1
|
Chen W, Ma Q, Li Y, Wei L, Zhang Z, Khan A, Khan MZ, Wang C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025; 15:85. [PMID: 39858479 PMCID: PMC11763988 DOI: 10.3390/biom15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity. Studies indicate that butyrate supports gut barrier integrity, reduces inflammation, and optimizes feed efficiency, especially during the critical weaning and post-weaning periods in calves, piglets, and lambs. Supplementation with butyrate in livestock has been shown to increase average daily gain (ADG), improve gut microbiota balance, promote growth, enhance gut health, boost antioxidant capacity, and reduce diarrhea. Additionally, butyrate plays a role in the epigenetic regulation of gene expression through histone acetylation, influencing tissue development and immune modulation. Its anti-inflammatory and antioxidant effects have been demonstrated across various species, positioning butyrate as a potential therapeutic agent in animal nutrition. This review suggests that optimizing butyrate supplementation strategies to meet the specific needs of each species may yield additional benefits, establishing butyrate as an important dietary additive for enhancing growth performance and health in livestock.
Collapse
Affiliation(s)
- Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lin Wei
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Saxton MN, Morisaki T, Krapf D, Kimura H, Stasevich TJ. Live-cell imaging uncovers the relationship between histone acetylation, transcription initiation, and nucleosome mobility. SCIENCE ADVANCES 2023; 9:eadh4819. [PMID: 37792937 PMCID: PMC10550241 DOI: 10.1126/sciadv.adh4819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Histone acetylation and RNA polymerase II phosphorylation are associated with transcriptionally active chromatin, but their spatiotemporal relationship in live cells remains poorly understood. To address this problem, we combine Fab-based labeling of endogenous protein modifications with single-molecule tracking to quantify the dynamics of chromatin enriched with histone H3 lysine-27 acetylation (H3K27ac) and RNA polymerase II serine-5 phosphorylation (RNAP2-Ser5ph). Our analysis reveals that chromatin enriched with these two modifications is generally separate. In these separated sites, we show that the two modifications are inversely correlated with one another on the minutes time scale and that single nucleosomes within each region display distinct and opposing dynamics on the subsecond time scale. While nucleosomes diffuse ~15% faster in chromatin enriched with H3K27ac, they diffuse ~15% slower in chromatin enriched with RNAP2-Ser5ph. These results argue that high levels of H3K27ac and RNAP2-Ser5ph are not often present together at the same place and time, but rather each marks distinct transcriptionally poised or active sites, respectively.
Collapse
Affiliation(s)
- Matthew N. Saxton
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hiroshi Kimura
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Kang X, Li C, Liu S, Baldwin RL, Liu GE, Li CJ. Genome-Wide Acetylation Modification of H3K27ac in Bovine Rumen Cell Following Butyrate Exposure. Biomolecules 2023; 13:1137. [PMID: 37509173 PMCID: PMC10377523 DOI: 10.3390/biom13071137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Rectal administration of butyrate ameliorates pulmonary fibrosis in mice through induction of hepatocyte growth factor in the colon via the HDAC-PPARγ pathway. Life Sci 2022; 309:120972. [PMID: 36116532 DOI: 10.1016/j.lfs.2022.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Butyrate, given by oral administration or in drinking water, has been shown to improve experimental pulmonary fibrosis (PF) in mice despite of very low bioavailability. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-PF mechanism in view of the intestinal expression of anti-PF factors. In bleomycin-induced PF in mice, rectal administration of butyrate (500 mg/kg) exhibited a significant anti-PF effect, with a maximum plasma concentration largely lower than the minimum effective concentration (1 mM) at which butyrate inhibited the expression of pro-inflammatory factors by lung epithelial cells and the production of extracellular matrix by lung fibroblasts. The rectal administration of butyrate significantly upregulated the mRNA expression of hepatocyte growth factor (HGF) in the colons of PF mice, but showed no significant effect on the mRNA expression of HGF in the small intestines, lungs and livers. In colon epithelial cells, the monocarboxylate transporter inhibitor α-cyano-4-hydroxycinnamic acid (CHC) abrogated butyrate-induced expression of HGF, indicating that butyrate functions through entering into cells. Butyrate showed no significant effect on the histone acetylation in the promoter region of HGF, suggesting