1
|
Warrier A, Satyamoorthy K, Murali TS. Naringenin as a Potent Natural Biofilm Inhibitor of Pseudomonas aeruginosa in Diabetic Foot Ulcers Through lasR Competitive Inhibition. Curr Microbiol 2025; 82:305. [PMID: 40413369 DOI: 10.1007/s00284-025-04283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Chronic non-healing foot ulcers are a major complication in diabetic patients, contributing to significant morbidity and mortality. Microorganisms in these wounds form biofilms, conferring greater virulence and enhanced protection from antibiotics. Hence, we examined naringenin, and other natural compounds like chlorofuranone, 4-nitropyridine N-oxide, and quercetin as a positive control against the major pathogenic organism that forms biofilm in foot ulcers. Here, we focused on Pseudomonas aeruginosa, which produces high levels of biofilm in diabetic foot ulcers. Naringenin (47.10 µg/ml for PA21; 124.7 µg/ml for PA333) and other natural compounds were tested for their ability to inhibit biofilm formation and virulence in vitro, and their effect on biofilm-associated gene expression was studied. The biofilm inhibitory mechanism of naringenin was elucidated using in silico analysis and in vitro reporter gene assay. In vitro biofilm assays, confocal and scanning electron microscopy showed that natural compounds effectively inhibited biofilm, without causing cell death. Treatment with these compounds significantly altered the expression of genes associated with quorum sensing in P. aeruginosa, such as lasR, pslA, algA, gacS, and pelA. Naringenin decreased the production of major virulence factors in P. aeruginosa. Molecular docking showed that naringenin exhibited the strongest binding affinity to LasR, and the same was validated by reporter gene assay using plasmid pSB1142 indicating its role as a competitive inhibitor in the las quorum sensing system in P. aeruginosa. The findings of this study could be extrapolated to in vivo diabetic wound infection models to help optimize the use of naringenin in effective biofilm control for better wound management in diabetic patients.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
El-Sayed SE, Abdelaziz NA, Alshahrani MY, El-Housseiny GS, Aboshanab KM. Biologically active metabolites of Alcaligenes faecalis: diversity, statistical optimization, and future perspectives. Future Sci OA 2024; 10:2430452. [PMID: 39600180 PMCID: PMC11789743 DOI: 10.1080/20565623.2024.2430452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Alcaligenes faecalis is a Gram-negative, rod-shaped bacterium that is common in the environment and has been reported to have various bioactive metabolites of industrial potential applications, including antifungal, antibacterial, antimycobacterial, antiparasitic, anticancer, antioxidant activities. In this review, we highlighted and discussed the respective metabolites, pointing out their chemical diversities, purification, current challenges, and future directions. A. faecalis has an industrial role in biodegradation, biosurfactants, and different enzyme production. In this review, the up-to-date various Response Surface Methodology methods (RSM) that can be employed for statistical optimization of the bioactive secondary metabolites have been discussed and highlighted, pointing out the optimal use of each method, current challenges, and future directions.
Collapse
Affiliation(s)
- Sayed E. El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Neveen A. Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Selangor, Malaysia
| |
Collapse
|
3
|
Eltokhy MA, Saad BT, Eltayeb WN, Alshahrani MY, Radwan SMR, Aboshanab KM, Ashour MSE. Metagenomic nanopore sequencing for exploring the nature of antimicrobial metabolites of Bacillus haynesii. AMB Express 2024; 14:52. [PMID: 38704474 PMCID: PMC11069495 DOI: 10.1186/s13568-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.
