1
|
Liu X, Song M, Liu Y, Yang S, Chen S, Kang J, Shen J, Zhu K. Rational Design of Natural Xanthones Against Gram-negative Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411923. [PMID: 39888292 PMCID: PMC11984908 DOI: 10.1002/advs.202411923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Most antibiotics are ineffective against Gram-negative bacteria owing to the existence of the outer membrane (OM) barrier. The rational design of compounds to expand their antibacterial spectra of antibiotics solely targeting Gram-positive pathogens remains challenging. Here, the design of skeletons from natural products to penetrate the OM are deciphered. Structure-activity relationship analysis shows the optimization of the model of natural xanthones α-mangostin endows the broad-spectrum antibacterial activity. Mechanistic studies demonstrate the lead compound A20 penetrates the OM in a self-promoted pathway through electronic and hydrophobic interactions with lipopolysaccharides and phospholipids in OM. A20 displays rapid bactericidal activity by targeting the cofactor heme in the respiratory complex. The therapeutic efficacy of A20 is demonstrated in two animal models infected with multidrug-resistant Gram-negative bacterial pathogens. The findings elucidate the structural property and self-promoted transportation of a class of antibacterial compounds, to facilitate the design and discovery of antibacterial agents against increasingly prevalent Gram-negative pathogens associated with infections.
Collapse
Affiliation(s)
- Xiaojia Liu
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Meirong Song
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Ying Liu
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Shang Chen
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jijun Kang
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
2
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
3
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
4
|
Bianchi M, Winterhalter M, Harbig TA, Hörömpöli D, Ghai I, Nieselt K, Brötz-Oesterhelt H, Mayer C, Borisova-Mayer M. Fosfomycin Uptake in Escherichia coli Is Mediated by the Outer-Membrane Porins OmpF, OmpC, and LamB. ACS Infect Dis 2024; 10:127-137. [PMID: 38104323 PMCID: PMC10789261 DOI: 10.1021/acsinfecdis.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The antibiotic fosfomycin (FOS) is widely recognized for the treatment of lower urinary tract infections with Escherichia coli and has lately gained importance as a therapeutic option to combat multidrug-resistant bacteria. However, resistance to FOS frequently develops through mutations reducing its uptake. Although the inner-membrane transport of FOS has been extensively studied in E. coli, its outer-membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompFΔompC strain is four times more resistant to FOS than the wild type and the respective single mutants. Continuous monitoring of FOS-induced lysis of porin-deficient strains additionally highlighted the importance of LamB. The relevance of OmpF, OmpC, and LamB to FOS uptake was confirmed by electrophysiological and transcriptional analysis. Our study gives for the first time in-depth insight into the transport of FOS through the OM in E. coli.
Collapse
Affiliation(s)
- Martina Bianchi
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Constructor
University, 28759 Bremen, Germany
| | - Theresa Anisja Harbig
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Hörömpöli
- Department
of Microbial Bioactive Compounds, IMIT, University of Tübingen, 72076 Tübingen, Germany
| | - Ishan Ghai
- Department
of Life Sciences and Chemistry, Constructor
University, 28759 Bremen, Germany
| | - Kay Nieselt
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, IMIT, University of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Mayer
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| | - Marina Borisova-Mayer
- Department
of Organismic Interactions, Interfaculty Institute of Microbiology
and Infection Medicine (IMIT), University
of Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”
University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Turbant F, Esnouf E, Rosaz F, Wien F, Węgrzyn G, Chauvet H, Arluison V. Role of the Bacterial Amyloid-like Hfq in Fluoroquinolone Fluxes. Microorganisms 2023; 12:53. [PMID: 38257880 PMCID: PMC10819720 DOI: 10.3390/microorganisms12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.
Collapse
Affiliation(s)
- Florian Turbant
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Emeline Esnouf
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Francois Rosaz
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Hugo Chauvet
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- UFR SDV, Université Paris Cité, 75013 Paris, France
| |
Collapse
|
6
|
Xu T, Fang D, Li F, Wang Z, Liu Y. A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0245. [PMID: 37808177 PMCID: PMC10557118 DOI: 10.34133/research.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use.
Collapse
Affiliation(s)
- Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine,
Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
8
|
Akshay SD, Nayak S, Deekshit VK, Rohit A, Maiti B. Differential expression of outer membrane proteins and quinolone resistance determining region mutations can lead to ciprofloxacin resistance in Salmonella Typhi. Arch Microbiol 2023; 205:136. [PMID: 36961627 DOI: 10.1007/s00203-023-03485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Multi-drug resistance in Salmonella Typhi remains a public health concern globally. This study aimed to investigate the function of quinolone resistance determining region (QRDR) of gyrA and parC in ciprofloxacin (CIP) resistant isolates and examine the differential expression of outer membrane proteins (OMPs) on exposure to sub-lethal concentrations of CIP in S. Typhi. The CIP-resistant isolates were screened for mutations in the QRDR and analyzed for bacterial growth. Furthermore, major OMPs encoding genes such as ompF, lamB, yaeT, tolC, ompS1, and phoE were examined for differential expression under the sub-lethal concentrations of CIP by real-time PCR and SDS-PAGE. Notably, our study has shown a single-point mutation in gyrA at codon 83 (Ser83-tyrosine and Ser83-phenylalanine), also the rare amino acid substitution in parC gene at codon 80 (Glu80-glycine) in CIP-resistant isolates. Additionally, CIP-resistant isolates showed moderate growth compared to susceptible isolates. Although most of the OMP-encoding genes (tolC, ompS1, and phoE) showed some degree of upregulation, a significant level of upregulation (p < 0.05) was observed only for yaeT. However, ompF and lamB genes were down-regulated compared to CIP-susceptible isolates. Whereas OMPs profiling using SDS-PAGE did not show any changes in the banding pattern. These results provide valuable information on the QRDR mutation, and the difference in the growth, and expression of OMP-encoding genes in resistant and susceptible isolates of S. Typhi. This further provides insight into the involvement of QRDR mutation and OMPs associated with CIP resistance in S. Typhi.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Srajana Nayak
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vijaya Kumar Deekshit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Anusha Rohit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
- Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
9
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
10
|
