1
|
Naciri Bennani H, Chtioui I, Allirot C, Somrani R, Jouve T, Rostaing L, Bourdat-Michel G. Effects of SLC34A3 or SLC34A1 variants on calcium and phosphorus homeostasis. Pediatr Nephrol 2025; 40:117-129. [PMID: 39256228 DOI: 10.1007/s00467-024-06505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Variants in SLC34A1 and SLC34A2 genes, which encode co-transporters NaPi2a and NaPi2c, respectively, can lead to hypophosphatemia due to renal phosphate loss. This condition results in hypercalcitriolemia and hypercalciuria, leading to formation of kidney stones and nephrocalcinosis. Phenotype is highly variable. Management includes hyperhydration, dietary modifications, and/or phosphate supplementation. Thiazides and azoles may be used, but randomized studies are needed to confirm their clinical efficacy. METHODS We conducted a retrospective study in the pediatric nephrology unit at Grenoble University Hospital from January 2010 to December 2023. The study aimed to describe clinical and biological symptoms of patients with confirmed SLC34A1 and SLC34A3 gene variants and their outcomes. RESULTS A total of 11 patients (9 females) from 6 different families had variants in the SLC34A1 (5 patients) and SLC34A3 (6 patients) genes. Median age at diagnosis was 72 [1-108] months. Average follow-up duration was 8.1 ± 4.5 years. Presenting symptom was nephrocalcinosis (4 cases), followed by renal colic (3 cases). At diagnosis, 90% of patients had hypercalciuria and 45% had hypercalcitriolemia. Management included hyperhydration and dietary advice. All patients showed favorable outcomes with normal growth and school attendance. One patient with an SLC34A3 variant showed regression of nephrocalcinosis. Kidney function remained normal. CONCLUSION Clinical and biological manifestations of SLC34 gene variants are highly variable, even among siblings; therefore, management must be personalized. Hygienic and dietary measures (such as hyperhydration, a low sodium diet, and age-appropriate calcium intake) result in favorable outcomes in most cases. Use of azoles (e.g., fluconazole) appears to be a promising therapeutic option.
Collapse
Affiliation(s)
- Hamza Naciri Bennani
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, Grenoble University Hospital, Grenoble, France
| | - Imane Chtioui
- Pediatric Department, Metropole Savoie Hospital Center, Chambéry, France
| | - Camille Allirot
- Pediatric Nephrology Department, Grenoble University Hospital, Grenoble, France
| | - Rim Somrani
- Pediatric Nephrology Department, Grenoble University Hospital, Grenoble, France
| | - Thomas Jouve
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, Grenoble University Hospital, Grenoble, France
- Grenoble Alpes University, Grenoble, France
| | - Lionel Rostaing
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, Grenoble University Hospital, Grenoble, France.
- Grenoble Alpes University, Grenoble, France.
- Service de Néphrologie-Hémodialyse-Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes, Avenue Maquis du Grésivaudan, La Tronche, 38700, France.
| | | |
Collapse
|
2
|
Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb 2023; 30:835-850. [PMID: 37258233 PMCID: PMC10406631 DOI: 10.5551/jat.rv22006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Multiple factors account for the increased incidence of cardiovascular morbidity and mortality in patients with CKD. Traditional risk factors for atherosclerosis and arteriosclerosis, including age, hypertension, dyslipidemia, diabetes mellitus, and smoking, are also risk factors for CKD. Non-traditional risk factors specific for CKD are also involved in CVD pathogenesis in patients with CKD. Recently, CKD-mineral and bone disorder (CKD-MBD) has emerged as a key player in CVD pathogenesis in the context of CKD. CKD-MBD manifests as hypocalcemia and hyperphosphatemia in the later stages of CKD; however, it initially develops much earlier in disease course. The initial step in CKD-MBD involves decreased phosphate excretion in the urine, followed by increased circulating concentrations of fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH), which increase urinary phosphate excretion. Simultaneously, the serum calcitriol concentration decreases as a result of FGF23 elevation. Importantly, FGF23 and PTH cause left ventricular hypertrophy, arrhythmia, and cardiovascular calcification. More recently, calciprotein particles, which are nanoparticles composed of calcium, phosphate, and fetuin-A, among other components, have been reported to cause inflammation, cardiovascular calcification, and other clinically relevant outcomes. CKD-MBD has become one of the critical therapeutic targets for the prevention of cardiovascular events and is another link between cardiology and nephrology. In this review, we describe the role of CKD-MBD in the pathogenesis of cardiovascular disorders and present the current treatment strategies for