Collapse
Affiliation(s)
- Mohamed A Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Sahar M R Radwan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Organization of African Unity St., Cairo, 11651, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Organization of African Unity St., Cairo, 11566, Egypt.
| | - Mohamed S E Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11651, Egypt
| |
Collapse
|
4
|
Du Y, Cheng Q, Qian M, Liu Y, Wang F, Ma J, Zhang X, Lin H. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA: Performance, degradation pathways, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131186. [PMID: 36948117 DOI: 10.1016/j.jhazmat.2023.131186] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
This study reports the isolation and characterization of a novel bacterial strain Alcaligenes aquatillis FA with the ability to degrade sulfametoxydiazine (SMD), a commonly used sulfonamide antibiotic (SA) in livestock and poultry production. The biodegradation kinetics, pathways, and genomic background of SMD by FA were investigated. The results showed that strain FA had high specificity to degrade SMD, and was unable to effectively degrade its isomer, sulfamonomethoxine. The SMD biodegradation followed a first-order kinetic model with a rate constant of 27.39 mg·L-1·day-1 and a half-life of 5.98 days. The biodegradation pathways and detoxification processes of SMD were proposed based on the identification of its biodegradation byproducts and the biotoxicity assessment using both the ecological structure-activity relationship (ECOSAR) model and biological indicator. The involvement of novel degrading enzymes, such as dimethyllsulfone monooxygenase, 4-carboxymuconolactone decarboxylase, and 1,4-benzoquinone reductase, was inferred in the SMD biodegradation process. The presence of sul2 and dfrA genes in strain FA, which were constitutively expressed in its cells, suggests that multiple mechanisms were employed by the strain to resist SMD. This study provides new insights into the biodegradation of sulfonamide antibiotics (SAs) as it is the first to describe an SMD-degrading bacterium and its genetic information.
Collapse
Affiliation(s)
- Yuqian Du
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Sodhi KK, Singh CK, Kumar M, Singh DK. Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol 2023; 14:1144561. [PMID: 37251338 PMCID: PMC10213877 DOI: 10.3389/fphar.2023.1144561] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: A wide range of pollutants, including the likes of xenobiotics, heavy metals, and antibiotics, are characteristic of marine ecosystems. The ability of the bacteria to flourish under high metal stress favors the selection of antibiotic resistance in aquatic environments. Increased use and misuse of antibiotics in medicine, agriculture, and veterinary have posed a grave concern over antimicrobial resistance. The exposure to these heavy metals and antibiotics in the bacteria drives the evolution of antibiotic and heavy metal resistance genes. In the earlier study by the author Alcaligenes sp. MMA was involved in the removal of heavy metals and antibiotics. Alcaligenes display diverse bioremediation capabilities but remain unexplored at the level of the genome. Methods: To shed light on its genome, the Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The genome annotation was done using Rapid annotation using subsystem technology (RAST). Given the spread of antimicrobial resistance and the generation of multi-drug resistant pathogens (MDR), the strain MMA was checked for potential antibiotic and heavy metal resistance genes Further, we checked for the presence of biosynthetic gene clusters in the draft genome. Results: Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The RAST analysis revealed the presence of 3685 protein-coding genes, involved in the removal of antibiotics and heavy metals. Multiple metal-resistant genes and genes conferring resistance to tetracycline, beta-lactams, and fluoroquinolones were present in the draft genome. Many types of BGCs were predicted, such as siderophore. The secondary metabolites of fungi and bacteria are a rich source of novel bioactive compounds which have the potential to in new drug candidates. Discussion: The results of this study provide information on the strain MMA genome and are valuable for the researcher in further exploitation of the strain MMA for bioremediation. Moreover, whole-genome sequencing has become a useful tool to monitor the spread of antibiotic resistance, a global threat to healthcare.
Collapse
Affiliation(s)
| | | | - Mohit Kumar
- Hindu College, University of Delhi, Delhi, India
| | | |
Collapse
|
6
|
Shi P, Du M, Wang J. Effect of Alcaligenes sp. on corrosion behavior of X65 steel in simulated offshore oilfield-produced water. Front Microbiol 2023; 14:1127858. [PMID: 37007476 PMCID: PMC10063886 DOI: 10.3389/fmicb.2023.1127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
In this paper, the effect of Alcaligenes sp. on the corrosion process of X65 steel was investigated by using non-targeted metabolomics techniques for comprehensive characterization of metabolites, combined with surface analysis techniques and electrochemical testing. The results showed that the organic acids produced by Alcaligenes sp. accelerated the corrosion process of X65 steel in the early stage, and the presence of Alcaligenes sp. promoted the deposition of stable corrosion products and minerals in the middle and late stages. In addition, proteoglycans and corrosion inhibiting substances were enriched on the metal surface, which enhanced the stability of the film. The combined effect of multiple factors makes the mixed film of biofilm and corrosion products more dense and complete, which effectively inhibits the corrosion of X65 steel.
