1
|
Losartan Protects Podocytes against High Glucose-induced Injury by Inhibiting B7-1 Expression. Curr Med Sci 2021; 41:505-512. [PMID: 34129205 DOI: 10.1007/s11596-021-2367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 10/21/2022]
Abstract
The role of B7-1 in podocyte injury has received increasing attention. The aim of this study was to investigate whether losartan protects podocytes of patients with diabetic kidney disease (DKD) by regulating B7-1 and the underlying mechanisms. Rats with streptozotocin-induced DKD were treated with losartan for 8 weeks. Biochemical changes in blood and urine were analyzed. Kidneys were isolated for electron microscopy, immunofluorescence, real-time quantitative PCR (RT-PCR), and Western blot analysis. Immortalized mouse podocyte cells were cultured in normal or high glucose medium in the presence or absence of losartan for 48 h, and then the cells were collected for immunofluorescence, PCR, Western blotting and monolayer permeability detection. The phosphatidylinositol 3-kinase (PI3K) 110α subunit and angiotensin II type 1 receptor (AT1R) plasmids were transfected into podocytes, respectively, and then Western blotting was performed to assess the expression of B7-1 protein. The results showed that losartan ameliorated podocyte structure and function in the rat model of DKD, and reduced the expression of B7-1 protein. Overexpression of PI3K 110α subunit in podocytes attenuated the inhibitory effect of losartan on B7-1 expression in high glucose-stimulated podocytes. The expression of B7-1 was significantly increased by overexpression of AT1R and significantly reduced by blocking PI3K 110α subunit. We conclude that losartan protects podocytes against high glucose-induced injury by inhibiting AT1R-mediated B7-1 expression. This effect is dependent on the AT1R-PI3K 110α subunit pathway.
Collapse
|
2
|
Borges CM, Fujihara CK, Malheiros DMAC, de Ávila VF, Formigari GP, Lopes de Faria JB. Metformin arrests the progression of established kidney disease in the subtotal nephrectomy model of chronic kidney disease. Am J Physiol Renal Physiol 2020; 318:F1229-F1236. [DOI: 10.1152/ajprenal.00539.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metformin, an AMP-activated protein kinase (AMPK) activator, has been shown in previous studies to reduce kidney fibrosis in different models of experimental chronic kidney disease (CKD). However, in all of these studies, the administration of metformin was initiated before the establishment of renal disease, which is a condition that does not typically occur in clinical settings. The aim of the present study was to investigate whether the administration of metformin could arrest the progression of established renal disease in a well-recognized model of CKD, the subtotal kidney nephrectomy (Nx) model. Adult male Munich-Wistar rats underwent either Nx or sham operations. After the surgery (30 days), Nx rats that had systolic blood pressures of >170 mmHg and albuminuria levels of >40 mg/24 h were randomized to a no-treatment condition or to a treatment condition with metformin (300 mg·kg−1·day−1) for a period of either 60 or 120 days. After 60 days of treatment, we did not observe any differences in kidney disease parameters between Nx metformin-treated and untreated rats. However, after 120 days, Nx rats that had been treated with metformin displayed significant reductions in albuminuria levels and in markers of renal fibrosis. These effects were independent of any other effects on blood pressure or glycemia. In addition, treatment with metformin was also able to activate kidney AMPK and therefore improve mitochondrial biogenesis. It was concluded that metformin can arrest the progression of established kidney disease in the Nx model, likely via the activation of AMPK.
Collapse
Affiliation(s)
- Cynthia M. Borges
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Faculty of Medicine, Renal Division, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise M. A. C. Malheiros
- Faculty of Medicine, Renal Pathology, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira de Ávila
- Faculty of Medicine, Renal Division, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Pedrom Formigari
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - José B. Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Wei M, Gan L, Liu Z, Liu L, Chang JR, Yin DC, Cao HL, Su XL, Smith WW. Mitochondrial-Derived Peptide MOTS-c Attenuates Vascular Calcification and Secondary Myocardial Remodeling via Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway. Cardiorenal Med 2019; 10:42-50. [PMID: 31694019 DOI: 10.1159/000503224] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/05/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Vascular calcification (VC) is a complex, regulated process involved in many disease entities. So far, there are no treatments to reverse it. Exploring novel strategies to prevent VC is important and necessary for VC-related disease intervention. OBJECTIVE In this study, we evaluated whether MOTS-c, a novel mitochondria-related 16-aa peptide, can reduce vitamin D3 and nicotine-induced VC in rats. METHODS Vitamin D3 plus nicotine-treated rats were injected with MOTS-c at a dose of 5 mg/kg once a day for 4 weeks. Blood pressure, heart rate, and body weight were measured, and echocardiography was performed. The expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and the angiotensin II type 1 (AT-1) and endothelin B (ET-B) receptors was determined by Western blot analysis. RESULTS Our results showed that MOTS-c treatment significantly attenuated VC. Furthermore, we found that the level of phosphorylated AMPK was increased and the expression levels of the AT-1 and ET-B receptors were decreased after MOTS-c treatment. CONCLUSIONS Our findings provide evidence that MOTS-c may act as an inhibitor of VC by activating the AMPK signaling pathway and suppressing the expression of the AT-1 and ET-B receptors.