Rodrigues IC, Rodrigues SC, Duarte FV, da Costa PM, da Costa PM. The Role of Outer Membrane Proteins in UPEC Antimicrobial Resistance: A Systematic Review. MEMBRANES 2022; 12:981. [PMID: 36295740 PMCID: PMC9609314 DOI: 10.3390/membranes12100981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are one of the most common agents of urinary tract infection. In the last decade, several UPEC strains have acquired antibiotic resistance mechanisms and some have become resistant to all classes of antibiotics. UPEC outer membrane proteins (OMPs) seem to have a decisive role not only in the processes of invasion and colonization of the bladder mucosa, but also in mechanisms of drug resistance, by which bacteria avoid killing by antimicrobial molecules. This systematic review was performed according to the PRISMA guidelines, aiming to characterize UPEC OMPs and identify their potential role in antimicrobial resistance. The search was limited to studies in English published during the last decade. Twenty-nine studies were included for revision and, among the 76 proteins identified, seven were associated with antibiotic resistance. Indeed, OmpC was associated with β-lactams resistance and OmpF with β-lactams and fluoroquinolone resistance. In turn, TolC, OmpX, YddB, TosA and murein lipoprotein (Lpp) were associated with fluoroquinolones, enrofloxacin, novobiocin, β-lactams and globomycin resistances, respectively. The clinical implications of UPEC resistance to antimicrobial agents in both veterinary and human medicine must propel the implementation of new strategies of administration of antimicrobial agents, while also promoting the development of improved antimicrobials, protective vaccines and specific inhibitors of virulence and resistance factors.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sílvia C. Rodrigues
- Pharmaissues, Consultoria, Lda, Rua da Esperança n° 101, Ribeira de Frades, 3045-420 Coimbra, Portugal
| | - Filipe V. Duarte
- Centro de Neurociências e Biologia Celular (CNC), Faculdade de Medicina, Pólo 1, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M. da Costa
- Microbiology Department, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Paulo M. da Costa
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
11
|
Tyulenev AV, Smirnova GV, Muzyka NG, Oktyabrsky ON. Study of the early response of Escherichia coli lpcA and ompF mutants to ciprofloxacin. Res Microbiol 2022; 173:103954. [PMID: 35568342 DOI: 10.1016/j.resmic.2022.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
In most previous studies the sensitivity of Escherichia coli outer membrane mutants to ciprofloxacin (CF) was studied by MIC method. In the present work, the early response of these mutants to CF was studied using physiological and biochemical methods and electrochemical sensors. The use of sensors made it possible to monitor dissolved oxygen, potassium and extracellular sulfide continuously directly in growing cultures in real time. In the absence of CF, no significant differences were found between the mutants deficient in porin OmpF and lipopolysaccharide (LPS) and the parent. The only exception was 5-6 times higher extracellular glutathione and 1.5-3 times lower intracellular glutathione in the lpcA compared to the parent and the ompF. Ciprofloxacin inhibited growth, respiration, membrane potential and K+ consumption, which was less pronounced in both mutants compared to the parent. Changes in these parameters correlated with each other, but not with survival. A reversible increase in sulfide level was observed at 3 μg ml-1 CF in the parent, at 20 μg ml-1 CF in ompF and was absent in lpcA at all concentrations. The data obtained show that the use of electrochemical sensors can provide a more complete understanding of the early response of bacteria to CF.
Collapse
Affiliation(s)
- Alexey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| |
Collapse
|
12
|
Fortuin S, Soares NC. The Integration of Proteomics and Metabolomics Data Paving the Way for a Better Understanding of the Mechanisms Underlying Microbial Acquired Drug Resistance. Front Med (Lausanne) 2022; 9:849838. [PMID: 35602483 PMCID: PMC9120609 DOI: 10.3389/fmed.2022.849838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Due to an increase in the overuse of antimicrobials and accelerated incidence of drug resistant pathogens, antimicrobial resistance has become a global health threat. In particular, bacterial antimicrobial resistance, in both hospital and community acquired transmission, have been found to be the leading cause of death due to infectious diseases. Understanding the mechanisms of bacterial drug resistance is of clinical significance irrespective of hospital or community acquired since it plays an important role in the treatment strategy and controlling infectious diseases. Here we highlight the advances in mass spectrometry-based proteomics impact in bacterial proteomics and metabolomics analysis- focus on bacterial drug resistance. Advances in omics technologies over the last few decades now allows multi-omics studies in order to obtain a comprehensive understanding of the biochemical alterations of pathogenic bacteria in the context of antibiotic exposure, identify novel biomarkers to develop new drug targets, develop time-effectively screen for drug susceptibility or resistance using proteomics and metabolomics.
Collapse
Affiliation(s)
- Suereta Fortuin
- African Microbiome Institute, General Internal Medicine, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Suereta Fortuin
| | - Nelson C. Soares
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares
| |
Collapse
|
13
|
Exploring the permeation of fluoroquinolone metalloantibiotics across outer membrane porins by combining molecular dynamics simulations and a porin-mimetic in vitro model. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183838. [PMID: 34896074 DOI: 10.1016/j.bbamem.2021.183838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
The misuse and overuse of fluoroquinolones in recent years have triggered alarming levels of resistance to these antibiotics. Porin channels are crucial for the permeation of fluoroquinolones across the outer membrane of Gram-negative bacteria and modifications in porin expression are an important mechanism of bacterial resistance. One possible strategy to overcome this problem is the development of ternary copper complexes with fluoroquinolones. Compared to fluoroquinolones, these metalloantibiotics present a larger partition to the lipid bilayer and a more favorable permeation, by passive diffusion, across bacteriomimetic phospholipid-based model membranes. To rule out the porin-dependent pathway for the metalloantibiotics, we explored the permeation through OmpF (one of the most abundant porins present in the outer membrane of Gram-negative bacteria) using a multi-component approach. X-ray studies of OmpF porin crystals soaked with a ciprofloxacin ternary copper complex did not show a well-defined binding site for the compound. Molecular dynamics simulations showed that the translocation of the metalloantibiotic through this porin is less favorable than that of free fluoroquinolone, as it presented a much larger free energy barrier to cross the narrow constriction region of the pore. Lastly, permeability studies of different fluoroquinolones and their respective copper complexes using a porin-mimetic in vitro model corroborated the lower rate of permeation for the metalloantibiotics relative to the free antibiotics. Our results support a porin-independent mechanism for the influx of the metalloantibiotics into the bacterial cell. This finding brings additional support to the potential application of these metalloantibiotics in the fight against resistant infections and as an alternative to fluoroquinolones.
