1
|
Schmidt AE, Lescroël A, Lisovski S, Elrod M, Jongsomjit D, Dugger KM, Ballard G. Sea ice concentration decline in an important Adélie penguin molt area. Proc Natl Acad Sci U S A 2023; 120:e2306840120. [PMID: 37931108 PMCID: PMC10655226 DOI: 10.1073/pnas.2306840120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Unlike in many polar regions, the spatial extent and duration of the sea ice season have increased in the Ross Sea sector of the Southern Ocean during the satellite era. Simultaneously, populations of Adélie penguins, a sea ice obligate, have been stable or increasing in the region. Relationships between Adélie penguin population growth and sea ice concentration (SIC) are complex, with sea ice driving different, sometimes contrasting, demographic patterns. Adélie penguins undergo a complete molt annually, replacing all their feathers while fasting shortly after the breeding season. Unlike most penguin species, a majority of Adélies are thought to molt on sea ice, away from the breeding colonies, which makes this period particularly difficult to study. Here, we evaluate the hypothesis that persistent areas of high SIC provide an important molting habitat for Adélie penguins. We analyzed data from geolocating dive recorders deployed year-round on 195 adult penguins at two colonies in the Ross Sea from 2017 to 2019. We identified molt by detecting extended gaps in postbreeding diving activity and used associated locations to define two key molting areas. Remotely sensed data indicated that SIC during molt was anomalously low during the study and has declined in the primary molt area since 1980. Further, annual return rates of penguins to breeding colonies were positively correlated with SIC in the molt areas over 20 y. Together these results suggest that sea ice conditions during Adélie penguin molt may represent a previously underappreciated annual bottleneck for adult survival.
Collapse
Affiliation(s)
- Annie E. Schmidt
- Point Blue Conservation Science, Antarctica Program, Petaluma, CA94954
| | - Amélie Lescroël
- Point Blue Conservation Science, Antarctica Program, Petaluma, CA94954
| | - Simeon Lisovski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam14473, Germany
| | - Megan Elrod
- Point Blue Conservation Science, Antarctica Program, Petaluma, CA94954
| | - Dennis Jongsomjit
- Point Blue Conservation Science, Antarctica Program, Petaluma, CA94954
| | - Katie M. Dugger
- US Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Corvallis, OR97331
| | - Grant Ballard
- Point Blue Conservation Science, Antarctica Program, Petaluma, CA94954
| |
Collapse
|
2
|
Orgeret F, Thiebault A, Kovacs KM, Lydersen C, Hindell MA, Thompson SA, Sydeman WJ, Pistorius PA. Climate change impacts on seabirds and marine mammals: The importance of study duration, thermal tolerance and generation time. Ecol Lett 2021; 25:218-239. [PMID: 34761516 DOI: 10.1111/ele.13920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
Understanding climate change impacts on top predators is fundamental to marine biodiversity conservation, due to their increasingly threatened populations and their importance in marine ecosystems. We conducted a systematic review of the effects of climate change (prolonged, directional change) and climate variability on seabirds and marine mammals. We extracted data from 484 studies (4808 published studies were reviewed), comprising 2215 observations on demography, phenology, distribution, diet, behaviour, body condition and physiology. The likelihood of concluding that climate change had an impact increased with study duration. However, the temporal thresholds for the effects of climate change to be discernibly varied from 10 to 29 years depending on the species, the biological response and the oceanic study region. Species with narrow thermal ranges and relatively long generation times were more often reported to be affected by climate change. This provides an important framework for future assessments, with guidance on response- and region-specific temporal dimensions that need to be considered when reporting effects of climate change. Finally, we found that tropical regions and non-breeding life stages were poorly covered in the literature, a concern that should be addressed to enable a better understanding of the vulnerability of marine predators to climate change.