Collapse
|
7
|
Li Y, Qi G, Xie Z, Li B, Wang R, Tan J, Shi H, Xiang B, Zhao X. The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria. Microbiol Spectr 2023; 11:e0203122. [PMID: 36515552 PMCID: PMC9927471 DOI: 10.1128/spectrum.02031-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bacterial wilt disease caused by Ralstonia solanacearum leads to huge economic losses worldwide. Endophytes play vital roles in promoting plant growth and health. It is hypothesized that the endophytic root microbiome and network structure are different in healthy and diseased plants. Here, the endophytic root microbiomes and network structures of healthy and diseased tobacco plants were investigated. Composition and network structures of endophytic root microbiomes were distinct between healthy and diseased plants. Healthy plants were enriched with more beneficial bacteria and bacteria with antagonistic activity against R. solanacearum. R. solanacearum was most abundant in diseased plants. Microbial networks in diseased plants had fewer modules and edges, lower connectivity, and fewer keystone microorganisms than those in healthy plants. Almost half of the nodes were unique in the two networks. Ralstonia was identified as a key microorganism of the diseased-plant network. In healthy plants, abundant bacteria and biomarkers (Pseudomonas and Streptomyces) and keystone microorganisms (Bacillus, Lysobacter, and Paenibacillus) were plant-beneficial bacteria and showed antibacterial and plant growth-promoting activities. The endophytic strain Bacillus velezensis E9 produced bacillaene to inhibit R. solanacearum. Consortia containing keystone microorganisms and beneficial endophytic bacteria significantly regulated the endophytic microbiome and attenuated bacterial wilt by inducing systemic resistance and producing antibiotic. Overall, the endophytic root microbiome and network structure in diseased plants were different from those in healthy plants. The endophytic root microbiome of diseased plants had low abundances of beneficial bacteria and an unstable network and lacked beneficial keystone microorganisms, which favored infection. Synthetic microbial consortia were effective measures for preventing R. solanacearum infection. IMPORTANCE Bacterial wilt disease causes heavy yield losses in many crops. Endophytic microbiomes play important roles in control of plant diseases. However, the role of the endophytic root microbiome in controlling bacterial wilt disease is poorly understood. Here, differences in endophytic root microbiomes and network structures between healthy and diseased tobacco plants are reported. A synthetic microbial consortium containing beneficial endophytic bacteria was used to regulate the endophytic microbiome and attenuate bacterial wilt disease. The results could be generally used to guide control of bacterial wilt disease.
Collapse
Affiliation(s)
- Yiting Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziqiong Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baolong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Jun Tan
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Heli Shi
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Bikun Xiang
- Enshi Tobacco Company of Hubei Province, Enshi, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Niu SH, Liu S, Deng WK, Wu RT, Cai YF, Liao XD, Xing SC. A sustainable and economic strategy to reduce risk antibiotic resistance genes during poultry manure bioconversion by black soldier fly Hermetia illucens larvae: Larval density adjustment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113294. [PMID: 35152113 DOI: 10.1016/j.ecoenv.2022.113294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) are common insects that are known for bioconversion of organic waste into a sustainable utilization resource. However, a strategy to increase antibiotic resistance gene (ARG) elimination in sustainable and economic ways through BSFL is lacking. In the present study, different larval densities were employed to assess the mcr-1 and tetX elimination abilities, and potential mechanisms were investigated. The application and economic value of each larval density were also analyzed. The results showed that the 100 larvae cultured in 100 g of manure group had the best density because the comprehensive disadvantage evaluation ratio was the lowest (14.97%, good bioconversion manure quality, low ARG deposition risk and reasonable larvae input cost). Further investigation showed that mcr-1 could be significantly decreased by BSFL bioconversion (4.42 ×107 copies/g reduced to 4.79 ×106-2.14 ×105 copies/g)(P<0.05); however, mcr-1 was increasingly deposited in the larval gut with increasing larval density. The tetX abundance was stabilized by BSFL bioconversion, except that the abundance at the lowest larval density increased (1.22 ×1010 copies/g increase, 34-fold). Escherichia was the host of mcr-1 and tetX in all samples, especially in fresh manure; Alcaligenes was the host of tetX in bioconversion manure; and the abundance of Alcaligenes was highly correlated with the pH of bioconversion manure. The pH of bioconversion manure was extremely correlated with the density of larvae. Klebsiella and Providencia were both hosts of tetX in the BSF larval gut, and Providencia was also the host of mcr-1 in the BSF larval gut. The density of larvae influenced the bioconversion manure quality and caused the ARG host abundance to change to control the abundance of ARGs, suggesting that larval density adjustment was a useful strategy to manage the ARG risk during BSFL manure bioconversion.
