1
|
Yue Y, Ren Y, Lu C, Jiang N, Wang S, Fu J, Kong M, Zhang G. The research progress on meningeal metastasis in solid tumors. Discov Oncol 2025; 16:254. [PMID: 40019647 PMCID: PMC11871263 DOI: 10.1007/s12672-025-01950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 03/01/2025] Open
Abstract
Meningeal metastasis (MM), particularly Leptomeningeal metastases (LM), represents the advanced stage of solid tumors and poses a significant threat to patients' lives. Moreover, it imposes a substantial burden on society. LM represents the ultimate and most fatal stage of solid tumors, inflicting devastating consequences on patients and imposing a substantial burden on society. The incidence of LM continues to rise annually, emphasizing the urgent need for early recognition and treatment initiation in individuals with LM to significantly extend overall patient survival. Despite rapid advancements in current LM detection and treatment methods, the diagnosis of LM remains constrained by several limitations such as low diagnostic efficiency, the therapeutic outcomes remain suboptimal. Furthermore, there is currently no universally recognized industry standard for LM treatment, further underscoring its status as an unresolved challenge in tumor management. Additionally, progress towards elucidating the mechanisms underlying MM has stagnated. Therefore, this review aims to comprehensively summarize recent research advances pertaining to MM in solid tumors by elucidating its underlying mechanisms, exploring diagnostic and prognostic biomarkers while addressing existing research challenges.
Collapse
Affiliation(s)
- Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunya Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Nan Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Sihui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junkai Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengrui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Layng SC, Betsock A, Mansouri A, Komiya T, Miccio JA, Mahase SS, Knisely JPS. Brain metastases from lung cancer: recent advances and novel therapeutic opportunities. Discov Oncol 2025; 16:157. [PMID: 39934444 DOI: 10.1007/s12672-025-01873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Metastatic intracranial progression drastically impacts prognosis, therapeutic considerations and quality of life. The increasing incidence of lung cancer patients developing brain metastases (BM) parallels the incorporation of more effective systemic agents and improved surveillance. Our evolving knowledge of BM pathophysiology, along with advancements in surgical, radiotherapy and systemic therapy options, is rapidly changing prognostication and treatment paradigms. Optimal management of BM in the modern era is patient-specific, dependent on performance status, comorbidities, intracranial and extracranial disease burden, leptomeningeal disease, and the presence of targetable mutations. The purpose of this review is to provide a detailed overview of the detection, prognostication, and multidisciplinary, management of BM arising from non-small cell lung cancer and small cell lung cancer. We discuss contemporary evidence and active clinical trials supporting a wide array of treatment options, including surgery, radiosurgery, memory-avoidance whole brain radiation, craniospinal irradiation, chemotherapy, targeted agents and immunotherapy. Multidisciplinary paradigms will continue to evolve as currently accruing randomized trials evaluating these promising treatments options mature.
Collapse
Affiliation(s)
- Stephen C Layng
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Alexis Betsock
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, USA
| | - Takefumi Komiya
- Department of Hematology/Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Joseph A Miccio
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Sean S Mahase
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA.
| | | |
Collapse
|
3
|
Frechette KM, Breen WG, Brown PD, Sener UT, Webb LM, Routman DM, Laack NN, Mahajan A, Lehrer EJ. Radiotherapy and Systemic Treatment for Leptomeningeal Disease. Biomedicines 2024; 12:1792. [PMID: 39200256 PMCID: PMC11351760 DOI: 10.3390/biomedicines12081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Leptomeningeal disease (LMD) is a devastating sequelae of metastatic spread that affects approximately 5% of cancer patients. The incidence of LMD is increasing due to advancements in systemic therapy and enhanced detection methods. The purpose of this review is to provide a detailed overview of the evidence in the detection, prognostication, and treatment of LMD. A comprehensive literature search of PUBMED was conducted to identify articles reporting on LMD including existing data and ongoing clinical trials. We found a wide array of treatment options available for LMD including chemotherapy, targeted agents, and immunotherapy as well as several choices for radiotherapy including whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and craniospinal irradiation (CSI). Despite treatment, the prognosis for patients with LMD is dismal, typically 2-4 months on average. Novel therapies and combination approaches are actively under investigation with the aim of improving outcomes and quality of life for patients with LMD. Recent prospective data on the use of proton CSI for patients with LMD have demonstrated its potential survival benefit with follow-up investigations underway. There is a need for validated metrics to predict prognosis and improve patient selection for patients with LMD in order to optimize treatment approaches.