Collapse
|
14
|
Gao J, Han Z, Li P, Zhang H, Du X, Wang S. Outer Membrane Protein F Is Involved in Biofilm Formation, Virulence and Antibiotic Resistance in Cronobacter sakazakii. Microorganisms 2021; 9:microorganisms9112338. [PMID: 34835462 PMCID: PMC8619257 DOI: 10.3390/microorganisms9112338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/19/2023] Open
Abstract
In some Gram-negative bacteria, ompF encodes outer membrane protein F (OmpF), which is a cation-selective porin and is responsible for the passive transport of small molecules across the outer membrane. However, there are few reports about the functions of this gene in Cronobacter sakazakii. To investigate the role of ompF in detail, an ompF disruption strain (ΔompF) and a complementation strain (cpompF) were successfully obtained. We find that OmpF can affect the ability of biofilm formation in C. sakazakii. In addition, the variations in biofilm composition of C. sakazakii were examined using Raman spectroscopy analyses caused by knocking out ompF, and the result indicated that the levels of certain biofilm components, including lipopolysaccharide (LPS), were significantly decreased in the mutant (ΔompF). Then, SDS-PAGE was used to further analyze the LPS content, and the result showed that the LPS levels were significantly reduced in the absence of ompF. Therefore, we conclude that OmpF affects biofilm formation in C. sakazakii by reducing the amount of LPS. Furthermore, the ΔompF mutant showed decreased (2.7-fold) adhesion to and invasion of HCT-8 cells. In an antibiotic susceptibility analysis, the ΔompF mutant showed significantly smaller inhibition zones than the WT, indicating that OmpF had a positive effect on the influx of antibiotics into the cells. In summary, ompF plays a positive regulatory role in the biofilm formation and adhesion/invasion, which is achieved by regulating the amount of LPS, but is a negative regulator of antibiotic resistance in C. sakazakii.
Collapse
Affiliation(s)
- Jianxin Gao
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, School of Life Science, Shandong Normal University, Jinan 250014, China; (J.G.); (H.Z.)
| | - Zhonghui Han
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China;
| | - Ping Li
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Hongyan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, Key Laboratory of Food Nutrition and Safety, School of Life Science, Shandong Normal University, Jinan 250014, China; (J.G.); (H.Z.)
| | - Xinjun Du
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
- Correspondence: (X.D.); (S.W.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (X.D.); (S.W.)
| |
Collapse
|
15
|
Matinfar S, Ahmadi M, Sisakht AM, Sadeghi J, Javedansirat S. Phylogenetic and antibiotics resistance in extended-spectrum B-lactamase (ESBL) Uropathogenic Escherichia coli: An update review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Azargun R, Gholizadeh P, Sadeghi V, Hosainzadegan H, Tarhriz V, Memar MY, Pormohammad A, Eyvazi S. Molecular mechanisms associated with quinolone resistance in Enterobacteriaceae: review and update. Trans R Soc Trop Med Hyg 2021; 114:770-781. [PMID: 32609840 DOI: 10.1093/trstmh/traa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Quinolones are broad-spectrum antibiotics, which are used for the treatment of different infectious diseases associated with Enterobacteriaceae. During recent decades, the wide use as well as overuse of quinolones against diverse infections has led to the emergence of quinolone-resistant bacterial strains. Herein, we present the development of quinolone antibiotics, their function and also the different quinolone resistance mechanisms in Enterobacteriaceae by reviewing recent literature. METHODS All data were extracted from Google Scholar search engine and PubMed site, using keywords; quinolone resistance, Enterobacteriaceae, plasmid-mediated quinolone resistance, etc. RESULTS AND CONCLUSION The acquisition of resistance to quinolones is a complex and multifactorial process. The main resistance mechanisms consist of one or a combination of target-site gene mutations altering the drug-binding affinity of target enzymes. Other mechanisms of quinolone resistance are overexpression of AcrAB-tolC multidrug-resistant efflux pumps and downexpression of porins as well as plasmid-encoded resistance proteins including Qnr protection proteins, aminoglycoside acetyltransferase (AAC(6')-Ib-cr) and plasmid-encoded active efflux pumps such as OqxAB and QepA. The elucidation of resistance mechanisms will help researchers to explore new drugs against the resistant strains.
Collapse
Affiliation(s)
- Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Sadeghi
- Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| | - Hasan Hosainzadegan
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
18
|
Varney AM, Smitten KL, Thomas JA, McLean S. Transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance. ACS Pharmacol Transl Sci 2021; 4:168-178. [PMID: 33615170 PMCID: PMC7887750 DOI: 10.1021/acsptsci.0c00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 01/30/2023]
Abstract
Increasing concern over rising levels of antibiotic resistance among pathogenic bacteria has prompted significant research into developing efficacious alternatives to antibiotic treatment. Previously, we have reported on the therapeutic activity of a dinuclear ruthenium(II) complex against pathogenic, multi-drug-resistant bacterial pathogens. Herein, we report that the solubility properties of this lead are comparable to those exhibited by orally available therapeutics that in comparison to clinically relevant antibiotics it induces very slow evolution of resistance in the uropathogenic, therapeutically resistant, E. coli strain EC958, and this resistance was lost when exposure to the compound was temporarily removed. With the aim of further investigating the mechanism of action of this compound, the regulation of nine target genes relating to the membrane, DNA damage, and other stress responses provoked by exposure to the compound was also studied. This analysis confirmed that the compound causes a significant transcriptional downregulation of genes involved in membrane transport and the tricarboxylic acid cycle. By contrast, expression of the chaperone protein-coding gene, spy, was significantly increased suggesting a requirement for repair of damaged proteins in the region of the outer membrane. The complex was also found to display activity comparable to that in E. coli in a range of other therapeutically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Adam M. Varney
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Samantha McLean
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
19
|
Azargun R, Sadeghi V, Leylabadlo HE, Alizadeh N, Ghotaslou R. Molecular mechanisms of fluoroquinolone resistance in Enterobacteriaceae clinical isolates in Azerbaijan, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Cepas V, Soto SM. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9100719. [PMID: 33092201 PMCID: PMC7589547 DOI: 10.3390/antibiotics9100719] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host.
