1
|
Xiang Q, Wang J, Qin P, Adil B, Xu K, Gu Y, Yu X, Zhao K, Zhang X, Ma M, Chen Q, Chen X, Yan Y. Effect of common bean seed exudates on growth, lipopolysaccharide production, and lipopolysaccharide transport gene expression of Rhizobium anhuiense. Can J Microbiol 2019; 66:186-193. [PMID: 31751146 DOI: 10.1139/cjm-2019-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS) is essential for successful nodulation during the symbiosis of rhizobia and legumes. However, the detailed mechanism of the LPS in this process has not yet been clearly elucidated. In this study, the effects of common bean seed exudates on the growth, lipopolysaccharide production, and lipopolysaccharide transport genes expression (lpt) of Rhizobium anhuiense were investigated. Rhizobium anhuiense exposed to exudates showed changes in LPS electrophoretic profiles and content, whereby the LPS band was wider and the LPS content was higher in R. anhuiense treated with seed exudates. Exudates enhanced cell growth of R. anhuiense in a concentration-dependent manner; R. anhuiense exposed to higher doses of the exudate showed faster growth. Seven lpt genes of R. anhuiense were amplified and sequenced. Sequences of six lpt genes, except for lptE, were the same as those found in previously analyzed R. anhuiense strains, while lptE shared low sequence similarity with other strains. Exposure to the exudates strongly stimulated the expression of all lpt genes. Approximately 6.7- (lptG) to 301-fold (lptE) increases in the transcriptional levels were observed after only 15 min of exposure to exudates. These results indicate that seed exudates affect the LPS by making the cell wall structure more conducive to symbiotic nodulation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Jie Wang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Peng Qin
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Bilal Adil
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Kaiwei Xu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yanhong Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
2
|
Klonowska A, Melkonian R, Miché L, Tisseyre P, Moulin L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 2018; 19:105. [PMID: 29378510 PMCID: PMC5789663 DOI: 10.1186/s12864-018-4487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France
| | - Lucie Miché
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France.,Present address: Aix Marseille University, University of Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Lionel Moulin
- IRD, Cirad, University of Montpellier, IPME, Montpellier, France.
| |
Collapse
|
3
|
Baral B, Teixeira da Silva JA, Izaguirre-Mayoral ML. Early signaling, synthesis, transport and metabolism of ureides. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:97-109. [PMID: 26967003 DOI: 10.1016/j.jplph.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed.
Collapse
Affiliation(s)
- Bikash Baral
- Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
| | | | - Maria Luisa Izaguirre-Mayoral
- Biological Nitrogen Fixation Laboratory, Chemistry Department, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
4
|
López-Leal G, Tabche ML, Castillo-Ramírez S, Mendoza-Vargas A, Ramírez-Romero MA, Dávila G. RNA-Seq analysis of the multipartite genome of Rhizobium etli CE3 shows different replicon contributions under heat and saline shock. BMC Genomics 2014; 15:770. [PMID: 25201548 PMCID: PMC4167512 DOI: 10.1186/1471-2164-15-770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022] Open
Abstract
Background Regulation of transcription is essential for any organism and Rhizobium etli (a multi-replicon, nitrogen-fixing symbiotic bacterium) is no exception. This bacterium is commonly found in the rhizosphere (free-living) or inside of root-nodules of the common bean (Phaseolus vulgaris) in a symbiotic relationship. Abiotic stresses, such as high soil temperatures and salinity, compromise the genetic stability of R. etli and therefore its symbiotic interaction with P. vulgaris. However, it is still unclear which genes are up- or down-regulated to cope with these stress conditions. The aim of this study was to identify the genes and non-coding RNAs (ncRNAs) that are differentially expressed under heat and saline shock, as well as the promoter regions of the up-regulated loci. Results Analysing the heat and saline shock responses of R. etli CE3 through RNA-Seq, we identified 756 and 392 differentially expressed genes, respectively, and 106 were up-regulated under both conditions. Notably, the set of genes over-expressed under either condition was preferentially encoded on plasmids, although this observation was more significant for the heat shock response. In contrast, during either saline shock or heat shock, the down-regulated genes were principally chromosomally encoded. Our functional analysis shows that genes encoding chaperone proteins were up-regulated during the heat shock response, whereas genes involved in the metabolism of compatible solutes were up-regulated following saline shock. Furthermore, we identified thirteen and nine ncRNAs that were differentially expressed under heat and saline shock, respectively, as well as eleven ncRNAs that had not been previously identified. Finally, using an in silico analysis, we studied the promoter motifs in all of the non-coding regions associated with the genes and ncRNAs up-regulated under both conditions. Conclusions Our data suggest that the replicon contribution is different for different stress responses and that the heat shock response is more complex than the saline shock response. In general, this work exemplifies how strategies that not only consider differentially regulated genes but also regulatory elements of the stress response provide a more comprehensive view of bacterial gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-770) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gamaliel López-Leal
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos C,P 62210, México.