Collapse
Affiliation(s)
- Kelsey M. Frechette
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Ugur T. Sener
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - Lauren M. Webb
- Department of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA; (U.T.S.); (L.M.W.)
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (W.G.B.); (P.D.B.); (D.M.R.); (N.N.L.); (A.M.); (E.J.L.)
| |
Collapse
|
4
|
Sun R, Xi K, Ji S, Song X, Xi D, Yin W, Shao Y, Gu W, Jiang J. TDP-43 was Involved in Radiation-induced Neuronal Damage and May Not Through the BDNF/TrkB Pathway. Radiat Res 2024; 201:240-251. [PMID: 38235539 DOI: 10.1667/rade-23-00168.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cognitive dysfunction is the most common form of radiation-induced brain injury. TDP-43 is known to be associated with hippocampal degeneration and cognitive dysfunction, in this study we wanted to know if it also had an effect on radiation-induced hippocampus damage. At first, we found the expression of TDP-43 and p-TDP-43 was increased in the hippocampus of rats with radiation-induced cognitive dysfunction. Single-cell RNA-seq analysis of the rat hippocampus showed that TDP-43 was expressed in all cell types and was significantly upregulated in neuron cells after irradiation. Enrichment analysis of gene ontology (GO) functions and KEGG pathways showed that the differential expression genes in neuron after irradiation may be involved in synaptic plasticity. In vitro, the expression of TDP-43 was also increased in neuron cells after irradiation, while the expression of brain-derived neurotrophic factor (BDNF), TrkB, typical synaptic signature proteins (SYN, GAP43 and PSD95), β-tubulin and dendritic spines were decreased. In the irradiated neurons, the β-tubulin, dendritic and spines typical synaptic signature proteins had more severe damage in pcDNA3.1-TDP-43 plasmid transfections group, however, the damages were alleviated in the siRNA-TDP-43 plasmid transfections group. BDNF was highly expressed in the irradiated pcDNA3.1-TDP-43 plasmid transfections group, while its expression was decreased in the siRNA-TDP-43 group. The TrkB expression was significantly reduced in neurons after exposure to ionizing radiation, however, there was no significant correlation with TDP-43 expression. These data indicate that TDP-43 is involved in radiation-induced neuronal synaptic plasticity decline and developmental damage, furthermore, the BDNF/TrkB signaling pathway may not be involved in this process.
Collapse
Affiliation(s)
- Rui Sun
- Department of Oncology Radiotherapy
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kedi Xi
- Department of Oncology Radiotherapy
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | | | - Dan Xi
- Department of Oncology Radiotherapy
| | | | | | | | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Barbour AB, Kotecha R, Lazarev S, Palmer JD, Robinson T, Yerramilli D, Yang JT. Radiation Therapy in the Management of Leptomeningeal Disease From Solid Tumors. Adv Radiat Oncol 2024; 9:101377. [PMID: 38405313 PMCID: PMC10885590 DOI: 10.1016/j.adro.2023.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/03/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Leptomeningeal disease (LMD) is clinically detected in 5% to 10% of patients with solid tumors and is a source of substantial morbidity and mortality. Prognosis for this entity remains poor and treatments are palliative. Radiation therapy (RT) is an essential tool in the management of LMD, and a recent randomized trial demonstrated a survival benefit for proton craniospinal irradiation (CSI) in select patients. In the setting of this recent advance, we conducted a review of the role of RT in LMD from solid tumors to evaluate the evidence basis for RT recommendations. Methods and Materials In November 2022, we conducted a comprehensive literature search in PubMed, as well as a review of ongoing clinical trials listed on ClinicalTrials.gov, to inform a discussion on the role of RT in solid tumor LMD. Because of the paucity of high-quality published evidence, discussion was informed more by expert consensus and opinion, including a review of societal guidelines, than evidence from clinical trials. Results Only 1 prospective randomized trial has evaluated RT for LMD, demonstrating improved central nervous system progression-free survival for patients with breast and lung cancer treated with proton CSI compared with involved-field RT. Modern photon CSI techniques have improved upon historical rates of acute hematologic toxicity, but the overall benefit of this modality has not been prospectively evaluated. Multiple retrospective studies have explored the use of involved-field RT or the combination of RT with chemotherapy, but clear evidence of survival benefit is lacking. Conclusions Optimal management of LMD with RT remains reliant upon expert opinion, with proton CSI indicated in patients with good performance status and extra-central nervous system disease that is either well-controlled or for which effective treatment options are available. Photon-based CSI traditionally has been associated with increased marrow and gastrointestinal toxicities, though intensity modulated RT/volumetric-modulated arc therapy based photon CSI may have reduced the toxicity profile. Further work is needed to understand the role of radioisotopes as well as combined modality treatment with intrathecal or central nervous system penetrating systemic therapies.