CKD-MBD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Centers for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Miyazaki-Anzai S, Keenan AL, Blaine J, Miyazaki M. Targeted Disruption of a Proximal Tubule-Specific TMEM174 Gene in Mice Causes Hyperphosphatemia and Vascular Calcification. J Am Soc Nephrol 2022; 33:1477-1486. [PMID: 35459732 PMCID: PMC9342641 DOI: 10.1681/asn.2021121578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The proximal tubules play a critical role in phosphate (Pi) homeostasis by reabsorbing Pi via sodium-dependent Pi cotransporters. NPT2A is a major proximal-specific Pi cotransporter, whose expression is regulated by circulating hormones, such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). In this study, we aimed to find a novel regulator in Pi homeostasis. METHODS Using RNA-seq and RT-qPCR analysis, we identified proximal tubule cell-enriched genes. We next used RNAi screening of the identified proximal tubular cell-enriched genes to identify a novel proximal tubule-specific gene that contributes to FGF23- and PTH-mediated inhibition of Pi uptake and NPT2 reduction. We created mice lacking this novel regulator of Pi homeostasis to examine whether the novel regulator contributes to Pi homeostasis in vivo. RESULTS We identified 54 kidney-enriched genes, 19 of which are expressed in renal primary proximal tubule cells. One of the proximal tubule-specific genes, TMEM174, interacted with NPT2A, and its knockdown blocked the reduction of NPT2A protein by FGF23 and PTH treatments in human and opossum proximal tubule cells. TMEM174 KO mice had significantly increased levels of serum Pi, FGF23, and PTH, resulting in vascular calcification. CONCLUSIONS TMEM174 is a novel regulator of Pi homeostasis that interacts with NPT2A.
Collapse
Affiliation(s)
- Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Audrey L. Keenan
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Judith Blaine
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Hansen NM, Rix M, Kamper AL, Feldt-Rasmussen B, Christoffersen C, Astrup A, Salomo L. Study protocol: long-term effect of the New Nordic Renal Diet on phosphorus and lipid homeostasis in patients with chronic kidney disease, stages 3 and 4: a randomised controlled trial. BMJ Open 2021; 11:e045754. [PMID: 34462278 PMCID: PMC8407220 DOI: 10.1136/bmjopen-2020-045754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) causes severe disturbances in phosphate metabolism. New Nordic Renal Diet (NNRD) is a new dietary concept designed by the present research group that aims to offer patients with moderate CKD a whole food approach with a markedly reduction in dietary phosphorus intake, corresponding to 850 mg/day. The present protocol describes a randomised controlled trial aiming to test the long-term effects of dietary intervention with NNRD versus a non-restricted habitual diet on important parameters of phosphorus and lipid homeostasis. METHODS AND ANALYSIS This trial will be executed at the Department of Nephrology, Rigshospitalet, University of Copenhagen, Denmark. Sixty patients aged >18 years with CKD stages 3 and 4 (estimated glomerular filtration rate between 15 and 45 mL/min) will be recruited and randomly assigned to the intervention or control group. The other inclusion criterion includes a medically stable condition for at least 2 months prior to the start of the study. Exclusion criteria are treatment with phosphate binders, metabolic disorders that require specific dietary regulation, pregnancy and breast feeding, any types of food allergies or those who are vegans. The observation period is 26 weeks including seven study visits at the outpatient clinic combined with a weekly telephone consultation in both groups. A follow-up visit 3 months after study completion finalises the intervention. The primary outcome is the difference in the change in 24-hour urine phosphorus excretion from baseline to week 26 between the two study groups. Secondary outcomes include changes in phosphate-related and lipid metabolism-related blood and urine biochemistry, blood pressure and body composition. Moreover, we wish to explore adherence to the diet as well as quality of life. ETHICS AND DISSEMINATION The study has been approved by the Scientific Ethical Committee of the Capital Region of Denmark and the Danish Data Protection Agency. The results of the studies will be presented at national and international scientific meetings, and publications will be submitted to peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (wwwclinicaltrialsgov) Registry (NCT04579315). PROTOCOL VERSION The protocol, version 2, has been approved by the Ethical Committee Denmark on 18 September 2020. The protocol has also been approved by Data Protection Regulation and Data Protection Law on 15 September 2020. This study protocol is in accordance with the Standard Protocol Items: Recommendations for International Trials.