Collapse
Affiliation(s)
- Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Feng Cai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
9
|
Eltokhy MA, Saad BT, Eltayeb WN, Yahia IS, Aboshanab KM, Ashour MSE. Exploring the Nature of the Antimicrobial Metabolites Produced by Paenibacillus ehimensis Soil Isolate MZ921932 Using a Metagenomic Nanopore Sequencing Coupled with LC-Mass Analysis. Antibiotics (Basel) 2021; 11:antibiotics11010012. [PMID: 35052889 PMCID: PMC8773065 DOI: 10.3390/antibiotics11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The continuous emergence of multidrug-resistant (MDR) pathogens poses a global threat to public health. Accordingly, global efforts are continuously conducted to find new approaches to infection control by rapidly discovering antibiotics, particularly those that retain activities against MDR pathogens. In this study, metagenomic nanopore sequence analysis coupled with spectroscopic methods has been conducted for rapid exploring of the various active metabolites produced by Paenibacillus ehimensis soil isolate. Preliminary soil screening resulted in selection of a Gram-positive isolate identified via 16S ribosomal RNA gene sequencing as Paenibacillus ehimensis MZ921932. The isolate showed a broad range of activity against MDR Gram-positive, Gram-negative, and Candida spp. A metagenomics sequence analysis of the soil sample harboring Paenibacillus ehimensis isolate MZ921932 (NCBI GenBank accession PRJNA785410) revealed the presence of conserved biosynthetic gene clusters of petrobactin, tridecaptin, locillomycin (β-lactone), polymyxin, and macrobrevin (polyketides). The liquid chromatography/mass (LC/MS) analysis of the Paenibacillus ehimensis metabolites confirmed the presence of petrobactin, locillomycin, and macrobrevin. In conclusion, Paenibacillus ehimensis isolate MZ921932 is a promising rich source for broad spectrum antimicrobial metabolites. The metagenomic nanopore sequence analysis was a rapid, easy, and efficient method for the preliminary detection of the nature of the expected active metabolites. LC/MS spectral analysis was employed for further confirmation of the nature of the respective active metabolites.
Collapse
Affiliation(s)
- Mohamed A. Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Bishoy T. Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo 11765, Egypt;
| | - Wafaa N. Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Str., Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-010-075-82620; Fax: +20-202-240-51107
| | - Mohamed S. E. Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
10
|
Eltokhy MA, Saad BT, Eltayeb WN, El-Ansary MR, Aboshanab KM, Ashour MSE. A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504. Antibiotics (Basel) 2021; 10:antibiotics10111382. [PMID: 34827320 PMCID: PMC8614704 DOI: 10.3390/antibiotics10111382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The continuous development of multidrug resistance pathogens with limited therapeutic options has become a great problem globally that impose sever health hazards. Accordingly, searching for of new antimicrobials became an urgent demand and great challenge. Soil significantly have been associated with several species that are antibiotic producers. In this study, combination of conventional screening methods with Liquid chromatography- Mass spectroscopy (LC/MS) and metagenomic nanopore sequence analysis have been conducted for the deciphering the active metabolites produced by soil isolate(s). Preliminary soil screening resulted in a Gram-negative isolate identified via 16S ribosomal RNA as Alcaligenes faecalis isolate MZ921504 with promising antimicrobial activities against wide range of MDR gram-positive and gram-negative pathogens. The LC/MS analysis of the metabolites of A. faecalis isolate MZ921504 confirmed the presence of ectoine, bacillibactin, quinolobactin and burkholderic acid. Metagenomics sequence analysis of the soil sample (NCBI GenBank accession PRJNA771993) revealed the presence of conserved biosynthetic gene clusters of ectoine, bacteriocin, bacillibactin, quinolobactin, terpene and burkholderic acid of A. faecalis. In conclusion, A. faecalis isolate MZ921504 is a promising source for antimicrobial metabolites. LC/MS spectral analysis and third generation sequencing tools followed by secondary metabolite gene clusters analysis are useful methods to predict the nature of the antimicrobial metabolites.