that it promotes HGF expression not by directly affecting the histone deacetylation of HGF but by other pathways. GW9662, the inhibitor of PPARγ, significantly attenuated the effect of butyrate to promote the mRNA expression of HGF. Butyrate was able to enhance the acetylation of PPARγ, and a targeted mutation of lysine at the position 240 (K240) of PPARγ markedly diminished the induction of butyrate on HGF expression, suggesting that butyrate promoted HGF expression in colon epithelial cells by upregulating PPARγ K240 acetylation. In summary, rectal administration of butyrate promotes the expression of HGF in colonic epithelial cells through upregulating PPARγ acetylation via inhibition of HDAC activity. The findings of the present study provide a reasonable explanation for the anti-PF action mode of butyrate based on the 'lung-gut axis', and found that intestine-derived butyrate and HGF may be involved in the modulation of the occurrence and progression of PF.
Collapse
|
5
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
6
|
Xu D, Fang H, Liu J, Chen Y, Gu Y, Sun G, Xia B. ChIP-seq assay revealed histone modification H3K9ac involved in heat shock response of the sea cucumber Apostichopus japonicus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153168. [PMID: 35051475 DOI: 10.1016/j.scitotenv.2022.153168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Heat stress poses an increasing threat for the marine invertebrate Apostichopus japonicus. Histone lysine acetylation is a central chromatin modification for epigenetic regulation of gene expression during stress response. In this study, a genome-wide characterization for acetylated lysine 9 on histone H3 (H3K9ac) binding regions in normal temperature (18 °C) and heat-stress conditions (26 °C) via ChIP-seq were carried out. The results that revealed H3K9ac was an extensive epigenetic modulation in A. japonicus. The GO terms "regulation of transcription, DNA-templated" and "transcription coactivator activity" were significantly enriched in both groups. Particularly, various transcriptional factors (TFs) families showed notable modification of H3K9ac. Differentially acetylated regions (DARs) with H3K9ac modification under heat stress were identified with 24 hyperacetylated and 23 hypoacetylated peaks, respectively. We further examined the transcriptional expression for 13 genes with dysregulated H3K9ac level in the promoter regions by qRT-PCR. Combined H3K9ac ChIP-seq characteristics with the transcriptional expression, 5 up-up genes (ZCCHC3, RPA70, MTRR, β-Gal and PHTF2) and 2 down-down genes (PRPF39 and BSL78_10147) were identified. Surprisingly, the increasing mRNA expression of NECAP1 under heat stress was negatively related to the decreasing H3K9ac level in its promoter region. Our research is the first genome-wide characterization for the epigenetic modification H3K9ac in A. japonicus, and will help to advance the understanding of the roles of H3K9ac in transcriptional regulation under heat-stress condition.
Collapse
Affiliation(s)
- Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Huahua Fang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong 264025, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
7
|
Lin S, Fang L, Kang X, Liu S, Liu M, Connor EE, Baldwin RL, Liu G, Li CJ. Establishment and transcriptomic analyses of a cattle rumen epithelial primary cells (REPC) culture by bulk and single-cell RNA sequencing to elucidate interactions of butyrate and rumen development. Heliyon 2020; 6:e04112. [PMID: 32551379 PMCID: PMC7287249 DOI: 10.1016/j.heliyon.2020.e04112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022] Open
Abstract
As a critical and high-value tool to study the development of rumen, we established a stable rumen epithelial primary cell (REPC) culture from a two-week-old Holstein bull calf rumen epithelial tissue. The transcriptomic profiling of the REPC and the direct effects of butyrate on gene expression were assessed. Correlated gene networks elucidated the putative roles and mechanisms of butyrate action in rumen epithelial development. The top networks perturbed by butyrate were associated with epithelial tissue development. Additionally, two critical upstream regulators, E2F1 and TGFB1, were identified to play critical roles in the differentiation, development, and growth of epithelial cells. Significant expression changes of upstream regulators and transcription factors provided further evidence in support that butyrate plays a specific and central role in regulating genomic and epigenomic activities influencing rumen development. This work is the essential component to obtain a complete global landscape of regulatory elements in cattle and to explore the dynamics of chromatin states in rumen epithelial cells induced by butyrate at early developmental stages.
