1
|
Yang J, Wang D, Liu H, Wang L, Jin L, Ahola V, Xu C, Wang R. Three amino acid substitutions contributing to thermostability of phosphoglucose isomerase in the Glanville fritillary butterfly. INSECT SCIENCE 2023; 30:758-770. [PMID: 36342954 DOI: 10.1111/1744-7917.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/15/2023]
Abstract
Temperature is one of the most important environmental factors that affect organisms, especially ectotherms, due to its effects on protein stability. Understanding the general rules that govern thermostability changes in proteins to adapt high-temperature environments is crucial. Here, we report the amino acid substitutions of phosphoglucose isomerase (PGI) related to thermostability in the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The PGI encoded by the most common allele in M. cinxia in the Chinese population (G3-PGI), which is more thermal tolerant, is more stable under heat stress than that in the Finnish population (D1-PGI). There are 5 amino acid substitutions between G3-PGI and D1-PGI. Site-directed mutagenesis revealed that the combination of amino acid substitutions of H35Q, M49T, and I64V may increase PGI thermostability. These substitutions alter the 3D structure to increase the interaction between 2 monomers of PGI. Through molecular dynamics simulations, it was found that the amino acid at site 421 is more stable in G3-PGI, confining the motion of the α-helix 420-441 and stabilizing the interaction between 2 PGI monomers. The strategy for high-temperature adaptation through these 3 amino acid substitutions is also adopted by other butterfly species (Boloria eunomia, Aglais urticae, Colias erate, and Polycaena lua) concurrent with M. cinxia in the Tianshan Mountains of China, i.e., convergent evolution in butterflies.
Collapse
Affiliation(s)
- Jianing Yang
- School of Life Sciences, Peking University, Beijing, China
| | - Di Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Hui Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Lin Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Ling Jin
- School of Life Sciences, Peking University, Beijing, China
| | - Virpi Ahola
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Chongren Xu
- School of Life Sciences, Peking University, Beijing, China
| | - Rongjiang Wang
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Sherman RE, Hartnett R, Kiehnau EL, Weider LJ, Jeyasingh PD. Quantitative genetics of phosphorus content in the freshwater herbivore, Daphnia pulicaria. J Anim Ecol 2020; 90:909-916. [PMID: 33368234 DOI: 10.1111/1365-2656.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Phosphorus (P) is essential for growth of all organisms, and P content is correlated with growth in most taxa. Although P content was initially considered to be a trait fixed at the species level, there is growing evidence for considerable intraspecific variation. Selection on such variation can thus alter the rates at which P fluxes through food webs. Nevertheless, prior work describing the sources and extent of intraspecific variation in P content were not genetically explicit, confounded by unknown genetic background and evolutionary history. We constructed an F2 recombinant population of the dominant freshwater grazer, Daphnia pulicaria to mitigate such issues. F2 recombinants exhibited considerable variation in growth rate, P content (0.49%-1.97%), P use efficiency (PUE; 51-208 mg biomass/mg P), and correlated traits such as hatching time of resting eggs, in common garden conditions. These results clearly demonstrate the scope of genetic recombination in generating variation in ecologically relevant traits. The absence of environmental selection is a likely component driving such variation not observed in natural settings. Although phosphoglucose isomerase (PGI) genotype was significantly associated with variation in hatching time of resting eggs, contrary to prior work with less rigorous designs, and allelic variation at the PGI locus did not explain variation in P content and PUE of Daphnia, indicating that such quantitative traits are under polygenic control. Together, these results suggest that although there is considerable genetic scope for variation in key ecologically relevant traits, such as P content and efficiency of P use, these traits are likely under strong stabilizing selection, most likely due to selection on growth rate and size. Importantly, our observations suggest that anthropogenic alterations to P supply due to eutrophication could alter selection on these traits, thereby rapidly altering the role Daphnia plays in the P cycle of lakes.
Collapse
Affiliation(s)
- Ryan E Sherman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Rachel Hartnett
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.,Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Emily L Kiehnau
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
3
|
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, Dahlhoff EP. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 2020; 74:1724-1740. [PMID: 32246837 DOI: 10.1111/evo.13962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Sarah J Heidl
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Kevin T Roberts
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Nicolas A Zavala
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| | - John T Smiley
- White Mountain Research Center, University of California, Bishop, California, 93514
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| |
Collapse
|
4
|
Reim E, Eichhorn D, Roy JD, Steinhoff POM, Fischer K. Nutritional stress reduces flight performance and exploratory behavior in a butterfly. INSECT SCIENCE 2019; 26:897-910. [PMID: 29660804 DOI: 10.1111/1744-7917.12596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic global change, including agricultural intensification and climate change, poses a substantial challenge to many herbivores due to a reduced availability of feeding resources. The concomitant food stress is expected to detrimentally affect performance, amongst others in dispersal-related traits. Thus, while dispersal is of utmost importance to escape from deteriorating habitat conditions, such conditions may negatively feedback on the ability to do so. Therefore, we here investigate the impact of larval and adult food stress on traits related to dispersal ability, including morphology, physiology, flight performance, and exploratory behavior, in a butterfly. We show that inadequate nutrition during development and in the adult stage diminishes flight performance, despite some re-allocation of somatic resources. Detrimental effects of food stress on flight performance were mainly caused by reductions in body mass and storage reserves. Similar results were found for exploratory behavior. Furthermore, exploratory behavior was found to be (moderately) repeatable at the individual level, which might indicate the existence of a personality trait. This notion is further supported by the fact that flight performance and exploratory behavior were positively correlated, potentially suggesting the existence of a dispersal syndrome. In summary, our findings may have important implications for dispersal in natural environments, as the conditions requiring dispersal the most impair flight ability and thereby likely dispersal rates.
