1
|
Bulle M, Venkatapuram AK, Rahman MM, Attia KA, Mohammed AA, Abbagani S, Kirti PB. Enhancing drought tolerance in chilli pepper through AdDjSKI-mediated modulation of ABA sensitivity, photosynthetic preservation, and ROS scavenging. PHYSIOLOGIA PLANTARUM 2024; 176:e14379. [PMID: 38853306 DOI: 10.1111/ppl.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - Ajay Kumar Venkatapuram
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kotab A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Sadanandam Abbagani
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Luo J, Li M, Ju J, Hai H, Wei W, Ling P, Li D, Su J, Zhang X, Wang C. Genome-Wide Identification of the GhANN Gene Family and Functional Validation of GhANN11 and GhANN4 under Abiotic Stress. Int J Mol Sci 2024; 25:1877. [PMID: 38339155 PMCID: PMC10855742 DOI: 10.3390/ijms25031877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Annexins (ANNs) are a structurally conserved protein family present in almost all plants. In the present study, 27 GhANNs were identified in cotton and were unevenly distributed across 14 chromosomes. Transcriptome data and RT-qPCR results revealed that multiple GhANNs respond to at least two abiotic stresses. Similarly, the expression levels of GhANN4 and GhANN11 were significantly upregulated under heat, cold, and drought stress. Using virus-induced gene silencing (VIGS), functional characterization of GhANN4 and GhANN11 revealed that, compared with those of the controls, the leaf wilting of GhANN4-silenced plants was more obvious, and the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were lower under NaCl and PEG stress. Moreover, the expression of stress marker genes (GhCBL3, GhDREB2A, GhDREB2C, GhPP2C, GhRD20-2, GhCIPK6, GhNHX1, GhRD20-1, GhSOS1, GhSOS2 and GhSnRK2.6) was significantly downregulated in GhANN4-silenced plants after stress. Under cold stress, the growth of the GHANN11-silenced plants was significantly weaker than that of the control plants, and the activities of POD, SOD, and CAT were also lower. However, compared with those of the control, the elasticity and orthostatic activity of the GhANN11-silenced plants were greater; the POD, SOD, and CAT activities were higher; and the GhDREB2C, GhHSP, and GhSOS2 expression levels were greater under heat stress. These results suggest that different GhANN family members respond differently to different types of abiotic stress.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Meili Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Han Hai
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Wei Wei
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Pingjie Ling
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Dandan Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Xianliang Zhang
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| |
Collapse
|
3
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Wu X, Wang Y, Bian Y, Ren Y, Xu X, Zhou F, Ding H. A critical review on plant annexin: Structure, function, and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:81-89. [PMID: 36108355 DOI: 10.1016/j.plaphy.2022.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant annexins are evolutionary conserved protein family widely exist in almost all plant species, characterized by a shorter N-terminal region and four conservative annexin repeats. Plant annexins have Ca2+ channel-regulating activity and peroxidase as well as ATPase/GTPase activities, which give annexins functional specificity. They are widely involved in regulating diverse aspects of biochemical and cellular processes, plant growth and development, and responses to biotic and abiotic environmental stresses. Though many studies have reviewed the function of annexins, great progress have been made in the study of plant annexins recently. In this review, we outline the current understanding of basic properties of plant annexins and summarize the emerging advances in understanding the functional roles of annexins in plants and highlight the regulation mechanisms of annexin protein in response to stress especially to salt and cold stress. The interesting questions related to plant annexin that remain to be further elucidated are also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhao Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Shail M, Prasad R. Identification and molecular analysis of the annexin genes in Cyamopsis tetragonoloba L. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Zhang M, Chen Z, Yuan F, Wang B, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor. PLANT MOLECULAR BIOLOGY 2022; 108:127-143. [PMID: 34950990 DOI: 10.1007/s11103-021-01230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
7
|
Shen F, Ying J, Xu L, Sun X, Wang J, Wang Y, Mei Y, Zhu Y, Liu L. Characterization of Annexin gene family and functional analysis of RsANN1a involved in heat tolerance in radish ( Raphanus sativus L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2027-2041. [PMID: 34629776 PMCID: PMC8484430 DOI: 10.1007/s12298-021-01056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Plant annexins are a kind of conserved Ca2+-dependent phospholipid-binding proteins which are involved in plant growth, development and stress tolerance. Radish is an economically important annual or biennial root vegetable crop worldwide. However, the genome-wide characterization of annexin (RsANN) gene family remain largely unexplored in radish. In this study, a comprehensive identification of annexin gene family was performed at the whole genome level in radish. In total, ten RsANN genes were identified, and these putative RsANN proteins shared typical characteristics of the annexin family proteins. Phylogenetic analysis showed that the RsANNs together with annexin from Arabidopsis and rice were clustered into five groups with shared similar motif patterns. Chromosomal localization showed that these ten RsANN genes were distributed on six chromosomes (R3-R8) of radish. Several cis-elements involved in abiotic stress response were identified in the promoter regions of RsANN genes. Expression profile analysis indicated that the RsANN genes exhibited tissue-specific patterns at different growth stages and tissues. The Real-time quantitative PCR (RT-qPCR) revealed that the expression of most RsANN genes was induced under various abiotic stresses including heat, drought, salinity, oxidization and ABA stress. In addition, stress assays showed that overexpression of RsANN1a improved plant's growth and heat tolerance, while artificial microRNAs (amiRNA)-mediated knockdown of RsANN1a caused dramatically decreased survival ratio of Arabidopsis plants. These findings not only demonstrate that RsANN1a might play a critical role in the heat stress response of radish, but also facilitate clarifying the molecular mechanism of RsANN genes in regulating the biological process governing plant growth and development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01056-5.
Collapse
Affiliation(s)
- Feng Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002 China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaochuan Sun
- Huaiyin Institute of Technology, Huaian, 223003 China
| | - Jizhong Wang
- Huaiyin Institute of Technology, Huaian, 223003 China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Mei
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002 China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
8
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
9
|
Overexpression of Cassava MeAnn2 Enhances the Salt and IAA Tolerance of Transgenic Arabidopsis. PLANTS 2021; 10:plants10050941. [PMID: 34066809 PMCID: PMC8150822 DOI: 10.3390/plants10050941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I–IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.
Collapse
|
10
|
Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci Rep 2020; 10:4295. [PMID: 32152363 PMCID: PMC7062692 DOI: 10.1038/s41598-020-59953-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.
Collapse
|
11
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|