Collapse
|
21
|
Cama J, Voliotis M, Metz J, Smith A, Iannucci J, Keyser UF, Tsaneva-Atanasova K, Pagliara S. Single-cell microfluidics facilitates the rapid quantification of antibiotic accumulation in Gram-negative bacteria. LAB ON A CHIP 2020; 20:2765-2775. [PMID: 32613221 PMCID: PMC7953842 DOI: 10.1039/d0lc00242a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 06/01/2023]
Abstract
The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for drug development, but this has proved elusive due to a dearth of suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence microscopy to rapidly quantify antibiotic accumulation in hundreds of individual Escherichia coli cells. By serially manipulating the microfluidic environment, we demonstrated that stationary phase Escherichia coli, traditionally more refractory to antibiotics than growing cells, display reduced accumulation of the antibiotic ofloxacin compared to actively growing cells. Our novel microfluidic method facilitates the quantitative comparison of the role of the microenvironment versus that of the absence of key membrane transport pathways in cellular drug accumulation. Unlike traditional techniques, our assay is rapid, studying accumulation as the cells are dosed with the drug. This platform provides a powerful new tool for studying antibiotic accumulation in bacteria, which will be critical for the rational development of the next generation of antibiotics.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
- Cavendish Laboratory
, Department of Physics
, University of Cambridge
,
JJ Thomson Avenue
, Cambridge CB3 0HE
, UK
| | - Margaritis Voliotis
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
| | - Jeremy Metz
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Ashley Smith
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Jari Iannucci
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| | - Ulrich F. Keyser
- Cavendish Laboratory
, Department of Physics
, University of Cambridge
,
JJ Thomson Avenue
, Cambridge CB3 0HE
, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- College of Engineering
, Mathematics and Physical Sciences
, University of Exeter
,
Exeter EX4 4QF
, UK
| | - Stefano Pagliara
- Living Systems Institute
, University of Exeter
,
Exeter EX4 4QD
, UK
.
- School of Biosciences
, College of Life and Environmental Sciences
, University of Exeter
,
Exeter EX4 4QD
, UK
.
| |
Collapse
|
22
|
Sabry MA, Abdel-Moein KA, Abdel-Kader F, Hamza E. Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J Glob Antimicrob Resist 2020; 22:742-748. [PMID: 32623001 DOI: 10.1016/j.jgar.2020.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This study investigated the occurrence of extended-spectrum β-lactamase (ESBL)-producing Salmonella and the associated virulence genes among farmed chickens. METHODS Cloacal swab samples were collected from apparently healthy and diseased chickens and were cultured for Salmonella using conventional methods. The isolates were serotyped using slide agglutination tests and were examined by polymerase chain reaction (PCR) for the virulence genes invA, stn, svpC and pefA and the outer membrane protein-encoding genes ompA and ompF. Screening for ESBL resistance was performed using the disk-diffusion test, the combinational-disk test with clavulanic acid, and multiplex PCR for blaTEM, blaSHV, blaCTX-M and blaOXA. The presence of the AmpC blaCMy-2 was tested among the ESBL-negative isolates by uniplex PCR. The resistant isolates were partially sequenced based on the stn gene. RESULTS The Salmonella isolation rate was 3.4% (6/175) from healthy and 11.1% (14/126) from diseased chickens. The 20 isolates belong to serotypes with public health significance like Typhimurium, Kentucky and Infantis. All the isolates possess invA, stn, svpC and ompF genes; 16 isolates harboured ompA, and one carried pefA. Of the 20 isolates, 19 were resistant to more than one antibiotic. Of these 19 isolates, 16 were ESBL-producing with the majority carrying blaTEM and blaSHV genes. The four ESBL-negative isolates carried blaCMY-2. Partial-stn-sequencing of the isolates revealed a high genetic relatedness to Salmonella strains from patients in Egypt and Asia. CONCLUSIONS Virulent ESBL-producing Salmonella was isolated from healthy and diseased chickens; the strains have a close relationship to human strains, posing a public health threat.
Collapse
Affiliation(s)
- Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Fatma Abdel-Kader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
The mRNA expression of ompF, invA and invE was associated with the ciprofloxacin-resistance in Salmonella. Arch Microbiol 2020; 202:2263-2268. [DOI: 10.1007/s00203-020-01928-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
|
24
|
Yassine I, Rafei R, Osman M, Mallat H, Dabboussi F, Hamze M. Plasmid-mediated quinolone resistance: Mechanisms, detection, and epidemiology in the Arab countries. INFECTION GENETICS AND EVOLUTION 2019; 76:104020. [PMID: 31493557 DOI: 10.1016/j.meegid.2019.104020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Quinolones are an important antimicrobial class used widely in the treatment of enterobacterial infections. Although there are multiple mechanisms of quinolone resistance, attention should be paid to plasmid-mediated genes due to their ability to facilitate the spread of quinolone resistance, the selection of mutants with a higher-level of quinolone resistance, and the promotion of treatment failure. Since their discovery in 1998, plasmid-mediated quinolone resistance (PMQR) mechanisms have been reported more frequently worldwide especially with the extensive use of quinolones in humans and animals. Nevertheless, data from the Arab countries are rare and often scattered. Understanding the prevalence and distribution of PMQR is essential to stop the irrational use of quinolone in these countries. This manuscript describes the quinolone resistance mechanisms and particularly PMQR among Enterobacteriaceae as well as their methods of detection. Then the available data on the epidemiology of PMQR in clinical and environmental isolates from the Arab countries are extensively reviewed along with the other associated resistance genes. These data shows a wide dissemination of PMQR genes among Enterobacteriaceae isolates from humans, animals, and environments in these countries with increasing rates over the years and a common association with other antibiotic resistance genes as blaCTX-M-15. The incontrovertible emergence of PMQR in the Arab countries highlights the pressing need for effective stewardship efforts to prevent the selection of a higher rate of quinolone resistance and to preserve these crucial antibiotics.