Collapse
Affiliation(s)
| | - Marianne Rix
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Louise Salomo
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Moritoh Y, Abe SI, Akiyama H, Kobayashi A, Koyama R, Hara R, Kasai S, Watanabe M. The enzymatic activity of inositol hexakisphosphate kinase controls circulating phosphate in mammals. Nat Commun 2021; 12:4847. [PMID: 34381031 PMCID: PMC8358040 DOI: 10.1038/s41467-021-24934-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Circulating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia. Inositol hexakisphosphate kinase (IP6K) is involved in diverse cellular signalling pathways, but the physiological roles of IP6K in vivo remain unknown in mammals. Here, the authors show that the enzymatic activity of IP6K is essential for phosphate regulation in vivo.
Collapse
Affiliation(s)
| | - Shin-Ichi Abe
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | | | | | | - Ryoma Hara
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | - Shizuo Kasai
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | |
Collapse
|
6
|
Kaesler N, Goettsch C, Weis D, Schurgers L, Hellmann B, Floege J, Kramann R. Magnesium but not nicotinamide prevents vascular calcification in experimental uraemia. Nephrol Dial Transplant 2020; 35:65-73. [PMID: 30715488 DOI: 10.1093/ndt/gfy410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimal phosphate control is an unmet need in chronic kidney disease (CKD). High serum phosphate increases calcification burden and is associated with mortality and cardiovascular disease in CKD. Nicotinamide (NA) alone or in combination with calcium-free phosphate binders might be a strategy to reduce phosphate levels and calcification and thus impact cardiovascular disease in CKD. METHODS We studied the effect of NA alone and in combination with magnesium carbonate (MgCO3) as a potential novel treatment strategy. CKD was induced in dilute brown non-agouti/2 mice by subtotal nephrectomy followed by a high-phosphate diet (HP) and 7 weeks of treatment with NA, MgCO3 or their combination. Control mice underwent subtotal nephrectomy and received an HP or underwent sham surgery and received standard chow plus NA. RESULTS CKD mice showed increased serum fibroblast growth factor 23 and calcium-phosphate product that was normalized by all treatment regimes. NA alone increased soft tissue and vascular calcification, whereas any treatment with MgCO3 significantly reduced calcification severity in CKD. While MgCO3 supplementation alone resulted in decreased calcification severity, it resulted in increased intestinal expression of the phosphate transporters type II sodium-dependent phosphate transporter 1 (Pit-1). Combined therapy of MgCO3 and NA reduced tissue calcification and normalized expression levels of intestinal phosphate transporter proteins. CONCLUSIONS In conclusion, the data indicate that NA increases while MgCO3 reduces ectopic calcification severity. Augmented expression of intestinal phosphate transporters by MgCO3 treatment was abolished by the addition of NA. However, the clinical relevance of the latter remains to be explored. Importantly, the data suggest no benefit of NA regarding treatment of calcification in addition to MgCO3.
Collapse
Affiliation(s)
- Nadine Kaesler
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claudia Goettsch
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Daniel Weis
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leon Schurgers
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | - Jürgen Floege
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany.,Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Li D, Guo B, Liang Q, Liu Y, Zhang L, Hu N, Zhang X, Yang F, Ruan C. Tissue-engineered parathyroid gland and its regulatory secretion of parathyroid hormone. J Tissue Eng Regen Med 2020; 14:1363-1377. [PMID: 32511868 DOI: 10.1002/term.3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Parathyroid glands (PTGs) are important endocrine organs being mainly responsible for the secretion of parathyroid hormone (PTH) to regulate the balance of calcium (Ca) /phosphorus (P) ions in the body. Once PTGs get injured or removed, their resulting defect or loss of PTH secretion should disturb the level of Ca/P in blood, thus damaging other related organs (bone, kidney, etc.) and even causing death. Recently, tissue-engineered PTGs (TE-PTGs) have attracted lots of attention as a potential treatment for the related diseases of PTGs caused by hypoparathyroidism and hyperparathyroidism, including tetany, muscle cramp, nephrolithiasis, nephrocalcinosis, and osteoporosis. Although great progress has been made in the establishment of TE-PTGs with an effective strategy to integrate the key factors of cells and biomaterials, its regulatory secretion of PTH to mimic its natural rhythms in the body remains a huge challenge. This review comprehensively describes an overview of PTGs from physiology and pathology to cytobiology and tissue engineering. The state of the arts in TE-PTGs and the feasible strategies to regulate PTH secretion behaviors are highlighted to provide an important foundation for further investigation.