Collapse
Affiliation(s)
- Andrew B. Barbour
- Department of Radiation Oncology, University of Washington – Fred Hutchinson Cancer Center, Seattle, Washington
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua D. Palmer
- Department of Radiation Oncology, The James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Timothy Robinson
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Divya Yerramilli
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan T. Yang
- Department of Radiation Oncology, University of Washington – Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
6
|
Bardhan M, Dey D, Suresh V, Javed B, Venur VA, Joe N, Kalidindi R, Ozair A, Khan M, Mahtani R, Lo S, Odia Y, Ahluwalia MS. An overview of the therapeutic strategies for neoplastic meningitis due to breast cancer: when and why? Expert Rev Neurother 2024; 24:77-103. [PMID: 38145503 DOI: 10.1080/14737175.2023.2293223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Neoplastic meningitis (NM), also known as leptomeningeal carcinomatosis, is characterized by the infiltration of tumor cells into the meninges, and poses a significant therapeutic challenge owing to its aggressive nature and limited treatment options. Breast cancer is a common cause of NM among solid tumors, further highlighting the urgent need to explore effective therapeutic strategies. This review aims to provide insights into the evolving landscape of NM therapy in breast cancer by collating existing research, evaluating current treatments, and identifying potential emerging therapeutic options. AREAS COVERED This review explores the clinical features, therapeutic strategies, recent advances, and challenges of managing NM in patients with breast cancer. Its management includes multimodal strategies, including systemic and intrathecal chemotherapy, radiation therapy, and supportive care. This review also emphasizes targeted drug options and optimal drug concentrations, and discusses emerging therapies. Additionally, it highlights the variability in treatment outcomes and the potential of combination regimens to effectively manage NM in breast cancer. EXPERT OPINION Challenges in treating NM include debates over clinical trial end points and the management of adverse effects. Drug resistance and low response rates are significant hurdles, particularly inHER2-negative breast cancer. The development of more precise and cost-effective medications with improved selectivity is crucial. Additionally, global efforts are needed for infrastructure development and cancer control considering the diverse nature of the disease.
Collapse
Affiliation(s)
- Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Vinay Suresh
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vyshak Alva Venur
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Neha Joe
- St John's Medical College Hospital, Bengaluru, India
| | | | - Ahmad Ozair
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Reshma Mahtani
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yazmin Odia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Malani R, Bhatia A, Warner AB, Yang JT. Leptomeningeal Carcinomatosis from Solid Tumor Malignancies: Treatment Strategies and Biomarkers. Semin Neurol 2023; 43:859-866. [PMID: 37989214 DOI: 10.1055/s-0043-1776996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Leptomeningeal metastases/diseases (LMDs) are a late-stage complication of solid tumor or hematologic malignancies. LMD is spread of cancer cells to the layers of the leptomeninges (pia and arachnoid maters) and subarachnoid space seen in 3 to 5% of cancer patients. It is a disseminated disease which carries with it significant neurologic morbidity and mortality. Our understanding of disease pathophysiology is currently lacking; however, advances are being made. As our knowledge of disease pathogenesis has improved, treatment strategies have evolved. Mainstays of treatment such as radiotherapy have changed from involved-field radiotherapy strategies to proton craniospinal irradiation which has demonstrated promising results in recent clinical trials. Systemic treatment strategies have also improved from more traditional chemotherapeutics with limited central nervous system (CNS) penetration to more targeted therapies with better CNS tumor response. Many challenges remain from earlier clinical detection of disease through improvement of active treatment options, but we are getting closer to meaningful treatment.