Collapse
Affiliation(s)
- Iman Yassine
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
25
|
Conjugal transfer of PMQR from uropathogenic E.coli under high ciprofloxacin selection pressure generates gyrA mutation. Microb Pathog 2019; 132:26-29. [DOI: 10.1016/j.micpath.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022]
|
26
|
Resistance and Virulence Mechanisms of Escherichia coli Selected by Enrofloxacin in Chicken. Antimicrob Agents Chemother 2019; 63:AAC.01824-18. [PMID: 30803968 DOI: 10.1128/aac.01824-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the genetic characteristics, antibiotic resistance patterns, and novel mechanisms involved in fluoroquinolone (FQ) resistance in commensal Escherichia coli isolates. The E. coli isolates were recovered from a previous clinical study and subjected to antimicrobial susceptibility testing and molecular typing. Known mechanisms of FQ resistance (target site mutations, plasmid-mediated quinolone resistance [PMQR] genes, relative expression levels of efflux pumps and porins) were detected using DNA sequencing of PCR products and real-time quantitative PCR. Whole-genome shotgun sequencing was performed on 11 representative strains to screen for single nucleotide polymorphisms (SNPs). The function of a key SNP (A1541G) was investigated by site-directed mutagenesis and allelic exchange. The results showed that long-term enrofloxacin treatment selected multidrug-resistant (MDR) E. coli isolates in the chicken gut and that these E. coli isolates had diverse genetic backgrounds. Multiple genetic alterations, including double mutations on GyrA (S83L and D87N), a single mutation on ParC (S80I) and ParE (S458E), activation of efflux pumps, and the presence of the QnrS1 protein, contributed to the high-level FQ resistance (enrofloxacin MIC [MICENR] ≥ 128 μg/ml), while the relatively low-level FQ resistance (MICENR = 8 or 16 μg/ml) was commonly mediated by decreased expression of the porin OmpF, besides enhancement of the efflux pumps. No significant relationship was observed between resistance mechanisms and virulence genes. Introduction of the A1541G mutation on aegA was able to increase FQ susceptibility by 2-fold. This study contributes to a better understanding of the development of MDR and the differences underlying the mechanisms of high-level and low-level FQ resistance in E. coli.
Collapse
|
27
|
Widya M, Pasutti WD, Sachdeva M, Simmons RL, Tamrakar P, Krucker T, Six DA. Development and Optimization of a Higher-Throughput Bacterial Compound Accumulation Assay. ACS Infect Dis 2019; 5:394-405. [PMID: 30624052 DOI: 10.1021/acsinfecdis.8b00299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Gram-negative bacterial permeability barrier, coupled with efflux, raises formidable challenges to antibiotic drug discovery. The absence of efficient assays to determine compound penetration into the cell and impact of efflux makes the process resource-intensive, small-scale, and lacking much success. Here, we present BacPK: a label-free, solid phase extraction-mass spectrometry (SPE-MS)-based assay that measures total cellular compound accumulation in Escherichia coli. The BacPK assay is a 96-well accumulation assay that takes advantage of 9 s/sample SPE-MS throughput. This enables the analysis of each compound in a four-point dose-response in isogenic strain pairs along with a no-cell control and 16-point external standard curve, all in triplicate. To validate the assay, differences in accumulation were examined for tetracycline (Tet) and two analogs, confirming that close analogs can differ greatly in accumulation. Tet cellular accumulation was also compared for isogenic strains exhibiting Tet resistance due to the expression of an efflux pump (TetA) or ribosomal protection protein (TetM), confirming only TetA affected cellular Tet accumulation. Finally, using a diverse set of antibacterial compounds, we confirmed the assay's ability to quantify differences in accumulation for isogenic strain pairs with efflux or permeability alterations that are consistent with differences in susceptibility seen for the compounds.
Collapse
|
28
|
Basu S, Mukherjee M. Incidence and risk of co-transmission of plasmid-mediated quinolone resistance and extended-spectrum β-lactamase genes in fluoroquinolone-resistant uropathogenic Escherichia coli: a first study from Kolkata, India. J Glob Antimicrob Resist 2018; 14:217-223. [DOI: 10.1016/j.jgar.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/15/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022] Open
|
29
|
Modeling the Emergence of Antibiotic Resistance in the Environment: an Analytical Solution for the Minimum Selection Concentration. Antimicrob Agents Chemother 2018; 62:AAC.01686-17. [PMID: 29263062 DOI: 10.1128/aac.01686-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
Environmental antibiotic risk management requires an understanding of how subinhibitory antibiotic concentrations contribute to the spread of resistance. We develop a simple model of competition between sensitive and resistant bacterial strains to predict the minimum selection concentration (MSC), the lowest level of antibiotic at which resistant bacteria are selected. We present an analytical solution for the MSC based on the routinely measured MIC, the selection coefficient (sc) that expresses fitness differences between strains, the intrinsic net growth rate, and the shape of the bacterial growth dose-response curve with antibiotic or metal exposure (the Hill coefficient [κ]). We calibrated the model by optimizing the Hill coefficient to fit previously reported experimental growth rate difference data. The model fit varied among nine compound-taxon combinations examined but predicted the experimentally observed MSC/MIC ratio well (R2 ≥ 0.95). The shape of the antibiotic response curve varied among compounds (0.7 ≤ κ ≤ 10.5), with the steepest curve being found for the aminoglycosides streptomycin and kanamycin. The model was sensitive to this antibiotic response curve shape and to the sc, indicating the importance of fitness differences between strains for determining the MSC. The MSC can be >1 order of magnitude lower than the MIC, typically by the factor scκ This study provides an initial quantitative depiction and a framework for a research agenda to examine the growing evidence of selection for resistant bacterial communities at low environmental antibiotic concentrations.