Collapse
Affiliation(s)
- Ming Wei
- Department of Pharmacology, Xi'an Medical University, Xi'an, China.,Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China.,Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, China
| | - Lu Gan
- Department of Gynecology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Li Liu
- Ultrasound Diagnostics Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jin-Rui Chang
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Da-Chuan Yin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China
| | - Xing-Li Su
- Department of Pharmacology, Xi'an Medical University, Xi'an, China, .,Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, China,
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Mohamed EA, Ahmed HI, Zaky HS. Protective effect of irbesartan against doxorubicin-induced nephrotoxicity in rats: implication of AMPK, PI3K/Akt, and mTOR signaling pathways. Can J Physiol Pharmacol 2018; 96:1209-1217. [DOI: 10.1139/cjpp-2018-0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nephrotoxicity is one of the serious undesirable effects related to doxorubicin (DOX). Herein, we have investigated the potential protective effect of irbesartan (IRB) against chronic nephrotoxicity induced by DOX, and the implication of different mechanistic pathways underlying these effects. Rats were treated with either DOX (2.5 mg/kg i.p., 3 times/week) for 2 weeks, and (or) IRB (40 mg/kg, daily) for 3 weeks. IRB prohibited nephrotoxicity induced by DOX, which was evident by the increase in blood urea nitrogen and creatinine levels and histopathological changes. IRB improved DOX-induced alterations in oxidative status by diminishing lipid peroxidation and upregulating the antioxidant enzymes. Also, upon DOX treatment, the renal expression of tumor necrosis factor-α, interleukin-6, and caspase-3 were significantly increased; IRB diminished DOX-induced alterations in these parameters. Moreover, DOX significantly decreased the expression level of AMP-activated protein kinase (AMPK). Meanwhile, DOX induced activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt/PKB) and mammalian target of rapamycin (mTOR) pathways that cross talked with AMPK. On the contrary, IRB successfully counterbalanced all these effects. Collectively, these outcomes suggest that the modulation of AMPK, PI3K, Akt, and mTOR pathways plays a critical role in conferring the protective effects of IRB against DOX nephrotoxicity.
Collapse
Affiliation(s)
- Eman A. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S. Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Ha TS, Park HY, Seong SB, Ahn HY. Angiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase. J Korean Med Sci 2016; 31:535-41. [PMID: 27051236 PMCID: PMC4810335 DOI: 10.3346/jkms.2016.31.4.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor and MAPK signaling pathway. In the present study, we investigated the roles of AMPK on the changes of p130Cas of podocyte by Ang II. We cultured mouse podocytes and treated them with various concentrations of Ang II and AMPK-modulating agents and analyzed the changes of p130Cas by confocal imaging and western blotting. In immunofluorescence study, Ang II decreased the intensity of p130Cas and changed its localization from peripheral cytoplasm into peri-nuclear areas in a concentrated pattern in podocytes. Ang II also reduced the amount of p130Cas in time and dose-sensitive manners. AMPK activators, metformin and AICAR, restored the suppressed and mal-localized p130Cas significantly, whereas, compound C, an AMPK inhibitor, further aggravated the changes of p130Cas. Losartan, an Ang II type 1 receptor antagonist, recovered the abnormal changes of p130Cas suppressed by Ang II. These results suggest that Ang II induces the relocalization and suppression of podocyte p130Cas by the suppression of AMPK via Ang II type 1 receptor, which would contribute to Ang II-induced podocyte injury.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hye-Young Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Su-Bin Seong
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hee-Yul Ahn
- Department of Pharmacology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
7
|
Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal 2014; 26:1774-82. [PMID: 24726896 DOI: 10.1016/j.cellsig.2014.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/06/2014] [Indexed: 12/21/2022]
Abstract
Podocyte apoptosis induced by hyperglycemia is considered a critical factor in the development of diabetic nephropathy. Recent studies have implicated Notch signaling in podocyte apoptosis; however, its regulatory mechanisms are not fully understood. In this study, we found that high-glucose treatment increased Notch1 and Jagged-1 expression, the transcriptional activity of Hes, and podocyte apoptosis, and decreased the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in rat podocytes. Transient transfection of CARM1 reversed high-glucose-induced Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. Moreover, the silencing of CARM1 using siRNA increased Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. However, the Glu(266)-mediated enzymatic activity of CARM1 was not necessary for Notch signaling activation and podocyte apoptosis. Here, we demonstrate that AMP-activated protein kinase alpha (AMPKα) and cannabinoid receptor 1 (CB1R) are regulated by CARM1 and that high-glucose-induced podocyte apoptosis is mediated by a CARM1-AMPKα-Notch1-CB1R signaling axis. We also show that high-glucose-induced CARM1 downregulation is due to ubiquitination-dependent CARM1 degradation. Finally, we demonstrate that CARM1 expression in podocytes was diminished in rats with streptozotocin-induced diabetes compared to vehicle-treated rats. Together, our data provide evidence that ubiquitination-dependent CARM1 degradation in podocytes in diabetes promotes podocyte apoptosis via Notch1 activation. Strategies to preserve CARM1 expression or reduce the enzymatic activity of a ubiquitin ligase specific for CARM1 could be used to prevent podocyte loss in diabetic nephropathy.
