1
|
Wang Y, Shi G, Wang X, Xie Z, Gou J, Huang L, Huang H, You W, Wang R, Yang Y, Wang F, Zhu T, Zhao D. Preliminary Evaluation of the Safety and Immunogenicity of a Novel Protein-Based Pneumococcal Vaccine in Healthy Adults Aged 18-49: A Phase Ia Randomized, Double Blind, Placebo-Controlled Clinical Study. Vaccines (Basel) 2024; 12:827. [PMID: 39203953 PMCID: PMC11358999 DOI: 10.3390/vaccines12080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/03/2024] Open
Abstract
Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Yanxia Wang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Gang Shi
- National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Xue Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Zhiqiang Xie
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Jinbo Gou
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Lili Huang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Haitao Huang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Wangyang You
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Ruijie Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Yongli Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Dongyang Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| |
Collapse
|
2
|
Kono M, Iyo T, Murakami D, Sakatani H, Nanushaj D, Hotomi M. Maternal immunization with pneumococcal surface protein A provides the immune memories of offspring against pneumococcal infection. Front Cell Infect Microbiol 2023; 13:1059603. [PMID: 37033488 PMCID: PMC10076723 DOI: 10.3389/fcimb.2023.1059603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Streptococcus pneumoniae (S. pneumoniae) is one of the most widespread pathogens in the world and one of the largest infectious causes of infant mortality. Although current vaccines have various benefits, antibiotic resistance and the inability to vaccinate infants less than one year old demands the development of new protective strategies. One strategy, 'maternal immunization', is to protect infants by passive immunity from an immunized mother, although its mechanism is still not fully understood. Materials and methods The current study aimed to acquire immunity against S. pneumoniae in infants by maternal immunization with pneumococcal common antigen, pneumococcal surface protein A (PspA). Four-week-old female mice were immunized with recombinant PspA intranasally twice a week for three weeks. Females were mated with age-matched males after immunization, and delivered offspring. Results The week-old offspring derived from and fostered by immunized mothers had more anti-PspA-specific antibody producing cells in the spleen than those derived from sham-immunized mothers. The offspring were raised up to four weeks old and were subcutaneously stimulated with recombinant PspA. The levels of anti-PspA IgG in sera after stimulation were significantly higher in the offspring derived from the immunized mothers and the induced specific antibody to PspA showed protective efficacy against systemic pneumococcal infection. Discussion Maternal immunization is suggested to be able to provide a sustained immune memory to offspring. The current study would be a milestone in the field of maternal immunization toward a universal pneumococcal vaccine.
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takuro Iyo
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kinan Hospital, Tanabe, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kinan Hospital, Tanabe, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Muneki Hotomi,
| |
Collapse
|
3
|
Wiedinger K, Pinho D, Bitsaktsis C. Utilization of cholera toxin B as a mucosal adjuvant elicits antibody-mediated protection against S. pneumoniae infection in mice. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:15-24. [PMID: 28344805 DOI: 10.1177/2051013617691041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
BACKGOUND The introduction of the pneumococcal conjugate and polysaccharide vaccines have been valuable tools for combating invasive pneumococcal infection in children and healthy adults. Despite the available vaccination strategies, pneumococcal pneumonia and associated diseases continue to cause substantial morbidity and mortality, particularly in individuals with chronic disease and ageing populations. Next-generation pneumococcal vaccines will need to be highly immunogenic across patient populations providing both mucosal and systemic protective immunity. Mucosal immunization is an effective strategy for stimulating the immune response at the site of pathogen entry while increasing systemic immunity. In this study we utilized intranasal immunization with pneumococcal surface protein A (PspA), in combination with the mucosal adjuvant cholera toxin B (CTB), to characterize the immune components providing protection against S. pneumoniae challenge. METHODS Mice were immunized intranasally with CTB and PspA individually, and in combination, followed by lethal bacterial challenge with S. pneumoniae, strain A66.1. Animals were monitored for survival and tested for lung bacterial burden, cytokine production as well as S. pneumoniae-specific antibody titer in mouse sera. The primary immunological contributor to the observed protection was confirmed by cytokine neutralization and serum passive transfer. RESULTS The combination of CTB and PspA provided complete protection against bacterial challenge, which coincided with a significant decrease in lung bacterial burden. Increases in the T-helper (Th) 1 cytokines, interferon (IFN)-γ and interleukin (IL)-2 were observed in the lung 24 h post-challenge while decreases in proinflammatory mediators IL-6 and tumor necrosis factor (TNF)-α were also recorded at the same time point. The adjuvanted PspA immunization induced significant titers of S. pneumoniae-specific antibody in the serum of mice prior to infection. Serum adoptive transfer passively protected animals against subsequent challenge while IFN-γ neutralization had no impact on the outcome of immunization, suggesting a primary role for antibody-mediated protection in the context of this immunization strategy. CONCLUSION Mucosal immunization with CTB and PspA induced a local cellular immune response and systemic humoral immunity which resulted in effective reduction of pulmonary bacterial burden and complete protection against S. pneumoniae challenge. While induction of the pleiotropic cytokine IFN-γ likely contributes to control of infection through activation of effector pathways, it was not required for protection. Instead, immunization with PspA and CTB-induced S. pneumoniae-specific antibodies in the serum prior to infection that were sufficient to protect against mucosal challenge.