Collapse
Affiliation(s)
- Shudai Lin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA.,College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Erin E Connor
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - George Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
8
|
Guo W, Liu J, Sun J, Gong Q, Ma H, Kan X, Cao Y, Wang J, Fu S. Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands. Free Radic Biol Med 2020; 152:728-742. [PMID: 31972340 DOI: 10.1016/j.freeradbiomed.2020.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress consistently affects lactation length and quality in dairy cows. Oxidative stress in the mammary gland of high-yielding dairy cows is a serious problem. Therefore, we studied the role of butyrate in dairy cow oxidative stress and further elucidated the mechanism of the antioxidative action of mammary epithelial cells in dairy cows. Oxidative stress and activated GPR109A were present in high-yielding dairy cows. Then, bovine mammary epithelial cells (BMECs) were isolated, and oxidative stress-related protein expression was measured, confirming that sodium butyrate (NaB) exerted antioxidant effects through GPR109A, NRF2 and H3K9/14 acetylation. To further study the antioxidative mechanism of butyrate in dairy cows, we also confirmed that butyrate promoted NRF2 nuclear accumulation and H3K9/14 acetylation through the AMPK signaling pathway by western blotting. Additionally, we preliminarily clarified the interaction between NRF2 and H3K9/14 acetylation by Co-IP and ChIP. Butyrate activated the AMPK signaling pathway through GPR109A to promote NRF2 nuclear accumulation and H3K9/14 acetylation, subsequently exerting antioxidant effects through the synergistic functions of these two processes. Then, we studied the effect of butyrate on oxidative stress in dairy cows in vivo, and the results were consistent with those in vitro. Therefore, butyrate played an antioxidant and antiapoptotic role through the GPR109A/AMPK/NRF2 signaling pathway, while H3K9/14 acetylation could promote NRF2 transcription and enhance the antioxidant capacity of BMECs.
Collapse
Affiliation(s)
- Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jingxuan Sun
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qian Gong
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - He Ma
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xingchi Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Kang X, Liu S, Fang L, Lin S, Liu M, Baldwin RL, Liu GE, Li CJ. Data of epigenomic profiling of histone marks and CTCF binding sites in bovine rumen epithelial primary cells before and after butyrate treatment. Data Brief 2020; 28:104983. [PMID: 31890818 PMCID: PMC6933192 DOI: 10.1016/j.dib.2019.104983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022] Open
Abstract
Discovering the regulatory elements of genomes in livestock is essential for our understanding of livestock's basic biology and genomic improvement programs. Previous studies showed butyrate mediates epigenetic modifications of bovine cells. To explore the bovine functional genomic elements and the vital roles of butyrate on the epigenetic modifications of bovine genomic activities, we generated and deposited the genome-wide datasets of transcript factor binding sites of CTCF (CCCTC-binding factor, insulator binding protein), histone methylation (H3H27me3, H3K4me1, H3K4me3) and histone acetylation (H3K27ac) from bovine rumen epithelial primary cells (REPC) before and after butyrate treatment (doi: 10.1186/s12915-019-0687-8 [1]). In this dataset, we provide detailed information on experiment design, data generation, data quality assessment and guideline for data re-use. Our data will be a valuable resource for systematic annotation of regulatory elements in cattle and the functionally biological role of butyrate in the epigenetic modifications in bovine, as well as for the nutritional regulation and metabolism study of farm animal and human.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.,College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingzhao Fang
- University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Shudai Lin
- College of Animal Science of South China Agricultural University, Guangzhou 510642, China
| | - Mei Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling 712100, China
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
Fang L, Liu S, Liu M, Kang X, Lin S, Li B, Connor EE, Baldwin RL, Tenesa A, Ma L, Liu GE, Li CJ. Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol 2019; 17:68. [PMID: 31419979 PMCID: PMC6698049 DOI: 10.1186/s12915-019-0687-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator-butyrate. RESULTS We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. CONCLUSION Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes.