Collapse
Affiliation(s)
- Duo Li
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Baochun Guo
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunhui Liu
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
8
|
Gordon RJ, Li D, Doyle D, Zaritsky J, Levine MA. Digenic Heterozygous Mutations in SLC34A3 and SLC34A1 Cause Dominant Hypophosphatemic Rickets with Hypercalciuria. J Clin Endocrinol Metab 2020; 105:dgaa217. [PMID: 32311027 PMCID: PMC7448300 DOI: 10.1210/clinem/dgaa217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. OBJECTIVE To identify a genetic cause of apparent dominant transmission of HHRH. DESIGN AND SETTING Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. METHODS We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. RESULTS The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage-effect and an age-dependent attenuation of severity. CONCLUSIONS We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel Doyle
- Division of Pediatric Endocrinology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joshua Zaritsky
- Division of Pediatric Nephrology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Michael A Levine
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Saki F, Kassaee SR, Salehifar A, Omrani GHR. Interaction between serum FGF-23 and PTH in renal phosphate excretion, a case-control study in hypoparathyroid patients. BMC Nephrol 2020; 21:176. [PMID: 32398014 PMCID: PMC7218502 DOI: 10.1186/s12882-020-01826-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND phosphate homeostasis is mediated through complex counter regulatory feed-back balance between parathyroid hormone, FGF-23 and 1,25(OH)2D. Both parathyroid hormone and FGF-23 regulate proximal tubular phosphate excretion through signaling on sodium- phosphate cotransporters IIa and IIc. However, the interaction between these hormones on phosphate excretion is not clearly understood. We performed the present study to evaluate whether the existence of sufficient parathyroid hormone is necessary for full phosphaturic function of FGF-23 or not. METHODS In this case-control study, 19 patients with hypoparathyroidism and their age- and gender-matched normal population were enrolled. Serum calcium, phosphate, alkaline phosphatase,parathyroid hormone, FGF-23, 25(OH)D, 1,25(OH)2D and Fractional excretion of phosphorous were assessed and compared between the two groups, using SPSS software. RESULTS The mean serum calcium and parathyroid hormone level was significantly lower in hypoparathyroid patients in comparison with the control group (P < 0.001 and P < 0.001, respectively). We found high serum level of phosphate and FGF-23 in hypoparathyroid patients compared to the control group (P < 0.001 and P < 0.001, respectively). However, there was no significant difference in Fractional excretion of phosphorous or 1,25OH2D level between the two groups. There was a positive correlation between serum FGF-23 and Fractional excretion of phosphorous just in the normal individuals (P < 0.001, r = 0.79). CONCLUSIONS Although the FGF-23 is a main regulator of urinary phosphate excretion but the existence of sufficient parathyroid hormone is necessary for the full phosphaturic effect of FGF-23.
Collapse
Affiliation(s)
- Forough Saki
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| | - Seyed Reza Kassaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| | - Azita Salehifar
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran
| | - Gholam Hossein Ranjbar Omrani
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 71345-1744, Shiraz, Iran.
| |
Collapse
|
10
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
11
|
Notch signaling is involved in Fgf23 upregulation in osteocytes. Biochem Biophys Res Commun 2019; 518:233-238. [PMID: 31420162 DOI: 10.1016/j.bbrc.2019.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Fgf23 acts as a phosphaturic factor secreted from osteocytes in bone, but the mechanism regulating Fgf23 is not fully understood. Here, we showed the colocalization of Fgf23, Notch, and Hes1, a downstream target of Notch signaling, in numerous osteocytes in cortical bone of femur in wild-type mice. We generated NICD (Notch intracellular domain)-transgenic mice driven by a 2.3 kb collagenα1 (I) (Col1a1) promoter fragment. Western blot and RT-PCR analyses revealed upregulation of Notch protein and mRNA levels in the bones of transgenic mice compared with those in wild-type mice. In the transgenic mice, immunohistochemical studies demonstrated that numerous osteocytes and osteoblasts express Notch in the rib, whereas only osteoblasts exhibit Notch in the femur. NICD-transgenic mice were characterized by upregulation of Fgf23 mRNA levels in the rib but not in the femur compared with that in wild type mice. These mice exhibited dwarfism associated with an osteomalacia phenotype. The expression of Alpl, Col1a1, and Bglap decreased in NICD-transgenic mice compared with wild-type mice. UMR-106 cells cultured on Jagged1-immobilized wells significantly increased Fgf23 expressions associating with upregulation of Hes1 and Hey1. These results imply that Notch signaling is a positive regulator for Fgf23 expression in osteocytes.