Collapse
|
4
|
Arck PC, Hecher K, Solano ME. B Cells in Pregnancy: Functional Promiscuity or Tailored Function? Biol Reprod 2015; 92:12. [DOI: 10.1095/biolreprod.114.126110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
5
|
Murphy TF, Chonmaitree T, Barenkamp S, Kyd J, Nokso-Koivisto J, Patel JA, Heikkinen T, Yamanaka N, Ogra P, Swords WE, Sih T, Pettigrew MM. Panel 5: Microbiology and immunology panel. Otolaryngol Head Neck Surg 2013; 148:E64-89. [PMID: 23536533 DOI: 10.1177/0194599812459636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. CONCLUSION Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. IMPLICATIONS FOR PRACTICE The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York 14203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Animal models for neonatal diseases in humans. Vaccine 2013; 31:2489-99. [DOI: 10.1016/j.vaccine.2012.11.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023]
|
7
|
Medina M, Vintiñi E, Villena J, Raya R, Alvarez S. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng Bugs 2012; 1:313-25. [PMID: 21326831 DOI: 10.4161/bbug.1.5.12086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 03/16/2010] [Accepted: 04/14/2010] [Indexed: 12/17/2022] Open
Abstract
Most studies of Lactococcus lactis as delivery vehicles of pneumococcal antigens are focused on the effectiveness of mucosal recombinant vaccines against Streptococcus pneumoniae in animal models. At present, there are three types of pneumococcal vaccines: capsular polysaccharide pneumococcal vaccines (PPV), protein-polysaccharide conjugate pneumococcal vaccines (PCV) and protein-based pneumococcal vaccines (PBPV). Only PPV and PCV have been licensed. These vaccines, however, do not represent a definitive solution. Novel, safe and inexpensive vaccines are necessary, especially in developing countries. Probiotic microorganisms such as lactic acid bacteria (LAB) are an interesting alternative for their use as vehicles in pneumococcal vaccines due to their GRAS (Generally Recognized As Safe) status. Thus, the adjuvanticity of Lactococcus lactis by itself represents added value over the use of other bacteria, a question dealt with in this review. In addition, the expression of different pneumococcal antigens as well as the use of oral and nasal mucosal routes of administration of lactococcal vaccines is considered. The advantages of nasal live vaccines are evident; nonetheless, oral vaccines can be a good alternative when the adequate dose is used. Another point addressed here is the use of live versus inactivated vaccines. In this sense, few researchers have focused on inactivated strains to be used as vaccines against pneumoccoccus. The immunogenicity of live vaccines is better than the one afforded by inactivated ones; however, the probiotic-inactivated vaccine combination has improved this matter considerably. The progress made so far in the protective immune response induced by recombinant vaccines, the successful trials in animal models and the safety considerations of their application in humans suggest that the use of recombinant vaccines represents a good short-term option in the control of pneumococcal diseases.
Collapse
Affiliation(s)
- Marcela Medina
- Laboratorio de Bioquímica y Clínica Experimental, Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | | | | | | | | |
Collapse
|
8
|
Kono M, Hotomi M, Hollingshead SK, Briles DE, Yamanaka N. Maternal immunization with pneumococcal surface protein A protects against pneumococcal infections among derived offspring. PLoS One 2011; 6:e27102. [PMID: 22073127 PMCID: PMC3205068 DOI: 10.1371/journal.pone.0027102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022] Open
Abstract
Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words)
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
- * E-mail:
| | - Susan K. Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Noboru Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| |
Collapse
|
9
|
Natural antibodies against several pneumococcal virulence proteins in children during the pre-pneumococcal-vaccine era: the generation R study. Infect Immun 2011; 79:1680-7. [PMID: 21282409 DOI: 10.1128/iai.01379-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The currently available pneumococcal vaccines do not protect against all serotypes of Streptococcus pneumoniae. A shift toward nonvaccine serotypes causing colonization and invasive disease has occurred, and studies on protein-based vaccines have been undertaken. We assessed the association between specific antibodies against pneumococcal virulence proteins and colonization and respiratory tract infections (RTIs). Additionally, we assessed the extent to which colonization induces a humoral immune response. Nasopharyngeal swabs collected from children at 1.5, 6, 14, and 24 months of age were cultured for pneumococcus. Serum samples were obtained at birth and at 6, 14, and 24 months (n = 57 children providing 177 serum samples). Data were collected prior to the pneumococcal vaccine era. IgG, IgA, and IgM levels against 17 pneumococcal protein vaccine candidates were measured using a bead-based flow cytometry technique (xMAP; Luminex Corporation). Information regarding RTIs was questionnaire derived. Levels of IgG against all proteins were high in cord blood, decreased in the first 6 months and increased again thereafter, in contrast to the course of IgA and IgM levels. Specific antibodies were induced upon colonization. Increased levels of IgG against BVH-3, NanA, and SP1003 at 6 months, NanA, PpmA, PsaA, SlrA, SP0189, and SP1003 at 14 months, and SlrA at 24 months were associated with a decreased number of RTIs in the third year of life but not with colonization. Maternal antipneumococcal antibodies did not protect against pneumococcal colonization and infection. Certain antibodies against pneumococcal virulence proteins, some of which are induced by colonization, are associated with a decreased number of RTIs in children. This should be taken into account in future pneumococcal vaccine studies.