| | | | | | | | | | | |
Collapse
|
5
|
Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Funct Integr Genomics 2013; 13:275-83. [PMID: 23652766 DOI: 10.1007/s10142-013-0322-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/15/2013] [Accepted: 04/01/2013] [Indexed: 01/23/2023]
Abstract
Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study, Rhizobium sp. strain PRF 81 genes, belonging to the R. tropici group, were investigated: lpxA and lpxE, involved in biosynthesis and modification of the lipid-A anchor of lipopolysaccharide (LPS), and rkpI, involved in synthesis of a lipid carrier required for production of capsular polysaccharides (KPS). Reverse transcription quantitative PCR (RT-qPCR) analysis revealed, for the first time, that inducers released from common bean seeds strongly stimulated expression of all three SPS genes. When PRF 81 cells were grown for 48 h in the presence of seed exudates, twofold increases (p < 0.05) in the transcription levels of lpxE, lpxA, and rkpI genes were observed. However, higher increases (p < 0.05) in transcription rates, about 50-fold for lpxE and about 30-fold for lpxA and rkpI, were observed after only 5 min of incubation with common bean seed exudates. Evolutionary analyses revealed that lpxA and lpxE of PRF81 and of the type strain of R. tropici CIAT899(T)clustered with orthologous Rhizobium radiobacter and were more related to R. etli and Rhizobium leguminosarum, while rkpI was closer to the Sinorhizobium sp. group. Upregulation of lpxE, lpxA, and rkpI genes suggests that seed exudates can modulate production of SPS of Rhizobium sp. PRF81, leading to cell wall changes necessary for symbiosis establishment.
Collapse
|
6
|
Galisa PS, da Silva HAP, Macedo AVM, Reis VM, Vidal MS, Baldani JI, Simões-Araújo JL. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 2012; 91:1-7. [PMID: 22814372 DOI: 10.1016/j.mimet.2012.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/30/2022]
Abstract
Gluconacetobacter diazotrophicus strain PAL5 is a nitrogen-fixing endophytic bacterium originally isolated from sugarcane and later on was found to colonize other plants such as rice, elephant grass, sweet potato, coffee, and pineapple. Currently, G. diazotrophicus has been considered a plant growth-promoting bacterium due to its characteristics of biological nitrogen fixation, phytohormone secretion, solubilization of mineral nutrients and antagonism to phytopathogens. Reverse transcription followed by quantitative real-time polymerase chain reaction (RT-qPCR) is a method applied for the quantification of nucleic acids because of its specificity and high sensitivity. However, the decision about the reference genes suitable for data validation is still a major issue, especially for nitrogen-fixing bacteria. To evaluate and identify suitable reference genes for gene expression normalization in the diazotrophic G. diazotrophicus, mRNA levels of fourteen candidate genes (rpoA, rpoC, recA, rpoD, fabD, gmk, recF, rho, ldhD, gyrB, gyrBC, dnaG, lpxC and 23SrRNA) and three target genes (matE, omp16 and sucA) were quantified by RT-qPCR after growing the bacteria in different carbon sources. The geNorm and Normfinder programs were used to calculate the expression stabilities. The analyses identified three genes, rho, 23SrRNA and rpoD, whose expressions were stable throughout the growth of strain PAL5 in the chosen carbon sources. In conclusion our results strongly suggest that these three genes are suitable to be used as reference genes for real-time RT-qPCR data normalization in G. diazotrophicus.
Collapse
Affiliation(s)
- Péricles S Galisa
- Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Yang C, Hamel C, Vujanovic V, Gan Y. Nontarget effects of foliar fungicide application on the rhizosphere: diversity of nifH gene and nodulation in chickpea field. J Appl Microbiol 2012; 112:966-74. [PMID: 22335393 PMCID: PMC3489047 DOI: 10.1111/j.1365-2672.2012.05262.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aims This study explores nontarget effects of fungicide application on field-grown chickpea. Methods and Results Molecular methods were used to test the effects of foliar application of fungicide on the diversity and distribution of nifH genes associated with two chickpea cultivars and their nodulation. Treatments were replicated four times in a split-plot design in the field, in 2008 and 2009. Chemical disease control did not change the richness of the nifH genes associated with chickpea, but selected different dominant nifH gene sequences in 2008, as revealed by correspondence analysis. Disease control strategies had no significant effect on disease severity or nifH gene distribution in 2009. Dry weather conditions rather than disease restricted plant growth that year, suggesting that reduced infection rather than the fungicide is the factor modifying the distribution of nifH gene in chickpea rhizosphere. Reduced nodule size and enhanced N2-fixation in protected plants indicate that disease control affects plant physiology, which may in turn influence rhizosphere bacteria. The genotypes of chickpea also affected the diversity of the nifH gene in the rhizosphere, illustrating the importance of plant selective effects on bacterial communities. Conclusions We conclude that the chemical disease control affects nodulation and the diversity of nifH gene in chickpea rhizosphere, by modifying host plant physiology. A direct effect of fungicide on the bacteria cannot be ruled out, however, as residual amounts of fungicide were found to accumulate in the rhizosphere soil of protected plants. Significance and Impact of the Study Systemic nontarget effect of phytoprotection on nifH gene diversity in chickpea rhizosphere is reported for the first time. This result suggests the possibility of manipulating associative biological nitrogen fixation in the field.
Collapse
Affiliation(s)
- C Yang
- Semiarid Prairie Agricultural Research Centre, AAFC, Swift Current, SK, Canada.
| | | | | | | |
Collapse
|
8
|
Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 2012; 3:138-66. [PMID: 24704847 PMCID: PMC3899959 DOI: 10.3390/genes3010138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022] Open
Abstract
The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | | | - Matthew Bellgard
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|