Collapse
Affiliation(s)
- Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Shudai Lin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642 China
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Albert Tenesa
- The Roslin Institute, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
11
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
12
|
Baldwin RL, Li RW, Jia Y, Li CJ. Transcriptomic Impacts of Rumen Epithelium Induced by Butyrate Infusion in Dairy Cattle in Dry Period. GENE REGULATION AND SYSTEMS BIOLOGY 2018; 12:1177625018774798. [PMID: 29785087 PMCID: PMC5954180 DOI: 10.1177/1177625018774798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.
Collapse
Affiliation(s)
- Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Yankai Jia
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| |
Collapse
|
13
|
Huang Y, Gao S, Chen J, Albrecht E, Zhao R, Yang X. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget 2017; 8:13073-13084. [PMID: 28055958 PMCID: PMC5355078 DOI: 10.18632/oncotarget.14375] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal nutrition is important for the risk of the offspring to develop insulin resistance and adiposity later in life. The study was undertaken to determine effects of maternal butyrate supplementation on lipid metabolism and insulin sensitivity in the offspring skeletal muscle. The offspring of rats, fed a control diet or a butyrate diet (1% sodium butyrate) throughout gestation and lactation, was studied at weaning and at 60 days of age. The offspring of dams fed a butyrate diet had higher HOMA-insulin resistance and impaired glucose tolerance. This was associated with elevated mRNA and protein expressions of lipogenic genes and decreased amounts of lipolytic enzyme. Simultaneously, enhanced acetylation of histone H3 lysine 9 and histone H3 lysine 27 modification on the lipogenic genes in skeletal muscle of adult offspring was observed. Higher concentration of serum insulin and intramuscular triglyceride in skeletal muscle of offspring from the butyrate group at weaning were accompanied by increasing levels of lipogenic genes and enrichment of acetylation of histone H3 lysine 27. Maternal butyrate supplementation leads to insulin resistance and ectopic lipid accumulation in skeletal muscle of offspring, indicating the importance of short chain fatty acids in the maternal diet on lipid metabolism.