Collapse
Affiliation(s)
- Rachna Malani
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ankush Bhatia
- Department of Neurology, Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Allison Betof Warner
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Jonathan T Yang
- Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Khaled ML, Tarhini AA, Forsyth PA, Smalley I, Piña Y. Leptomeningeal Disease (LMD) in Patients with Melanoma Metastases. Cancers (Basel) 2023; 15:cancers15061884. [PMID: 36980770 PMCID: PMC10047692 DOI: 10.3390/cancers15061884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Leptomeningeal disease (LMD) is a devastating complication caused by seeding malignant cells to the cerebrospinal fluid (CSF) and the leptomeningeal membrane. LMD is diagnosed in 5-15% of patients with systemic malignancy. Management of LMD is challenging due to the biological and metabolic tumor microenvironment of LMD being largely unknown. Patients with LMD can present with a wide variety of signs and/or symptoms that could be multifocal and include headache, nausea, vomiting, diplopia, and weakness, among others. The median survival time for patients with LMD is measured in weeks and up to 3-6 months with aggressive management, and death usually occurs due to progressive neurologic dysfunction. In melanoma, LMD is associated with a suppressive immune microenvironment characterized by a high number of apoptotic and exhausted CD4+ T-cells, myeloid-derived suppressor cells, and a low number of CD8+ T-cells. Proteomics analysis revealed enrichment of complement cascade, which may disrupt the blood-CSF barrier. Clinical management of melanoma LMD consists primarily of radiation therapy, BRAF/MEK inhibitors as targeted therapy, and immunotherapy with anti-PD-1, anti-CTLA-4, and anti-LAG-3 immune checkpoint inhibitors. This review summarizes the biology and anatomic features of melanoma LMD, as well as the current therapeutic approaches.
Collapse
Affiliation(s)
- Mariam Lotfy Khaled
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Peter A Forsyth
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Inna Smalley
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yolanda Piña
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Gordon J, Lockard G, Alayli A, Tran ND. Fatal subarachnoid hemorrhage after ventriculoperitoneal shunt placement to manage communicating hydrocephalus due to melanoma leptomeningeal disease. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Mantovani C, Gastino A, Cerrato M, Badellino S, Ricardi U, Levis M. Modern Radiation Therapy for the Management of Brain Metastases From Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front Oncol 2021; 11:772789. [PMID: 34796118 PMCID: PMC8593461 DOI: 10.3389/fonc.2021.772789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient’s performance status, extent and location of brain involvement, extracranial disease control and the presence of any “druggable” molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a “state-of-art” treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.
Collapse
Affiliation(s)
| | | | - Marzia Cerrato
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Sener U, Kumthekar P, Boire A. Advances in the diagnosis, evaluation, and management of leptomeningeal disease. Neurooncol Adv 2021; 3:v86-v95. [PMID: 34859236 PMCID: PMC8633748 DOI: 10.1093/noajnl/vdab108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptomeningeal metastasis (LM) is a devastating complication of cancer with variable clinical presentation and limited benefit from existing treatment options. In this review, we discuss advances in LM diagnostics and therapeutics with the potential to reverse this grim course. Emerging cerebrospinal fluid circulating tumor cell and cell-free tumor DNA analysis technologies will improve diagnosis of LM, while providing crucial genetic information, capturing tumor heterogeneity, and quantifying disease burden. Circulating tumor cells and cell-free tumor DNA have utility as biomarkers to track disease progression and treatment response. Treatment options for LM include ventriculoperitoneal shunting for symptomatic relief, radiation therapy including whole-brain radiation and focal radiation for bulky leptomeningeal involvement, and systemic and intrathecal medical therapies, including targeted and immunotherapies based on tumor mutational profiling. While existing treatments for LM have limited efficacy, recent advances in liquid biopsy together with increasing availability of targeted treatments will lead to rational multimodal individualized treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Priya Kumthekar
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|