Collapse
Affiliation(s)
- Elisabeth Reim
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Danny Eichhorn
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Jan D Roy
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
5
|
Wilson JK, Ruiz L, Davidowitz G. Dietary Protein and Carbohydrates Affect Immune Function and Performance in a Specialist Herbivore Insect (Manduca sexta). Physiol Biochem Zool 2019; 92:58-70. [DOI: 10.1086/701196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Niitepõld K, Saastamoinen M. A Candidate Gene in an Ecological Model Species: Phosphoglucose Isomerase (Pgi) in the Glanville Fritillary Butterfly (Melitaea cinxia). ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kristjan Niitepõld
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Marjo Saastamoinen
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|
7
|
Cao LJ, Wen JB, Wei SJ, Liu J, Yang F, Chen M. Characterization of novel microsatellite markers for Hyphantria cunea and implications for other Lepidoptera. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:273-284. [PMID: 25772405 DOI: 10.1017/s0007485315000061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This is the first report of microsatellite markers (simple sequence repeats, SSR) for fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), an important quarantine pest in some European and Asian countries. Here, we developed 48 microsatellite markers for H. cunea from SSR enrichment libraries. Sequences isolated from libraries were sorted into four categories and analyzed. Our results suggest that sequences classified as Grouped should not be used for microsatellite primer design. The genetic diversity of microsatellite loci was assessed in 72 individuals from three populations. The number of alleles per locus ranged from 2 to 5 with an average of 3. The observed and expected heterozygosities of loci ranged from 0 to 0.958 and 0 to 0.773, respectively. A total of 18 out of 153 locus/population combinations deviated significantly from Hardy-Weinberg equilibrium. Moreover, significant linkage disequilibrium was detected in one pair of loci (1275 pairs in total). In the neutral test, two loci were grouped into the candidate category for positive selection and the remainder into the neutral category. In addition, a complex mutation pattern was observed for these loci, and F ST performed better than did R ST for the estimation of population differentiation in different mutation patterns. The results of the present study can be used for population genetic studies of H. cunea.
Collapse
Affiliation(s)
- L J Cao
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - J B Wen
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - S J Wei
- Institute of Plant and Environmental Protection,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
| | - J Liu
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - F Yang
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - M Chen
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| |
Collapse
|
8
|
Lefort MC, Brown S, Boyer S, Worner S, Armstrong K. The PGI enzyme system and fitness response to temperature as a measure of environmental tolerance in an invasive species. PeerJ 2014; 2:e676. [PMID: 25469320 PMCID: PMC4250065 DOI: 10.7717/peerj.676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 12/02/2022] Open
Abstract
In the field of invasion ecology, the determination of a species’ environmental tolerance, is a key parameter in the prediction of its potential distribution, particularly in the context of global warming. In poikilothermic species such as insects, temperature is often considered the most important abiotic factor that affects numerous life-history and fitness traits through its effect on metabolic rate. Therefore the response of an insect to challenging temperatures may provide key information as to its climatic and therefore spatial distribution. Variation in the phosphoglucose-6-isomerase (PGI) metabolic enzyme-system has been proposed in some insects to underlie their relative fitness, and is recognised as a key enzyme in their thermal adaptation. However, in this context it has not been considered as a potential mechanism contributing to a species invasive cability. The present study aimed to compare the thermal tolerance of an invasive scarabaeid beetle, Costelytra zealandica (White) with that of the closely related, and in part sympatrically occurring, congeneric non-invasive species C. brunneum (Broun), and to consider whether any correlation with particular PGI genotypes was apparent. Third instar larvae of each species were exposed to one of three different temperatures (10, 15 and 20 °C) over six weeks and their fitness (survival and growth rate) measured and PGI phenotyping performed via cellulose acetate electrophoresis. No consistent relationship between PGI genotypes and fitness was detected, suggesting that PGI may not be contributing to the invasion success and pest status of C. zealandica.