Collapse
Affiliation(s)
- Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shixing Gao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jinglong Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
14
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
15
|
The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 2016; 16:465-80. [DOI: 10.1007/s10142-016-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
|
16
|
Wu W, Han J, Cao R, Zhang J, Li B, Liu Z, Liu K, Li Q, Pan Z, Chen J, Liu H. Sequence and regulation of the porcine FSHR gene promoter. Anim Reprod Sci 2015; 154:95-104. [DOI: 10.1016/j.anireprosci.2014.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 01/17/2023]
|
17
|
Lopez-Atalaya JP, Barco A. Can changes in histone acetylation contribute to memory formation? Trends Genet 2014; 30:529-39. [PMID: 25269450 DOI: 10.1016/j.tig.2014.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/31/2023]
Abstract
Neuronal histone acetylation has been postulated to be a mnemonic substrate and a target for memory enhancers and neuropsychiatric drugs. Here we critically evaluate this view and examine the apparent conflict between the proposed instructive role for histone acetylation in memory-related transcription and the insights derived from genomic and genetic studies in other systems. We next discuss the suitability of activity-dependent neuronal histone acetylation as a mnemonic substrate and debate alternative interpretations of current evidence. We believe that further progress in our understanding of the role of histone acetylation and other epigenetic modifications in neuronal plasticity, memory, and neuropsychiatric disorders requires a clear discrimination between cause and effect so that novel epigenetics-related processes can be distinguished from classical transcriptional mechanisms.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
18
|
Shin JH, Xu L, Li RW, Gao Y, Bickhart D, Liu GE, Baldwin R, Li CJ. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells. Anim Genet 2014; 45 Suppl 1:40-50. [PMID: 24990294 DOI: 10.1111/age.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3 and H4 and their variants in bovine cells at the whole-genome scale. A total of 10 variants of histone H3 and H4 modifications were mapped at the whole-genome scale (acetyl-H3K18-ChIP-seq, trimethy-H3K9, histone H4 ChIP-seq, acetyl-H4K5 ChIP-seq, acetyl-H4K12 ChIP-seq, acetyl-H4K16 ChIP-seq, histone H3 ChIP-seq, acetyl H3H9 ChIP-seq, acetyl H3K27 ChIP-seq and tetra-acetyl H4 ChIP-seq). Integrated experiential data and an analysis of histone and histone modification at a single base resolution across the entire genome are presented. We analyzed the enriched binding regions in the proximal promoter (within 5 kb upstream or at the 5'-untranslated region from the transcriptional start site (TSS)), and the exon, intron and intergenic regions (defined by regions 25 kb upstream and 10 kb downstream from the TSS). A de novo search for the binding motif of the 10 ChIP-seq datasets discovered numerous motifs from each of the ChIP-seq datasets. These consensus sequences indicated that histone modification at different locations changes the histone H3 and H4 binding preferences. Nevertheless, a high degree of conservation in histone binding also was presented in these motifs. This first extensive epigenomic landscape mapping in bovine cells offers a new framework and a great resource for testing the role of epigenomes in cell function and transcriptomic regulation.
Collapse
Affiliation(s)
- J H Shin
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 102, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Doherty R, O' Farrelly C, Meade KG. Comparative epigenetics: relevance to the regulation of production and health traits in cattle. Anim Genet 2014; 45 Suppl 1:3-14. [PMID: 24984755 DOI: 10.1111/age.12140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way.
Collapse
Affiliation(s)
- Rachael Doherty
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland; Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
20
|