Collapse
|
30
|
The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother 2017; 61:AAC.01666-17. [PMID: 28874380 DOI: 10.1128/aac.01666-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
Fluoroquinolone antibiotics are prescribed for the treatment of Salmonella enterica infections, but resistance to this family of antibiotics is growing. Here we report that loss of the global regulatory protein cyclic AMP (cAMP) receptor protein (CRP) or its allosteric effector, cAMP, reduces susceptibility to fluoroquinolones. A Δcrp mutation was synergistic with the primary fluoroquinolone resistance allele gyrA83, thus able to contribute to clinically relevant resistance. Decreased susceptibility to fluoroquinolones could be partly explained by decreased expression of the outer membrane porin genes ompA and ompF with a concomitant increase in the expression of the ciprofloxacin resistance efflux pump gene acrB in Δcrp cells. Expression of gyrAB, which encode the DNA supercoiling enzyme GyrAB, which is blocked by fluoroquinolones, and expression of topA, which encodes the dominant supercoiling-relaxing enzyme topoisomerase I, were unchanged in Δcrp cells. Yet Δcrp cells maintained a more relaxed state of DNA supercoiling, correlating with an observed increase in topoisomerase IV (parCE) expression. Surprisingly, the Δcrp mutation had the unanticipated effect of enhancing fitness in the presence of fluoroquinolone antibiotics, which can be explained by the observation that exposure of Δcrp cells to ciprofloxacin had the counterintuitive effect of restoring wild-type levels of DNA supercoiling. Consistent with this, Δcrp cells did not become elongated or induce the SOS response when challenged with ciprofloxacin. These findings implicate the combined action of multiple drug resistance mechanisms in Δcrp cells: reduced permeability and elevated efflux of fluoroquinolones coupled with a relaxed DNA supercoiling state that buffers cells against GyrAB inhibition by fluoroquinolones.
Collapse
|
31
|
Kalule JB, Fortuin S, Calder B, Robberts L, Keddy KH, Nel AJM, Garnett S, Nicol M, Warner DF, Soares NC, Blackburn JM. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™STEC media. J Proteomics 2017; 180:25-35. [PMID: 28887208 DOI: 10.1016/j.jprot.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
Abstract
Shiga-toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are key diarrhoea-causing foodborne pathogens. We used proteomics to characterize the virulence and antimicrobial resistance protein profiles of three clinical pathogenic E. coli isolates (two EPEC [one resistant to ciprofloxacin] and one STEC) cultured on CHROMagar™STEC solid media after minimal laboratory passage. We identified 4767 unique peptides from 1630 protein group across all three clinical E. coli strains. Label-free proteomic analysis allowed the identification of virulence and drug resistance proteins that were unique to each of the clinical isolates compared in this study. The B subunit of Shiga toxin, ToxB, was uniquely detected in the STEC strain while several other virulence factors including SheA, OmpF, OmpC and OmpX were significantly more abundant in the STEC strain. The ciprofloxacin resistant EPEC isolate possessed reduced levels of key virulence proteins compared to the ciprofloxacin susceptible EPEC and STEC strains. Parallel reaction monitoring assays validated the presence of biologically relevant proteins across biologically-replicated cultures. Propagation of clinical isolates on a relevant solid medium followed by mass spectrometry analysis represents a convenient means to quantify virulence factors and drug resistance determinants that might otherwise be lost through extensive in vitro passage in enteropathogenic bacteria. SIGNIFICANCE Through the use of quantitative proteomics, we have characterized the virulence and antimicrobial resistance attributes of three clinically isolated, pathogenic E. coli strains cultured on solid media. Our results provide new, quantitative data on the expressed proteomes of these tellurite-resistant, diarrhoeagenic E. coli strains and reveal a subset of antimicrobial resistance and virulence proteins that are differentially abundant between these clinical strains. Our quantitative proteomics-based approach should thus have applicability in microbiological diagnostic labs for the identification of pathogenic/drug resistant E. coli in the future.
Collapse
Affiliation(s)
- John Bosco Kalule
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Suereta Fortuin
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Bridget Calder
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lourens Robberts
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Karen H Keddy
- Bacteriology Division, Centre for Enteric Diseases, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew J M Nel
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa; MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, South Africa.
| |
Collapse
|
32
|
Demirel I, Rangel I, Petersson U, Persson K, Kruse R. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL)-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics. Front Microbiol 2017; 8:1058. [PMID: 28659883 PMCID: PMC5468405 DOI: 10.3389/fmicb.2017.01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC) but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL)-producing UPEC (ESBL019) during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array). All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.
Collapse
Affiliation(s)
- Isak Demirel
- School of Medical Sciences, Örebro UniversityÖrebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre, Örebro UniversityÖrebro, Sweden
| | - Ignacio Rangel
- School of Medical Sciences, Örebro UniversityÖrebro, Sweden.,Faculty of Medicine and Health, Nutrition-Gut-Brain Interactions Research Centre, Örebro UniversityÖrebro, Sweden
| | | | - Katarina Persson
- School of Medical Sciences, Örebro UniversityÖrebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre, Örebro UniversityÖrebro, Sweden
| | - Robert Kruse
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre, Örebro UniversityÖrebro, Sweden.,Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro UniversityÖrebro, Sweden
| |
Collapse
|
33
|
Molecular characterization of antimicrobial susceptibility of Salmonella isolates: First identification of a plasmid carrying qnrD or oqxAB in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:214-223. [DOI: 10.1016/j.jmii.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
|
34
|
Ionescu SA, Lee S, Housden NG, Kaminska R, Kleanthous C, Bayley H. Orientation of the OmpF Porin in Planar Lipid Bilayers. Chembiochem 2017; 18:554-562. [PMID: 28094462 DOI: 10.1002/cbic.201600644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/27/2022]
Abstract
The outer-membrane protein OmpF is an abundant trimeric general diffusion porin that plays a central role in the transport of antibiotics and colicins across the outer membrane of E. coli. Individual OmpF trimers in planar lipid bilayers (PLBs) show one of two current-voltage asymmetries, thus implying that insertion occurs with either the periplasmic or the extracellular end first. A method for establishing the orientation of OmpF in PLB was developed, based on targeted covalent modification with membrane-impermeant reagents of peripheral cysteine residues introduced near the periplasmic or the extracellular entrance. By correlating the results of the modification experiments with measurements of current asymmetry or the sidedness of binding of the antibiotic enrofloxacin, OmpF orientation could be quickly determined in subsequent experiments under a variety of conditions. Our work will allow the precise interpretation of past and future studies of antibiotic permeation and protein translocation through OmpF and related porins.
