molecular level. Selection and demographic signatures at the sequence level were investigated for five regulatory genes belonging to the knox-I family (KN1, KN2, KN3, KN4) and the HD-Zip III family (HB-3) in three Picea species affected by post-glacial recolonization in North America and Europe. To disentangle neutral and selective forces and estimate linkage disequilibrium (LD) on a gene basis, complete or nearly complete gene sequences were analysed. Nucleotide variation within species, haplotype structure, LD, and neutrality tests, in addition to coalescent simulations based on Tajima’s D and Fay and Wu’s H, were estimated. Nucleotide diversity was generally low in all species (average π = 0.002–0.003) and much heterogeneity was seen in LD and selection signatures among genes and species. Most of the genes harboured an excess of both rare and frequent alleles in the three species. Simulations showed that this excess was significantly higher than that expected under neutrality and a bottleneck during the Last Glacial Maximum followed by population expansion at the Pleistocene/Holocene boundary or shortly after best explains the correlated sequence patterns. These results indicate that despite recent large demographic changes in the three boreal species from two continents, species-specific selection signatures could still be detected from the analysis of nearly complete regulatory gene sequences. Such different signatures indicate differential subfunctionalization of gene family members in the three congeneric species.
Collapse
Affiliation(s)
- Marie-Claire Namroud
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|