Ha SD, Han CY, Reid C, Kim SO. HDAC8-mediated epigenetic reprogramming plays a key role in resistance to anthrax lethal toxin-induced pyroptosis in macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:1333-43. [PMID: 24973453 DOI: 10.4049/jimmunol.1400420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophages pre-exposed to a sublethal dose of anthrax lethal toxin (LeTx) are refractory to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). A small population of TIR cells (2-4%) retains TIR characteristics for up to 5-6 wk. Through studying these long-term TIR cells, we found that a high level of histone deacetylase (HDAC)8 expression was crucial for TIR. Knocking down or inhibition of HDAC8 by small interfering RNAs or the HDAC8-specific inhibitor PCI-34051, respectively, induced expression of the mitochondrial death genes Bcl2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), BNIP3-like and metastatic lymph node 64, and resensitized TIR cells to LeTx. Among multiple histone acetylations, histone H3 lysine 27 (H3K27) acetylation was most significantly decreased in TIR cells in an HDAC8-dependent manner, and the association of H3K27 acetylation with the genomic regions of BNIP3 and metastatic lymph node 64, where HDAC8 was recruited to, was diminished in TIR cells. Furthermore, overexpression of HDAC8 or knocking down the histone acetyltransferase CREB-binding protein/p300, known to target H3K27, rendered wild-type cells resistant to LeTx. As in RAW264.7 cells, primary bone marrow-derived macrophages exposed to a sublethal dose of LeTx were resistant to LeTx in an HDAC8-dependent manner. Collectively, this study demonstrates that epigenetic reprogramming mediated by HDAC8 plays a key role in determining the susceptibility of LeTx-induced pyroptosis in macrophages.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chae Young Han
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chantelle Reid
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
21
|
Sui WG, He HY, Yan Q, Chen JJ, Zhang RH, Dai Y. ChIP-seq analysis of histone H3K9 trimethylation in peripheral blood mononuclear cells of membranous nephropathy patients. ACTA ACUST UNITED AC 2013; 47:42-9. [PMID: 24345872 PMCID: PMC3932972 DOI: 10.1590/1414-431x20132809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 08/27/2013] [Indexed: 12/19/2022]
Abstract
Membranous nephropathy (MN), characterized by the presence of diffuse thickening of
the glomerular basement membrane and subepithelial in situ immune
complex disposition, is the most common cause of idiopathic nephrotic syndrome in
adults, with an incidence of 5-10 per million per year. A number of studies have
confirmed the relevance of several experimental insights to the pathogenesis of human
MN, but the specific biomarkers of MN have not been fully elucidated. As a result,
our knowledge of the alterations in histone methylation in MN is unclear. We used
chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to
analyze the variations in a methylated histone (H3K9me3) in peripheral blood
mononuclear cells from 10 MN patients and 10 healthy subjects. There were 108 genes
with significantly different expression in the MN patients compared with the normal
controls. In MN patients, significantly increased activity was seen in 75 H3K9me3
genes, and decreased activity was seen in 33, compared with healthy subjects. Five
positive genes, DiGeorge syndrome critical region gene 6 (DGCR6), sorting nexin 16
(SNX16), contactin 4 (CNTN4), baculoviral IAP repeat containing 3 (BIRC3), and
baculoviral IAP repeat containing 2 (BIRC2), were selected and quantified. There were
alterations of H3K9me3 in MN patients. These may be candidates to help explain
pathogenesis in MN patients. Such novel findings show that H3K9me3 may be a potential
biomarker or promising target for epigenetic-based MN therapies.
Collapse
Affiliation(s)
- W G Sui
- 181st Hospital, Nephrology Department, Guangxi Key Laboratory of Metabolic Diseases Research, GuilinGuangxi, China, Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department, 181st Hospital, Guilin, Guangxi, China
| | - H Y He
- Guangxi Normal University, The Life Science College, GuilinGuangxi, China, The Life Science College, Guangxi Normal University, Guilin, Guangxi, China
| | - Q Yan
- 181st Hospital, Nephrology Department, Guangxi Key Laboratory of Metabolic Diseases Research, GuilinGuangxi, China, Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department, 181st Hospital, Guilin, Guangxi, China
| | - J J Chen
- 181st Hospital, Nephrology Department, Guangxi Key Laboratory of Metabolic Diseases Research, GuilinGuangxi, China, Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department, 181st Hospital, Guilin, Guangxi, China
| | - R H Zhang
- Guangxi Normal University, The Life Science College, GuilinGuangxi, China, The Life Science College, Guangxi Normal University, Guilin, Guangxi, China
| | - Y Dai
- Jinan University, Shenzhen People's Hospital, The Second Clinical Medical College, Clinical Medical Research Center, ShenzhenGuangdong, China, Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Du Z, Li H, Wei Q, Zhao X, Wang C, Zhu Q, Yi X, Xu W, Liu XS, Jin W, Su Z. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. MOLECULAR PLANT 2013; 6:1463-72. [PMID: 23355544 PMCID: PMC3842134 DOI: 10.1093/mp/sst018] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/20/2013] [Indexed: 05/19/2023]
Abstract
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.