Collapse
Affiliation(s)
- Florian Orgeret
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Andréa Thiebault
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Pierre A Pistorius
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa.,DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
3
|
Masello JF, Barbosa A, Kato A, Mattern T, Medeiros R, Stockdale JE, Kümmel MN, Bustamante P, Belliure J, Benzal J, Colominas-Ciuró R, Menéndez-Blázquez J, Griep S, Goesmann A, Symondson WOC, Quillfeldt P. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. MOVEMENT ECOLOGY 2021; 9:24. [PMID: 34001240 PMCID: PMC8127181 DOI: 10.1186/s40462-021-00255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for different animal populations. Organisms as diverse as fish, mammals, and birds will move in areas of the energy landscape that result in minimised costs and maximised energy gain. Recently, energy landscapes have been used to link energy gain and variable energy costs of foraging to breeding success, revealing their potential use for understanding demographic changes. METHODS Using GPS-temperature-depth and tri-axial accelerometer loggers, stable isotope and molecular analyses of the diet, and leucocyte counts, we studied the response of gentoo (Pygoscelis papua) and chinstrap (Pygoscelis antarcticus) penguins to different energy landscapes and resources. We compared species and gentoo penguin populations with contrasting population trends. RESULTS Between populations, gentoo penguins from Livingston Island (Antarctica), a site with positive population trends, foraged in energy landscape sectors that implied lower foraging costs per energy gained compared with those around New Island (Falkland/Malvinas Islands; sub-Antarctic), a breeding site with fluctuating energy costs of foraging, breeding success and populations. Between species, chinstrap penguins foraged in sectors of the energy landscape with lower foraging costs per bottom time, a proxy for energy gain. They also showed lower physiological stress, as revealed by leucocyte counts, and higher breeding success than gentoo penguins. In terms of diet, we found a flexible foraging ecology in gentoo penguins but a narrow foraging niche for chinstraps. CONCLUSIONS The lower foraging costs incurred by the gentoo penguins from Livingston, may favour a higher breeding success that would explain the species' positive population trend in the Antarctic Peninsula. The lower foraging costs in chinstrap penguins may also explain their higher breeding success, compared to gentoos from Antarctica but not their negative population trend. Altogether, our results suggest a link between energy landscapes and breeding success mediated by the physiological condition.
Collapse
Affiliation(s)
- Juan F Masello
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Andres Barbosa
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360, Villiers en Bois, France
| | - Thomas Mattern
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
- New Zealand Penguin Initiative, PO Box 6319, Dunedin, 9022, New Zealand
| | - Renata Medeiros
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
- Cardiff School of Dentistry, Heath Park, Cardiff, CF14 4XY, UK
| | - Jennifer E Stockdale
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Marc N Kümmel
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Josabel Belliure
- GLOCEE - Global Change Ecology and Evolution Group, Universidad de Alcalá, Madrid, Spain
| | - Jesús Benzal
- Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Roger Colominas-Ciuró
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Javier Menéndez-Blázquez
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Sven Griep
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - William O C Symondson
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
4
|
Krüger L, Huerta MF, Santa Cruz F, Cárdenas CA. Antarctic krill fishery effects over penguin populations under adverse climate conditions: Implications for the management of fishing practices. AMBIO 2021; 50:560-571. [PMID: 32979187 PMCID: PMC7882667 DOI: 10.1007/s13280-020-01386-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Fast climate changes in the western Antarctic Peninsula are reducing krill density, which along with increased fishing activities in recent decades, may have had synergistic effects on penguin populations. We tested that assumption by crossing data on fishing activities and Southern Annular Mode (an indicator of climate change in Antarctica) with penguin population data. Increases in fishing catch during the non-breeding period were likely to result in impacts on both chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) populations. Catches and climate change together elevated the probability of negative population growth rates: very high fishing catch on years with warm winters and low sea ice (associated with negative Southern Annular Mode values) implied a decrease in population size in the following year. The current management of krill fishery in the Southern Ocean takes into account an arbitrary and fixed catch limit that does not reflect the variability of the krill population under effects of climate change, therefore affecting penguin populations when the environmental conditions were not favorable.
Collapse
Affiliation(s)
- Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - Magdalena F. Huerta
- Centro de Humedales Río Cruces, Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, Valdivia, Chile
| | - Francisco Santa Cruz
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| |
Collapse
|
5
|
Rogers AD, Frinault BAV, Barnes DKA, Bindoff NL, Downie R, Ducklow HW, Friedlaender AS, Hart T, Hill SL, Hofmann EE, Linse K, McMahon CR, Murphy EJ, Pakhomov EA, Reygondeau G, Staniland IJ, Wolf-Gladrow DA, Wright RM. Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:87-120. [PMID: 31337252 DOI: 10.1146/annurev-marine-010419-011028] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.