Collapse
|
12
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
13
|
Hureaux M, Molin A, Jay N, Saliou AH, Spaggiari E, Salomon R, Benachi A, Vargas-Poussou R, Heidet L. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol 2018; 33:1723-1729. [PMID: 29959532 DOI: 10.1007/s00467-018-3998-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prenatal diagnosis of hyperechogenic kidneys is associated with a wide range of etiologies and prognoses. The recent advances in fetal ultrasound associated with the development of next-generation sequencing for molecular analysis have enlarged the spectrum of etiologies, making antenatal diagnosis a very challenging discipline. Of the various known causes of hyperechogenic fetal kidneys, calcium and phosphate metabolism disorders represent a rare cause. An accurate diagnosis is crucial for providing appropriate genetic counseling and medical follow-up after birth. METHODS We report on three cases of fetal hyperechogenic kidneys corresponding to postnatal diagnosis of nephrocalcinosis. In all cases, antenatal ultrasound showed hyperechogenic kidneys of normal to large size from 22 gestational weeks, with a normal amount of amniotic fluid. Postnatal ultrasound follow-up showed nephrocalcinosis associated with hypercalcemia, hypercalciuria, elevated 1,25(OH)2-vitamin D, and suppressed parathyroid hormone levels. RESULTS Molecular genetic analysis by next-generation sequencing performed after birth in the three newborns revealed biallelic pathogenic variants in the SLC34A1 gene, encoding the sodium/phosphate cotransporter type 2 (Npt2a), confirming the diagnosis of infantile hypercalcemia. CONCLUSIONS Nephrocalcinosis due to infantile hypercalcemia can be a cause of fetal hyperechogenic kidneys, which suggests early antenatal anomaly of calcium and phosphate metabolism. This entity should be considered in differential diagnosis. Postnatal follow-up of infants with hyperechogenic kidneys should include evaluation of calcium and phosphate metabolism.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Département de Génétique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20-40 rue Leblanc, 75015, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France
| | - Arnaud Molin
- Service de Génétique, Centre Hospitalier Universitaire de Caen, Caen, France.,Centre de Référence des Maladies rares du Métabolisme du calcium et du phosphate (filière OSCAR), FilièreOSCAR, Paris, France.,Université Caen Normandie, UFR de médecine (Medical School), EA7450 BioTarGen, Caen, France
| | - Nadine Jay
- Centre Hospitalier Universitaire de Brest, Service de Pédiatrie et Génétique Médicale, Brest, France
| | | | - Emmanuel Spaggiari
- Département de Gynécologie-Obstétrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Rémi Salomon
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.,Département de Néphrologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Alexandra Benachi
- Département de Gynécologie-Obstétrique, Assistance Publique Hôpitaux de Paris, Hôpital Antoine-Béclère, Université Paris-Sud, Clamart, France
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.
| | - Laurence Heidet
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.,Département de Néphrologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| |
Collapse
|
14
|
Sasaki S, Segawa H, Hanazaki A, Kirino R, Fujii T, Ikuta K, Noguchi M, Sasaki S, Koike M, Tanifuji K, Shiozaki Y, Kaneko I, Tatsumi S, Shimohata T, Kawai Y, Narisawa S, Millán JL, Miyamoto KI. A Role of Intestinal Alkaline Phosphatase 3 (Akp3) in Inorganic Phosphate Homeostasis. Kidney Blood Press Res 2018; 43:1409-1424. [PMID: 30212831 DOI: 10.1159/000493379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.