Collapse
Affiliation(s)
- Marie-Caroline Lefort
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Samuel Brown
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Stéphane Boyer
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand ; Department of Ecology, Faculty of Agricultural and Life Sciences, Lincoln University , Lincoln , New Zealand
| | - Susan Worner
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| | - Karen Armstrong
- Bio-Protection Research Centre, Lincoln University , Lincoln, Christchurch , New Zealand
| |
Collapse
|
9
|
Wheat CW, Hill J. Pgi: the ongoing saga of a candidate gene. CURRENT OPINION IN INSECT SCIENCE 2014; 4:42-47. [PMID: 28043407 DOI: 10.1016/j.cois.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 05/21/2023]
Abstract
Numerous studies have found amino acid variation at the phosphoglucose isomerase (PGI) gene associated with organismal performance and fitness. Here we focus upon recent advances in the study of this gene, highlighting novel species being studied, new tools being used, and emerging insights into the evolutionary dynamics acting on this gene. Our synthesis highlights questions that are coming into focus, as well as the need for attention in specific areas, such as manipulative experiments to establish mechanistic insights and a causative role of allelic variation.
Collapse
Affiliation(s)
- Christopher W Wheat
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| | - Jason Hill
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| |
Collapse
|
10
|
Rauhamäki V, Wolfram J, Jokitalo E, Hanski I, Dahlhoff EP. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities. PLoS One 2014; 9:e78069. [PMID: 24416122 PMCID: PMC3885395 DOI: 10.1371/journal.pone.0078069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joy Wolfram
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilkka Hanski
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth P. Dahlhoff
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dick CA, Rank NE, McCarthy M, McWeeney S, Hollis D, Dahlhoff EP. Effects of temperature variation on male behavior and mating success in a montane beetle. Physiol Biochem Zool 2013; 86:432-40. [PMID: 23799837 DOI: 10.1086/671462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Locomotion and mating ability are crucial for male reproductive success yet are energetically costly and susceptible to physiological stress. In the Sierra willow beetle Chrysomela aeneicollis, male mating success depends on locating and mating with as many females as possible. Variation at the glycolytic enzyme locus phosphoglucose isomerase (Pgi) is concordant with a latitudinal temperature gradient in these populations, with Pgi-1 frequent in the cooler north, Pgi-4 in the warmer south, and alleles 1 and 4 in relatively equal frequency in areas intermediate in geography and climate. Beetles experience elevated air temperatures during a mating season that causes differential physiological stress among Pgi genotypes, and running speeds of individuals homozygous for Pgi-4 are more tolerant of repeated thermal stress than individuals possessing Pgi-1. Here the importance of running behavior for male mating activity was examined, and differential effects of thermal stress among Pgi genotypes on male mating activity were measured. In nature, males run more than females, and nearly half of males mate or fight for a mate after running. In the laboratory, mating activity was positively correlated with running speed, and repeated mating did not reduce running speed or subsequent mating activity. Males homozygous for Pgi-4 mated longer and more frequently after heat treatment than 1-1 and 1-4 males. All heat-treated males had lower mating frequencies and higher heat shock protein expression than control males; however, mating frequency of recovering 4-4 males increased throughout mating trials, while treated 1-1 and 1-4 males remained low. These results suggest that effects of stress on mating activity differ between Pgi genotypes, implying a critical role for energy metabolism in organisms' response to stressful temperatures.
Collapse
Affiliation(s)
- Cynthia A Dick
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA
| | | | | | | | | | | |
Collapse
|
12
|
Piiroinen S, Lyytinen A, Lindström L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol Appl 2012; 6:313-23. [PMID: 23467574 PMCID: PMC3586620 DOI: 10.1111/eva.12001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management.
Collapse
Affiliation(s)
- Saija Piiroinen
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä Jyväskylä, Finland
| | | | | |
Collapse
|
13
|
Luo J, Cheng XY, Yan X, Tao WQ, Holland JD, Xu RM. Characterization and polymorphism analysis of phosphoglucose isomerase gene in the fall webworm (Hyphantria cunea). BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:477-488. [PMID: 22314051 DOI: 10.1017/s000748531100085x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoglucose isomerase (PGI) plays an important role in energy metabolism, and it is documented that PGI exhibits an extensive polymorphism which can affect insects' fitness and adaptation. In this paper, we studied the structural characteristics and polymorphism of pgi gene in the fall webworm (Hyphantria cunea), an important invasive pest in some European and Asian countries. A 2110-bp pgi full-length cDNA encoding a polypeptide of 556 amino acids was obtained from H. cunea. The pgi full-length in the H. cunea genomic DNA was 14,332 bp with 12 exons and 11 introns, similar to the structures of pgi in other Lepidoptera species. We compared the structures of pgi in different insect species. Moreover, thirteen pgi genotypes comprised of five alleles were identified in the Chinese population. Genotypes pgi-cd, pgi-cc and pgi-ce were the most prevalent with over 70% of individuals allocated to them. Four out of five alleles were sequenced the cDNA full-length. Thirty stably variable sites were found among them with five non-synonymous mutation sites. The frequencies of alleles and genotypes were variable in different Chinese geographic subpopulations. Moreover, comparison of pgi mRNA expression levels in each stage of the moth's lifecycle showed that a high expression level was in the 6th instar larval stage, followed by that in the egg and adult stages. The results will provide a basis for further study of the role of different alleles and genotypes of PGI on fitness and adaptation of the moth H. cunea.