Collapse
Affiliation(s)
- A D Rogers
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
- REV Ocean, 1366 Lysaker, Norway
| | - B A V Frinault
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom
| | - D K A Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - N L Bindoff
- Antarctic Climate and Ecosystems Cooperative Research Centre and CSIRO Oceans and Atmospheres, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - R Downie
- WWF, Living Planet Centre, Surrey GU21 4LL, United Kingdom
| | - H W Ducklow
- Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964-8000, USA
| | - A S Friedlaender
- Institute for Marine Sciences, University of California, Santa Cruz, California 95060, USA
| | - T Hart
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
| | - S L Hill
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - E E Hofmann
- Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia 23508, USA
| | - K Linse
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - C R McMahon
- Integrated Marine Observing System Animal Tracking Facility, Sydney Institute of Marine Science, Sydney, New South Wales 2088, Australia
| | - E J Murphy
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - E A Pakhomov
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Aquatic Ecosystems Research Lab, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - G Reygondeau
- Aquatic Ecosystems Research Lab, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - I J Staniland
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - D A Wolf-Gladrow
- Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung (AWI), 27570 Bremerhaven, Germany
| | - R M Wright
- Tyndall Centre, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
6
|
Le Guen C, Kato A, Raymond B, Barbraud C, Beaulieu M, Bost CA, Delord K, MacIntosh AJJ, Meyer X, Raclot T, Sumner M, Takahashi A, Thiebot JB, Ropert-Coudert Y. Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae). GLOBAL CHANGE BIOLOGY 2018; 24:5304-5317. [PMID: 29957836 DOI: 10.1111/gcb.14377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The Southern Ocean is currently experiencing major environmental changes, including in sea-ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea-ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea-ice cover (ca. 20%). We further examined the effects of sea-ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea-ice cover. The relationship between several dive parameters and sea-ice cover in the foraging area appears to be quadratic. In years of low and high sea-ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea-ice cover. Our study therefore suggests that sea-ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea-ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long-term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.
Collapse
Affiliation(s)
- Camille Le Guen
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| | - Ben Raymond
- Australian Antarctic Division, Department of the Environment, Australian Government, Kingston, Tasmania, Australia
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| | - Michaël Beaulieu
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
- German Oceanographic Museum, Stralsund, Germany
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| | | | - Xavier Meyer
- CNRS, Institut Pluridisciplinaire Hubert Curien UMR7178, Université de Strasbourg, Strasbourg, France
| | - Thierry Raclot
- CNRS, Institut Pluridisciplinaire Hubert Curien UMR7178, Université de Strasbourg, Strasbourg, France
| | - Michael Sumner
- Australian Antarctic Division, Department of the Environment, Australian Government, Kingston, Tasmania, Australia
| | - Akinori Takahashi
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
- Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan
| | | | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, Villiers en Bois, France
| |
Collapse
|
7
|
Tarroux A, Lydersen C, Trathan PN, Kovacs KM. Temporal variation in trophic relationships among three congeneric penguin species breeding in sympatry. Ecol Evol 2018; 8:3660-3674. [PMID: 29686847 PMCID: PMC5901183 DOI: 10.1002/ece3.3937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 11/08/2022] Open
Abstract
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.
Collapse
Affiliation(s)
- Arnaud Tarroux
- Norwegian Polar Institute Fram Centre Tromsø Norway.,Norwegian Institute for Nature Research Fram Centre Tromsø Norway
| | | | | | - Kit M Kovacs
- Norwegian Polar Institute Fram Centre Tromsø Norway
| |
Collapse
|
8
|
Rodríguez‐Caro RC, Lima M, Anadón JD, Graciá E, Giménez A. Density dependence, climate and fires determine population fluctuations of the spur‐thighed tortoise
Testudo graeca. J Zool (1987) 2016. [DOI: 10.1111/jzo.12379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. C. Rodríguez‐Caro
- Departamento de Biología Aplicada Universidad Miguel Hernández Elche Alicante Spain
| | - M. Lima
- Departamento de Ecología Pontificia Universidad Católica de Chile Center of Applied Ecology and Sustainability (CAPES) Santiago Chile
| | - J. D. Anadón
- Department of Biology Queens College City University of New York Flushing NY USA
- The Graduate Center City University of New York New York NY USA
| | - E. Graciá
- Departamento de Biología Aplicada Universidad Miguel Hernández Elche Alicante Spain
| | - A. Giménez
- Departamento de Biología Aplicada Universidad Miguel Hernández Elche Alicante Spain
| |
Collapse
|