Collapse
Affiliation(s)
- Mohamed A. Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Bishoy T. Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo 11765, Egypt;
| | - Wafaa N. Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Mona R. El-Ansary
- Department of Biochemistry, Modern University for Technology and Information (MTI), Cairo 12055, Egypt;
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-(202)-28429040; Fax: +20-(202)-24051107
| | - Mohamed S. E. Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
11
|
Whole-Genome Sequencing of Alcaligenes faecalis HZ01, with Potential to Inhibit Nontuberculous Mycobacterial Growth. Microbiol Resour Announc 2021; 10:e0052121. [PMID: 34591668 PMCID: PMC8483659 DOI: 10.1128/mra.00521-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alcaligenes faecalis is a Gram-negative rod that is ubiquitous in the environment and is an opportunistic human pathogen. Here, we report the whole-genome sequencing analysis of A. faecalis HZ01, which presents mycobacterial growth inhibitory activity and was isolated from a contaminated culture of Mycobacterium chubuense ATCC 27278.
Collapse
|
12
|
Dafale NA, Srivastava S, Purohit HJ. Zoonosis: An Emerging Link to Antibiotic Resistance Under "One Health Approach". Indian J Microbiol 2020; 60:139-152. [PMID: 32255846 DOI: 10.1007/s12088-020-00860-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current scenario in communicable diseases has generated new era that identifies the "One health" approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density. Thus, gut works as a bioreactor for the breeding of ARBs in this scenario and are continuously released in different niches. These ARBs transfer resistance genes among native flora through horizontal gene transfer events, vectors and quorum sensing. About 60% of infectious diseases in human are caused by zoonotic pathogens have potential to carry ARGs which could be transmitted to humans. The well documented zoonotic diseases are anthrax cause by Bacillus anthracis, bovine tuberculosis by Mycobacterium tuberculosis, brucellosis by Brucella abortus, and hemorrhagic colitis by Escherichia coli. Similarly, most of the antibiotics are not completely metabolized and released in unmetabolized forms which enters the food chain and affect various ecological niches through bioaccumulation. The persistence period of antibiotics ranges from < 1 to 3466 days in environment. The consequences of misusing the antibiotic in livestock and their fate in various ecological niches have been discussed in this review. Further the light sheds on antibiotics persistence and it biodegradation through different abiotic and biotic approaches in environment. The knowledge on personnel hygiene and strong surveillance system for zoonotic disease including ARBs transmission, prevention and control measures should be established to regulate the spread of AMR in the environment and subsequently to the human being through a food web.
Collapse
Affiliation(s)
- Nishant A Dafale
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| | - Shweta Srivastava
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| | - Hemant J Purohit
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| |
Collapse
|
13
|
Yadav S, Kapley A. Exploration of activated sludge resistome using metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1155-1164. [PMID: 31539947 DOI: 10.1016/j.scitotenv.2019.07.267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance is a global problem. In India poor waste management and inadequate sanitary are key factors which encourage the dissemination of antimicrobial resistance. Microbial biodiversity serves as an invaluable source for diverse types of bioactive compounds that encompass most of the pharmaceuticals to date. Therefore, in this study, we used the metagenomic approach for the surveillance of antibiotic resistance genes, drug resistant microbes and mobile-genetic elements in two activated sludge metagenome samples collected from Ankleshwar, Gujarat, India. Proteobacteria were found to be the most abundant bacteria among the metagenome analyzed. Twenty-four genes conferring resistance to antibiotics and heavy metals were found. Multidrug resistant "ESKAPE pathogens" were also abundant in the sludge metagenome. Mobile genetic elements like IncP-1 plasmid pKJK5, IncP-1beta multi resistance plasmid and pB8 were also noticed in the higher abundance. These plasmids play an important role in the spread of antibiotic resistance by the horizontal gene transfer. Statistical analysis of both metagenome using STAMP software confirmed presence of mobile genetic elements such as gene transfer agents, phages, Prophages etc. which also play important role in the dissemination of antibiotic resistant genes.