Collapse
Affiliation(s)
- Zhou Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- These authors contributed equally to the article
| | - Hui Li
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- These authors contributed equally to the article
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- These authors contributed equally to the article
| | - Xin Zhao
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qilin Zhu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xin Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Ave, Boston, MA 02215, USA
- To whom correspondence should be addressed. Z.S. E-mail , tel. +86-10-62731380, fax +86-10-62731380. W.J. E-mail , tel. +86-10-62734909, fax +86-10-62733808. X.S.L. E-mail , tel. +1-617-632-2472
| | - Weiwei Jin
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- To whom correspondence should be addressed. Z.S. E-mail , tel. +86-10-62731380, fax +86-10-62731380. W.J. E-mail , tel. +86-10-62734909, fax +86-10-62733808. X.S.L. E-mail , tel. +1-617-632-2472
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- To whom correspondence should be addressed. Z.S. E-mail , tel. +86-10-62731380, fax +86-10-62731380. W.J. E-mail , tel. +86-10-62734909, fax +86-10-62733808. X.S.L. E-mail , tel. +1-617-632-2472
| |
Collapse
|
23
|
Sui W, He H, Yan Q, Chen J, Zhang R, Dai Y. Genome-wide analysis of histone H3 lysine9 trimethylation by ChIP-seq in peripheral blood mononuclear cells of uremia patients. Hemodial Int 2013; 17:493-501. [PMID: 23621585 DOI: 10.1111/hdi.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/25/2013] [Indexed: 12/13/2022]
Abstract
Treatment of uremia is now dominated by dialysis, in some cases, patients are treated with dialysis for decades, but overall outcomes are disappointing. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of uremia, but the specific biomarkers of uremia have not been fully elucidated. Studies of the epigenome have attracted little interest in nephrology, especially in uremia. However, to date, our knowledge about the alterations in histone methylation in uremia is unclear. H3K9me3 variations were analyzed in peripheral blood mononuclear cells from 10 uremia patients and 10 healthy subjects, using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). There were 96 genes with significantly different expressions in the uremia patients compared with the normal controls. Forty-two increased and 54 decreased H3K9me3 genes displaying significant differences were found in uremia patients compared with healthy subjects. Five positive genes, ras-related C3 botulinum toxin substrate 3 (RAC3), polycomb group ring finger 2 (PCGF2), myosin heavy chain 3 (MYH3), noggin (NOG), serpin peptidase inhibitor 8 (SERPINB8), were selected and quantified. Our studies indicate that there are significant alterations of H3K9me3 in uremia patients; these significant H3K9me3 candidates may help to explain the immunological disturbance and high cardiovascular complications in uremia patients. Such novel findings show the significance of H3K9me3 as a potential biomarker or promising target for epigenetic-based uremia therapies.
Collapse
Affiliation(s)
- Weiguo Sui
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of 181st Hospital, Guilin, Guangxi, China
| | | | | | | | | | | |
Collapse
|
24
|
Shin JH, Li RW, Gao Y, Bickhart DM, Liu GE, Li W, Wu S, Li CJ. Butyrate Induced IGF2 Activation Correlated with Distinct Chromatin Signatures Due to Histone Modification. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:57-70. [PMID: 23645985 PMCID: PMC3623616 DOI: 10.4137/grsb.s11243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism of butyrate-induced loss of imprinting (LOI) of IGF2 and regulation of gene expression by histone modification.
Collapse
Affiliation(s)
- Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mátis G, Neogrády Z, Csikó G, Kulcsár A, Kenéz A, Huber K. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken - a randomized controlled trial. Nutr Metab (Lond) 2013; 10:12. [PMID: 23336999 PMCID: PMC3561214 DOI: 10.1186/1743-7075-10-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo hyperacetylation of the hepatic core histones, providing modifications in the epigenetic regulation of cell function. However, these changes did not result in alteration of drug-metabolizing hepatic CYP2H and CYP3A37 enzymes, so there might be no relevant pharmacoepigenetic influences of oral application of butyrate under physiological conditions.