Collapse
Affiliation(s)
- Shohei Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima,
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Ruri Kirino
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Miwa Noguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sumire Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshichika Kawai
- Department of Food Science, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
15
|
Mattinzoli D, Ikehata M, Tsugawa K, Alfieri CM, Dongiovanni P, Trombetta E, Valenti L, Puliti A, Lazzari L, Messa P. FGF23 and Fetuin-A Interaction in the Liver and in the Circulation. Int J Biol Sci 2018; 14:586-598. [PMID: 29904273 PMCID: PMC6001652 DOI: 10.7150/ijbs.23256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
Recently it has been demonstrated that Fetuin-A, an anti-inflammatory protein synthesized by the liver, is produced also in bone by an FGF23-regulated pathway. FGF23 has been also demonstrated to induce inflammatory cytokine production in the liver. This study aimed to explore if FGF23 plays a role in the Fetuin-A production in the liver cells too and the possible relationships with FGF23 pro-inflammatory effects. FGF23 and Fetuin-A were studied in liver, kidney and in plasma with immunochemistry, immunoprecipitation, western blot, chromatin immunoprecipitation, duolink, ELISA, qrtPCR methodology. FGF23 is produced, but not secreted by the liver cells. In hepatocytes and circulation, FGF23 was present only strictly linked to Fetuin-A, while Fetuin-A was found also in unbounded form. No link was observed in the kidney. FGF23 up to 600 pg/ml stimulates, while, at higher concentrations, reduces Fetuin-A expression. Notably, overall the range of concentrations, FGF23 stimulates Fetuin-A promoter, TNFα and IL6 expression. In the nucleus, FGF23 seems to act as a direct transcription factor of Fetuin-A promoter. These results suggest that FGF23 played a direct regulatory role in Fetuin-A expression in liver cells with a biphasic effect: Fetuin-A progressively increases when FGF23 increases up to 400-600 pg/mL, and declines at higher FGF23 concentrations. These results lead us to hypothesize: a) a possible epigenetic post-transcriptional regulation; b) a possible counter-regulatory effect of FGF23 induced inflammatory cytokines (TNFα/ NF-κB mechanism). This study could add an additional key for the interpretation of the possible mechanisms linking FGF23, Fetuin-A and inflammation in CKD patients and suggests a role for FGF23 as transcription factor.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Renal Research Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Koji Tsugawa
- Renal Research Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo M Alfieri
- Renal Research Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.,Unit of Nephrology, Dialysis and Renal transplant Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry and Experimental Hepatology Service, Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of pathophysiology and transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Università degli Studi di Milano, Italy
| | - Aldamaria Puliti
- DiNOGMI, University of Genoa, Italy.,Medical Genetics Unit, Istituto Giannina Gaslini, Italy
| | - Lorenza Lazzari
- Cell Factory Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.,Unit of Nephrology, Dialysis and Renal transplant Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Università degli Studi di Milano, Italy
| |
Collapse
|
16
|
Heung M, Mueller BA. Prevention of hypophosphatemia during continuous renal replacement therapy-An overlooked problem. Semin Dial 2018; 31:213-218. [PMID: 29405468 DOI: 10.1111/sdi.12677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypophosphatemia is a common and potentially serious complication occurring during continuous renal replacement therapy (CRRT). Phosphate supplementation is required in the vast majority of patients undergoing CRRT, particularly beyond the first 48 hours. Supplementation can be provided either as a standalone oral or parenteral treatment or as an additive to CRRT solutions. Each approach has advantages and disadvantages, and clinicians must weigh the individual factors most relevant in their practice setting. Currently there are no consensus protocols for phosphate replacement in CRRT, and many centers replete phosphate in response to hypophosphatemia as opposed to pre-emptively. Repletion protocols have also been challenged in recent years by shortages in injectable phosphate solutions. More recently a commercially available phosphate-containing CRRT solution was approved in the United States, but there has been limited clinical experience with this product. In this review, we present recommendations for phosphate repletion in CRRT to prevent hypophosphatemia, and describe our experience using phosphate-containing CRRT solutions.