Collapse
|
10
|
Vintiñi E, Villena J, Alvarez S, Medina M. Administration of a probiotic associated with nasal vaccination with inactivated Lactococcus lactis-PppA induces effective protection against pneumoccocal infection in young mice. Clin Exp Immunol 2009; 159:351-62. [PMID: 20002449 DOI: 10.1111/j.1365-2249.2009.04056.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae is a serious public health problem, especially in developing countries, where available vaccines are not part of the vaccination calendar. We evaluated different respiratory mucosa immunization protocols that included the nasal administration of Lactococcus lactis-pneumococcal protective protein A (PppA) live, inactivated, and in association with a probiotic (Lc) to young mice. The animals that received Lc by the oral and nasal route presented the highest levels of immunoglobulin (Ig)A and IgG anti-PppA antibodies in bronchoalveolar lavages (BAL) and IgG in serum, which no doubt contributed to the protection against infection. However, only the groups that received the live and inactivated vaccine associated with the oral administration of the probiotic were able to prevent lung colonization by S. pneumoniae serotypes 3 and 14 in a respiratory infection model. This would be related to a preferential stimulation of the T helper type 1 (Th1) cells at local and systemic levels and with a moderate Th2 and Th17 response, shown by the cytokine profile induced in BAL and by the results of the IgG1/IgG2a ratio at local and systemic levels. Nasal immunization with the inactivated recombinant strain associated with oral Lc administration was able to stimulate the specific cellular and humoral immune response and afford protection against the challenge with the two S. pneumoniae serotypes. The results obtained show the probiotic-inactivated vaccine association as a valuable alternative for application to human health, especially in at-risk populations, and are the first report of a safe and effective immunization strategy using an inactivated recombinant strain.
Collapse
Affiliation(s)
- E Vintiñi
- Laboratorio de Bioquímica y Clínica Experimental, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán, Argentina
| | | | | | | |
Collapse
|
11
|
Maternal antibodies to pneumolysin but not to pneumococcal surface protein A delay early pneumococcal carriage in high-risk Papua New Guinean infants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1633-8. [PMID: 19776196 DOI: 10.1128/cvi.00247-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunization of pregnant women can be an efficient strategy to induce early protection in infants in developing countries. Pneumococcal protein-based vaccines may have the capacity to induce pneumococcal serotype-independent protection. To understand the potential of maternal pneumococcal protein-specific antibodies in infants in high-risk areas, we studied the placental transfer of naturally acquired antibodies to pneumolysin (Ply) and pneumococcal surface protein A family 1 and 2 (PspA1 and PspA2) in relation to onset of pneumococcal nasopharyngeal carriage in infants in Papua New Guinea (PNG). In this study, 76% of the infants carried Streptococcus pneumoniae in the upper respiratory tract within the first month of life, at a median age of 19 days. Maternal and cord blood antibody titers to Ply (rho = 0.824, P < 0.001), PspA1 (rho = 0.746, P < 0.001), and PspA2 (rho = 0.631, P < 0.001) were strongly correlated. Maternal pneumococcal carriage (hazard ratio [HR], 2.60; 95% confidence interval [CI], 1.25 to 5.39) and younger maternal age (HR, 0.74; 95% CI, 0.54 to 1.00) were independent risk factors for early carriage, while higher cord Ply-specific antibody titers predicted a significantly delayed onset (HR, 0.71; 95% CI, 0.52 to 1.00) and cord PspA1-specific antibodies a significantly younger onset of carriage in PNG infants (HR, 1.57; 95% CI, 1.03 to 2.40). Maternal vaccination with a pneumococcal protein-based vaccine should be considered as a strategy to protect high-risk infants against pneumococcal disease by reducing carriage risks in both mothers and infants.
Collapse
|