Collapse
Affiliation(s)
- Gábor Mátis
- Department of Physiology, University of Veterinary Medicine, Bischofsholer Damm 15/102, D-30173, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Loor JJ, Bionaz M, Drackley JK. Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annu Rev Anim Biosci 2013; 1:365-92. [DOI: 10.1146/annurev-animal-031412-103728] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan J. Loor
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331;
| | - James K. Drackley
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| |
Collapse
|
27
|
Abstract
Long-term memory formation requires transcription and protein synthesis. Over the past few decades, a great amount of knowledge has been gained regarding the molecular players that regulate the transcriptional program linked to memory consolidation. Epigenetic mechanisms have been shown to be essential for the regulation of neuronal gene expression, and histone acetylation has been one of the most studied and best characterized. In this review, we summarize the lines of evidence that have shown the relevance of histone acetylation in memory in both physiological and pathological conditions. Great advances have been made in identifying the writers and erasers of histone acetylation marks during learning. However, the identities of the upstream regulators and downstream targets that mediate the effect of changes in histone acetylation during memory consolidation remain restricted to a handful of molecules. We outline a general model by which corepressors and coactivators regulate histone acetylation during memory storage and discuss how the recent advances in high-throughput sequencing have the potential to radically change our understanding of how epigenetic control operates in the brain.
Collapse
Affiliation(s)
- Lucia Peixoto
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Soliman ML, Puig KL, Combs CK, Rosenberger TA. Acetate reduces microglia inflammatory signaling in vitro. J Neurochem 2012; 123:555-67. [PMID: 22924711 DOI: 10.1111/j.1471-4159.2012.07955.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/21/2022]
Abstract
Acetate supplementation increases brain acetyl-CoA and histone acetylation and reduces lipopolysaccharide (LPS)-induced neuroglial activation and interleukin (IL)-1β expression in vivo. To determine how acetate imparts these properties, we tested the hypothesis that acetate metabolism reduces inflammatory signaling in microglia. To test this, we measured the effect acetate treatment had on cytokine expression, mitogen-activated protein kinase (MAPK) signaling, histone H3 at lysine 9 acetylation, and alterations of nuclear factor-kappa B (NF-κB) in primary and BV-2 cultured microglia. We found that treatment induced H3K9 hyperacetylation and reversed LPS-induced H3K9 hypoacetylation similar to that found in vivo. LPS also increased IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) mRNA and protein, whereas treatment returned the protein to control levels and only partially attenuated IL-6 mRNA. In contrast, treatment increased mRNA levels of transforming growth factor-β1 (TGF-β1) and both IL-4 mRNA and protein. LPS increased p38 MAPK and JNK phosphorylation at 4 and 2-4 h, respectively, whereas treatment reduced p38 MAPK and JNK phosphorylation only at 2 h. In addition, treatment reversed the LPS-induced elevation of NF-κB p65 protein and phosphorylation at serine 468 and induced acetylation at lysine 310. These data suggest that acetate metabolism reduces inflammatory signaling and alters histone and non-histone protein acetylation.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | | | | | | |
Collapse
|
29
|
Wu S, Li C, Huang W, Li W, Li RW. Alternative splicing regulated by butyrate in bovine epithelial cells. PLoS One 2012; 7:e39182. [PMID: 22720068 PMCID: PMC3375255 DOI: 10.1371/journal.pone.0039182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/21/2012] [Indexed: 12/02/2022] Open
Abstract
As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT) and control (CT) groups. 201,326 potential splicing junctions detected were supported by ≥3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG) while ∼3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001) at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor) and Exon#11 (Acceptor) in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC inhibitors.
Collapse
Affiliation(s)
- Sitao Wu
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Congjun Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Wen Huang
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Weizhong Li
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Robert W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wu S, Li RW, Li W, Li CJ. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells. PLoS One 2012; 7:e36940. [PMID: 22615851 PMCID: PMC3352864 DOI: 10.1371/journal.pone.0036940] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells.
Collapse
Affiliation(s)
- Sitao Wu
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Robert W. Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Weizhong Li
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Cong-jun Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|