Collapse
Affiliation(s)
- Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
35
|
Acquisition of Tn6018-3′ CS regions increases colistin MICs against Acinetobacter baumannii isolates harboring new variants of AbaRs. Folia Microbiol (Praha) 2017; 62:373-379. [DOI: 10.1007/s12223-017-0507-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023]
|
36
|
Plasmid-mediated quinolone resistance determinants in quinolone-resistant Escherichia coli isolated from patients with bacteremia in a university hospital in Taiwan, 2001-2015. Sci Rep 2016; 6:32281. [PMID: 27573927 PMCID: PMC5004128 DOI: 10.1038/srep32281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to characterize fluoroquinolone (FQ)-resistant Escherichia coli isolates from bacteremia in Taiwan in 2001–2015. During the study period, 248 (21.2%) of 1171 isolates were identified as levofloxacin-resistant. The results of phylogenetic group analysis showed that 38.7% of the FQ-resistant isolates belonged to phylogenetic group B2, 23.4% to group B1, 22.6% to groupA, 14.9% to group D, and 0.4% belonged to group F. FQ-resistant isolates were highly susceptible to cefepime (91.5%), imipenem (96.0%), meropenem (98.8%), amikacin (98.0%), and fosfomycin (99.6%), as determined by the agar dilution method. β-lactamases, including blaTEM (66.1%), blaCMY-2 (16.5%), blaCTX-M (5.2%), blaDHA-1 (1.6%), and blaSHV-12 (1.6%), were found in FQ-resistant isolates. The results of PCR and direct sequencing showed that 37 isolates (14.9%) harbored plasmid-mediated quinolone resistance (PMQR) genes. qnrB2, qnrB4, qnrS1, coexistence of qnrB4 and qnrS1, oqxAB, and aac(6′)-Ib-cr were found in 1, 4, 4, 1, 15, and 14 isolates, respectively. PMQR genes were successfully transfered for 11 (29.7%) of the 37 PMQR-harboring isolates by conjugation to E. coli C600. These findings indicate that qnr genes remained rare in E. coli but demonstrate the potential spread of oqxAB and aac(6′)-Ib-c in Taiwan.
Collapse
|
37
|
Ben-Kahla I, Al-Hajoj S. Drug-resistant tuberculosis viewed from bacterial and host genomes. Int J Antimicrob Agents 2016; 48:353-60. [PMID: 27566907 DOI: 10.1016/j.ijantimicag.2016.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/26/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
The outcome of infection with Mycobacterium tuberculosis (MTB) is largely influenced by the host-pathogen interaction in which both the human host and the MTB genetic backgrounds play an important role. Whether this interaction also influences the selection and expansion of drug-resistant MTB strains is the primary focus of this review. We first outline the main and recent findings regarding MTB determinants implicated in the development of drug resistance. Second, we examine data regarding human genetic factors that may play a role in TB drug resistance. We highlight interesting openings for TB research and therapy.
Collapse
Affiliation(s)
- Imen Ben-Kahla
- Mycobacteriology Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Mycobacteriology Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Cama J, Bajaj H, Pagliara S, Maier T, Braun Y, Winterhalter M, Keyser UF. Quantification of Fluoroquinolone Uptake through the Outer Membrane Channel OmpF of Escherichia coli. J Am Chem Soc 2015; 137:13836-43. [DOI: 10.1021/jacs.5b08960] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jehangir Cama
- Biological
and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Harsha Bajaj
- Jacobs University Bremen, Campus
Ring 1, D-28759, Bremen, Germany
| | - Stefano Pagliara
- Biological
and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4, United Kingdom
| | - Theresa Maier
- Biological
and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Yvonne Braun
- Jacobs University Bremen, Campus
Ring 1, D-28759, Bremen, Germany
| | | | - Ulrich F. Keyser
- Biological
and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
40
|
Melander RJ, Minvielle MJ, Melander C. Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron 2014; 70:6363-6372. [PMID: 25267859 PMCID: PMC4175420 DOI: 10.1016/j.tet.2014.05.089] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indole has recently been implicated as an important small molecule signal utilized by many bacteria to coordinate various forms of behavior. Indole plays a role in numerous bacterial processes, including: biofilm formation and maintenance, virulence factor production, antibiotic resistance and persister cell formation. Intercepting indole-signaling pathways with appropriately designed small molecules provides a n opportunity to control unwanted bacterial behaviors, and is an attractive anti-virulence therapeutic strategy. In this review, we give an overview of the process controlled by indole signaling, and summarize current efforts to design indole-containing small molecules to intercept these pathways, and detail the synthetic efforts towards accessing indole derived bioactive small molecules.
Collapse
Affiliation(s)
- Roberta J. Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| | - Marine J. Minvielle
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
41
|
Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 2014; 14:119. [PMID: 24885279 PMCID: PMC4101873 DOI: 10.1186/1471-2180-14-119] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Background Tigecycline resistance in Acinetobacter baumannii is primarily acquired through overexpression of the AdeABC efflux pump. Besides AdeRS, other two-component regulatory systems (TCSs) involving the regulation of this transporter have not been clarified. Results In this study, we found that the TCS genes baeR and baeS are co-transcribed and function as stress responders under high osmotic conditions. The baeSR and adeAB genes showed increased transcription in both the laboratory-induced and clinical tigecycline-resistant strains compared with the wild-type strain. The deletion of baeR in the ATCC 17978 strain led to 67–73% and 68% reduction in adeA and adeB expression, respectively, with a resultant 2-fold decrease in the tigecycline minimal inhibition concentration (MIC). In contrast, the overexpression of baeR resulted in a doubled tigecycline MIC, with a more than 2-fold increase in adeA and adeB expression. The influence of baeR knockout on adeAB gene expression can also be observed in the laboratory-induced tigecycline-resistant strain. A time-kill assay showed that the baeR deletion mutant showed an approximate 1-log10 reduction in colony forming units (CFUs) relative to the wild-type strain when the tigecycline concentration was 0.25 μg/mL throughout the assay period. The wild-type phenotype could be restored by trans-complementation with pWH1266-kanr-baeR. Increasing the tigecycline concentration to 0.5 μg/mL produced an even more marked 4.7-log10 reduction in CFUs of the baeR deletion mutant at 8 h, while only a 2.1-log10 reduction was observed for the wild-type strain. Conclusions Taken together, these data show for the first time that the BaeSR TCS influences the tigecycline susceptibility of A. baumannii through the positive regulation of the resistance-nodulation-division efflux pump genes adeA and adeB.