Collapse
Affiliation(s)
- Shailendra Yadav
- Director's Research Cell, National Environmental, Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | - Atya Kapley
- Director's Research Cell, National Environmental, Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
14
|
Almeida E, Dias TV, Ferraz G, Carvalho MF, Lage OM. Culturable bacteria from two Portuguese salterns: diversity and bioactive potential. Antonie van Leeuwenhoek 2019; 113:459-475. [PMID: 31720916 DOI: 10.1007/s10482-019-01356-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022]
Abstract
Salterns are extreme environments, where the high salt concentration is the main limitation to microbial growth, along with solar radiation, temperature and pH. These selective pressures might lead to the acquisition of unique genetic adaptations that can manifest in the production of interesting natural products. The present study aimed at obtaining the culturable microbial diversity from two Portuguese salterns located in different geographic regions. A total of 190 isolates were retrieved and identified as belonging to 30 genera distributed among 4 phyla-Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Specifically, members of the genus Bacillus were the most frequently isolated from both salterns and all actinobacterial isolates belong to the rare members of this group. The molecular screening of NRPS and PKS-I genes allowed the detection of 38 isolates presenting PKS-I, 25 isolates presenting NRPS and 23 isolates presenting both types of biosynthetic genes. Sequencing of randomly selected amplicons revealed similarity with known PKS-I and NRPS genes or non-annotated hypothetical proteins. This study is the first contribution on the culturable bacterial diversity of Portuguese salterns and on their bioactive potential. Ultimately, these findings provide a novel contribution to improve the understanding on the microbial diversity of salterns.
Collapse
Affiliation(s)
- Eduarda Almeida
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal. .,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal.
| | - Teresa Vale Dias
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gonçalo Ferraz
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal
| |
Collapse
|
15
|
Jadeja NB, Purohit HJ, Kapley A. Decoding microbial community intelligence through metagenomics for efficient wastewater treatment. Funct Integr Genomics 2019; 19:839-851. [PMID: 31111267 DOI: 10.1007/s10142-019-00681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/07/2018] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
Activated sludge, a microbial ecosystem at industrial wastewater treatment plants, is an active collection of diverse gene pool that creates the intelligence required for coexistence at the cost of pollutants. This study has analyzed one such ecosystem from a site treating wastewater pooled from over 200 different industries. The metagenomics approach used could predict the degradative pathways of more than 30 dominating molecules commonly found in wastewater. Results were extended to design a bioremediation strategy using 4-methylphenol, 2-chlorobenzoate, and 4-chlorobenzoate as target compounds. Catabolic potential required to degrade four aromatic families, namely benzoate family, PAH family, phenol family, and PCB family, was mapped. Results demonstrated a network of diverse genera, where a few phylotypes were seen to contain diverse catabolic capacities and were seen to be present in multiple networks. The study highlights the importance of looking more closely at the microbial community of activated sludge to harness its latent potential. Conventionally treated as a black box, the activated biomass does not perform at its full potential. Metagenomics allows a clearer insight into the complex pathways operating at the site and the detailed documentation of genes allows the activated biomass to be used as a bioresource.