Collapse
|
8
|
Ha TS, Park HY, Nam JA, Han GD. Diabetic conditions modulate the adenosine monophosphate-activated protein kinase of podocytes. Kidney Res Clin Pract 2014; 33:26-32. [PMID: 26877947 PMCID: PMC4714163 DOI: 10.1016/j.krcp.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 02/06/2014] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinases (AMPKs), as a sensor of cellular energy status, have been known to play an important role in the pathophysiology of diabetes and its complications. Because AMPKs are known to be expressed in podocytes, it is possible that podocyte AMPKs could be an important contributing factor in the development of diabetic proteinuria. We investigated the roles of AMPKs in the pathological changes in podocytes induced by high-glucose (HG) and advanced glycosylation end products (AGEs) in diabetic proteinuria. METHODS We prepared streptozotocin-induced diabetic renal tissues and cultured rat and mouse podocytes under diabetic conditions with AMPK-modulating agents. The changes in AMPKα were analyzed with confocal imaging and Western blotting under the following conditions: (1) normal glucose (5mM, =control); (2) HG (30mM); (3) AGE-added; or (4) HG plus AGE-added. RESULTS The density of glomerularphospho-AMPKα in experimental diabetic nephropathy decreased as a function of the diabetic duration. Diabetic conditions including HG and AGE changed the localization of phospho-AMPKα from peripheral cytoplasm to internal cytoplasm and peri- and intranuclear areas in podocytes. HG reduced the AMPKα (Thr172) phosphorylation of rat podocytes, and similarly, AGEs reduced the AMPKα (Thr172) phosphorylation of mouse podocytes. The distributional and quantitative changes in phospho-AMPKα caused by diabetic conditions were preventable using AMPK activators, metformin, and 5-aminoimidazole-4-carboxamide-1β-riboside. CONCLUSION We suggest that diabetic conditions induce the relocation and suppression of podocyte AMPKα, which would be a suggestive mechanism in diabetic podocyte injury.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hye-Young Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ja-Ae Nam
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Gi-Dong Han
- Department of Food Science and Technology, College of Natural Resources, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
9
|
Satriano J, Sharma K, Blantz RC, Deng A. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F727-33. [PMID: 23825068 DOI: 10.1152/ajprenal.00293.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The rat kidney ablation and infarction (A/I) model of subtotal or 5/6th nephrectomy is the most commonly studied model of nondiabetic chronic kidney disease (CKD). The A/I kidney at 1 wk exhibits reductions in kidney function, as determined by glomerular filtration rate, and diminished metabolic efficiency as determined by oxygen consumption per sodium transport (QO2/TNa). As renoprotective AMPK activity is affected by metabolic changes and cellular stress, we evaluated AMPK activity in this model system. We show that these early pathophysiological changes are accompanied by a paradoxical decrease in AMPK activity. Over time, these kidney parameters progressively worsen with extensive kidney structural, functional, metabolic, and fibrotic changes observed at 4 wk after A/I. We show that induction of AMPK activity with either metformin or 5-aminoimidazole-4-carboxamide ribonucleotide increases AMPK activity in this model and also corrects kidney metabolic inefficiency, improves kidney function, and ameliorates kidney fibrosis and structural alterations. We conclude that AMPK activity is reduced in the subtotal nephrectomy model of nondiabetic CKD, that altered regulation of AMPK is coincident with the progression of disease parameters, and that restoration of AMPK activity can suppress the progressive loss of function characteristic of this model. We propose that induction of AMPK activity may prove an effective therapeutic target for the treatment of nondiabetic CKD.
Collapse
Affiliation(s)
- Joseph Satriano
- Div. of Nephrology-Hypertension, O’Brien Kidney Center, University of California San Diego and Veterans Administration San Diego Healthcare System, La Jolla, California 92161, USA.
| | | | | | | |
Collapse
|