Collapse
Affiliation(s)
| | | | | | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan.
| |
Collapse
|
42
|
Lupo A, Papp-Wallace KM, Sendi P, Bonomo RA, Endimiani A. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013; 77:179-94. [PMID: 24091103 DOI: 10.1016/j.diagmicrobio.2013.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023]
Abstract
In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 676] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
Affiliation(s)
- Alejandro Beceiro
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña, Spain
| | | | | |
Collapse
|
44
|
Sarathy JP, Dartois V, Lee EJD. The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel) 2012; 5:1210-35. [PMID: 24281307 PMCID: PMC3816664 DOI: 10.3390/ph5111210] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 11/02/2012] [Indexed: 02/02/2023] Open
Abstract
In the fight against tuberculosis, cell wall permeation of chemotherapeutic agents remains a critical but largely unsolved question. Here we review the major mechanisms of small molecule penetration into and efflux from Mycobacterium tuberculosis and other mycobacteria, and outline how these mechanisms may contribute to the development of phenotypic drug tolerance and induction of drug resistance. M. tuberculosis is intrinsically recalcitrant to small molecule permeation thanks to its thick lipid-rich cell wall. Passive diffusion appears to account for only a fraction of total drug permeation. As in other bacterial species, influx of hydrophilic compounds is facilitated by water-filled open channels, or porins, spanning the cell wall. However, the diversity and density of M. tuberculosis porins appears lower than in enterobacteria. Besides, physiological adaptations brought about by unfavorable conditions are thought to reduce the efficacy of porins. While intracellular accumulation of selected drug classes supports the existence of hypothesized active drug influx transporters, efflux pumps contribute to the drug resistant phenotype through their natural abundance and diversity, as well as their highly inducible expression. Modulation of efflux transporter expression has been observed in phagocytosed, non-replicating persistent and multi-drug resistant bacilli. Altogether, M. tuberculosis has evolved both intrinsic properties and acquired mechanisms to increase its level of tolerance towards xenobiotic substances, by preventing or minimizing their entry. Understanding these adaptation mechanisms is critical to counteract the natural mechanisms of defense against toxic compounds and develop new classes of chemotherapeutic agents that positively exploit the influx and efflux pathways of mycobacteria.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Novartis Institute for Tropical Diseases Pte Ltd, 10 Biopolis Road #05-01, Chromos, 138670, Singapore.
| | | | | |
Collapse
|
45
|
Smani Y, López-Rojas R, Dominguez-Herrera J, Docobo-Pérez F, Marti S, Vila J, Pachón J. In vitro and in vivo reduced fitness and virulence in ciprofloxacin-resistant Acinetobacter baumannii. Clin Microbiol Infect 2012; 18:E1-4. [DOI: 10.1111/j.1469-0691.2011.03695.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals. Appl Environ Microbiol 2011; 77:7113-20. [PMID: 21856834 DOI: 10.1128/aem.00600-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eleven multidrug-resistant Escherichia coli isolates (comprising 6 porcine and 5 bovine field isolates) displaying fluoroquinolone (FQ) resistance were selected from a collection obtained from the University Veterinary Hospital (Dublin, Ireland). MICs of nalidixic acid and ciprofloxacin were determined by Etest. All showed MICs of nalidixic acid of >256 μg/ml and MICs of ciprofloxacin ranging from 4 to >32 μg/ml. DNA sequencing was used to identify mutations within the quinolone resistance-determining regions of target genes, and quantitative real-time PCR (qRT-PCR) was used to evaluate the expression of the major porin, OmpF, and component genes of the AcrAB-TolC efflux pump and its associated regulatory loci. Decreased MIC values to nalidixic acid and/or ciprofloxacin were observed in the presence of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) in some but not all isolates. Several mutations were identified in genes coding for quinolone target enzymes (3 to 5 mutations per strain). All isolates harbored GyrA amino acid substitutions at positions 83 and 87. Novel GyrA (Asp87 → Ala), ParC (Ser80 → Trp), and ParE (Glu460 → Val) substitutions were observed. The efflux activity of these isolates was evaluated using a semiautomated ethidium bromide (EB) uptake assay. Compared to wild-type E. coli K-12 AG100, isolates accumulated less EB, and in the presence of PAβN the accumulation of EB increased. Upregulation of the acrB gene, encoding the pump component of the AcrAB-TolC efflux pump, was observed in 5 of 11 isolates, while 10 isolates showed decreased expression of OmpF. This study identified multiple mechanisms that likely contribute to resistance to quinolone-based drugs in the field isolates studied.
Collapse
|
47
|
Abstract
Resistance to antimicrobial drugs is increasing at an alarming rate among both gram-positive and gram-negative bacteria. Traditionally, bacteria resistant to multiple antimicrobial agents have been restricted to the nosocomial environment. A disturbing trend has been the recent emergence and spread of resistant pathogens in nursing homes, in the community, and in the hospital. This article reviews the epidemiology, molecular mechanisms of resistance, and treatment options for pathogens resistant to antimicrobial drugs.
Collapse
Affiliation(s)
- Luke F Chen
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Box 102359, Hanes House, Durham, NC 27710, USA.
| | | | | |
Collapse
|