Collapse
Affiliation(s)
- Niti B Jadeja
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
16
|
Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate. Appl Biochem Biotechnol 2018; 187:266-281. [PMID: 29926286 DOI: 10.1007/s12010-018-2820-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Cellulolytic bacteria from cattle rumen with ability to hydrolyze cellulose rich biomass were explored. The study selected Paenibacillus polymyxa ND24 from 847 isolates as the most potent strain, which can efficiently produce cellulase by utilizing sugarcane bagasse, rice straw, corn starch, CMC, and avicel as a sole carbon source. On annotation of P. polymyxa ND24 genome, 116 members of glycoside hydrolase (GH) family from CAZy clusters were identified and the presence of 10 potential cellulases was validated using protein folding information. Cellulase production was further demonstrated at lab-scale 5-L bioreactor exhibiting maximum endoglucanase activity up to 0.72 U/mL when cultivated in the medium containing bagasse (2% w/v) after 72 h. The bagasse hydrolysate so produced was further utilized for efficient biogas production. The presence of diverse hydrolytic enzymes and formidable cellulase activity supports the use of P. polymyxa ND24 for cost-effective bioprocessing of cellulosic biomass.
Collapse
|
17
|
Zhang Y, Chen Q, Ji J, Zhao L, Zhang L, Qiu J, He J. Complete Genome Sequence of Alcaligenes Faecalis Strain JQ135, a Bacterium Capable of Efficiently Degrading Nicotinic Acid. Curr Microbiol 2018; 75:1551-1554. [DOI: 10.1007/s00284-018-1486-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
|
18
|
Kakar KU, Nawaz Z, Cui Z, Almoneafy AA, Ullah R, Shu QY. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. J Appl Microbiol 2018; 124:779-796. [PMID: 29280555 DOI: 10.1111/jam.13678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Abstract
AIMS To examine the biocontrol activities of five rhizobacterial strains (i.e. Alcaligenes faecalis strains Bk1 and P1, Bacillus amyloliquefaciens strain Bk7 and Brevibacillus laterosporus stains B4 and S5), to control the rice blast and sheath blight diseases in greenhouse and to study their possible modes of action. METHODS AND RESULTS Five potential plant growth-promoting rhizobacterial (PGPR) strains isolated from rice rhizospheres were tested for in vitro antifungal activities against Magnaporthe oryzae, Rhizoctonia solani, Botrytis cinerea and Fusarium graminearum. In vitro trials showed that three strains, Bk1, P1 and Bk7, were able to unanimously suppress the mycelial growth of the target pathogens. In greenhouse, the application of these three PGPR strains significantly suppressed the incidences of rice blast and sheath blight diseases. At 2 weeks after pathogen inoculation, the highest percentages of disease suppression were noted for Alc. faecalis strain Bk1 (72%) for rice blast, Alc. faecalis strain P1 (71%) for sheath blight, followed by B. amyloliquefaciens strain Bk7. Moreover, these strains significantly improved the plant growth, enriched the content of mineral nutrients in seedlings and increased the expression of major defence-related rice genes. All three strains were marked positive for phosphate solubilization, the production of indoleacetic acid, ammonia and siderophores and catalase activity. In addition, these strains were able to form biofilms and carried multiple lipopeptide biosynthetic genes as revealed by multiplex PCR. CONCLUSION This study reports new potential biocontrol agents for blast and sheath blight diseases of rice. SIGNIFICANCE AND IMPACT OF THE STUDY This study contributes to better understanding of the mechanisms involved in interaction between beneficial rhizobacteria, fungal pathogens and host plants.
Collapse
Affiliation(s)
- K U Kakar
- State Key Laboratory of Rice Biology, Institution of Crop Science, Zhejiang University, Hangzhou, China.,Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Z Nawaz
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Z Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experimental Station, New Haven, CT, USA.,Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - A A Almoneafy
- Department of Biological Sciences, College of Education and Science, Albaydaa University, Rada'a, Yemen
| | - R Ullah
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Q-Y Shu
- State Key Laboratory of Rice Biology, Institution of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|
20
|
Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genomics 2016; 16:557-66. [DOI: 10.1007/s10142-016-0506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
21
|
Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-1″,11′-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine. J Antibiot (Tokyo) 2016; 69:637-46. [DOI: 10.1038/ja.2016.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 04/03/2016] [Indexed: 02/06/2023]
|