Collapse
Affiliation(s)
- J Luo
- College of Life Sciences, Beijing Normal University, 19 Xinjiekou Wai Dajie, Beijing, 100875, China
| | - X-Y Cheng
- College of Life Sciences, Beijing Normal University, 19 Xinjiekou Wai Dajie, Beijing, 100875, China
| | - X Yan
- College of Life Sciences, Beijing Normal University, 19 Xinjiekou Wai Dajie, Beijing, 100875, China
| | - W-Q Tao
- Beijing Municipal Bureau of Landscape and Forestry, 8 Yumin Middle Road, Beijing, 100029, China
| | - J D Holland
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - R-M Xu
- College of Life Sciences, Beijing Normal University, 19 Xinjiekou Wai Dajie, Beijing, 100875, China
| |
Collapse
|
14
|
De Block M, Stoks R. Phosphoglucose isomerase genotype effects on life history depend on latitude and food stress. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02015.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjan De Block
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Debériotstraat 32; BE-3000; Leuven; Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Debériotstraat 32; BE-3000; Leuven; Belgium
| |
Collapse
|
15
|
Laukkanen L, Leimu R, Muola A, Lilley M, Salminen JP, Mutikainen P. Plant chemistry and local adaptation of a specialized folivore. PLoS One 2012; 7:e38225. [PMID: 22666493 PMCID: PMC3364215 DOI: 10.1371/journal.pone.0038225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/02/2012] [Indexed: 11/21/2022] Open
Abstract
Local adaptation is central for creating and maintaining spatial variation in plant-herbivore interactions. Short-lived insect herbivores feeding on long-lived plants are likely to adapt to their local host plants, because of their short generation time, poor dispersal, and geographically varying selection due to variation in plant defences. In a reciprocal feeding trial, we investigated the impact of geographic variation in plant secondary chemistry of a long-lived plant, Vincetoxicum hirundinaria, on among-population variation in local adaptation of a specialist leaf-feeding herbivore, Abrostola asclepiadis. The occurrence and degree of local adaptation varied among populations. This variation correlated with qualitative and quantitative differences in plant chemistry among the plant populations. These findings provide insights into the mechanisms driving variation in local adaptation in this specialized plant-herbivore interaction.
Collapse
Affiliation(s)
- Liisa Laukkanen
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Fischer K, Dierks A, Franke K, Geister TL, Liszka M, Winter S, Pflicke C. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 2010; 5:e15284. [PMID: 21187968 PMCID: PMC3004918 DOI: 10.1371/journal.pone.0015284] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
Background The ability to withstand thermal stress is considered to be of crucial importance for individual fitness and species' survival. Thus, organisms need to employ effective mechanisms to ensure survival under stressful thermal conditions, among which phenotypic plasticity is considered a particularly quick and effective one. Methodology/Principal Findings In a series of experiments we here investigate phenotypic adjustment in temperature stress resistance following environmental manipulations in the butterfly Bicyclus anynana. Cooler compared to warmer acclimation temperatures generally increased cold but decreased heat stress resistance and vice versa. In contrast, short-time hardening responses revealed more complex patterns, with, e.g., cold stress resistance being highest at intermediate hardening temperatures. Adult food stress had a negative effect on heat but not on cold stress resistance. Additionally, larval feeding treatment showed interactive effects with adult feeding for heat but not for cold stress resistance, indicating that nitrogenous larval resources may set an upper limit to performance under heat stress. In contrast to expectations, cold resistance slightly increased during the first eight days of adult life. Light cycle had marginal effects on temperature stress resistance only, with cold resistance tending to be higher during daytime and thus active periods. Conclusions/Significance Our results highlight that temperature-induced plasticity provides an effective tool to quickly and strongly modulate temperature stress resistance, and that such responses are readily reversible. However, resistance traits are not only affected by ambient temperature, but also by, e.g., food availability and age, making their measurement challenging. The latter effects are largely underexplored and deserve more future attention. Owing to their magnitude, plastic responses in thermal tolerance should be incorporated into models trying to forecast effects of global change on extant biodiversity.
Collapse
Affiliation(s)
- Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|