Collapse
Affiliation(s)
- Michael Heung
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bruce A Mueller
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Kawamura H, Tanaka S, Ota Y, Endo S, Tani M, Ishitani M, Sakaue M, Ito M. Dietary intake of inorganic phosphorus has a stronger influence on vascular-endothelium function than organic phosphorus. J Clin Biochem Nutr 2018; 62:167-173. [PMID: 29610557 PMCID: PMC5874240 DOI: 10.3164/jcbn.17-97] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022] Open
Abstract
Phosphorus management through dietetic therapy is vital for the prevention of cardiovascular disease in chronic kidney disease patients. There are two main sources of phosphorus in the diet, organic phosphorus from protein and inorganic phosphorus from food additives. The adverse effects of high phosphorus intake on vascular-endothelium function have been reported; however, the differences in the effects of organic phosphorus versus inorganic phosphorus are not clear. In this study, we examined an acute effect of these high phosphorus meals intake on vascular-endothelium function. This was a randomized, double-blind, cross-over test study design targeting healthy young men. We conducted a food intake test using two test meals, one high in organic phosphorus from organic food sources, and one high in inorganic phosphorus from food additives. Endothelium-dependent vasodilation, phosphorus and calcium in the urine and blood, and phosphorus-related hormones were measured preprandial to 120 min postprandial. The results showed higher serum and urine phosphorus values after the high inorganic phosphorus meal, and a significant reduction in endothelium-dependent vasodilation at 30 min postprandial. These findings are evidence that inorganic phosphorus has a stronger influence on vascular-endothelium function than organic phosphorus.
Collapse
Affiliation(s)
- Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuri Ota
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sumire Endo
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Midori Ishitani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
18
|
Zhang D, Bi X, Liu Y, Huang Y, Xiong J, Xu X, Xiao T, Yu Y, Jiang W, Huang Y, Zhang J, Zhang B, Zhao J. High Phosphate-Induced Calcification of Vascular Smooth Muscle Cells is Associated with the TLR4/NF-κb Signaling Pathway. Kidney Blood Press Res 2017; 42:1205-1215. [PMID: 29227975 DOI: 10.1159/000485874] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Hyperphosphatemia is one of the most notable features of chronic kidney disease (CKD). Numerous epidemiological and clinical studies have found that high serum phosphate concentrations are associated with calcification in the coronary arteries. However, the mechanisms underlying the vascular calcification induced by high phosphate have not been understood fully. METHODS Vascular smooth muscle cells (VSMCs) were cultured in high-phosphate media to induce vascular calcification, which was detected by Alizarin red S staining. Gene expression and protein levels of differentiation markers were determined by real-time RT-PCR and western blotting, respectively. Protein levels of phosphorylated NF-κB and TLR4 were detected by western blotting, and the role of NF-κB/TLR4 was further confirmed by using an NF-κB inhibitor or TLR4 siRNA. RESULTS Our results showed that high-phosphate media induced obvious calcification of VSMCs. Simultaneously, VSMC differentiation was confirmed by the increased expression of bone morphogenetic protein-2 and Runt-related transcription factor 2 and decreased expression of the VSMC-specific marker SM22α, which was accompanied by the increased expression of inflammatory cytokines. Moreover, a significant upregulation of TLR4 and phosphorylated NF-κB was also detected in VSMCs with high-phosphate media. In contrast, VSMC calcification and the increased expression of inflammatory cytokines were markedly attenuated by pretreatment with TLR4 siRNA and pyrrolidine dithiocarbamic acid, an NF-κB inhibitor. CONCLUSION These data suggest that high-phosphate conditions directly induce vascular calcification via the activation of TLR4/NF-κB signaling in VSMCs. Moreover, inhibition of the TLR4/NF-κB signaling pathway might be a key intervention to prevent vascular calcification in patients with CKD.
Collapse
|
19
|
Fukagawa M, Inaba M, Yokoyama K, Shigematsu T, Ando R, Miyamoto KI. An introduction to CKD-MBD research: restart for the future. Clin Exp Nephrol 2017; 21:1-3. [PMID: 28083765 DOI: 10.1007/s10157-016-1372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Keitaro Yokoyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Shigematsu
- Department of Nephrology and Blood Purification Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | |
Collapse
|
20
|
Fujii O, Tatsumi S, Ogata M, Arakaki T, Sakaguchi H, Nomura K, Miyagawa A, Ikuta K, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI. Effect of Osteocyte-Ablation on Inorganic Phosphate Metabolism: Analysis of Bone-Kidney-Gut Axis. Front Endocrinol (Lausanne) 2017; 8:359. [PMID: 29312149 PMCID: PMC5742590 DOI: 10.3389/fendo.2017.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 01/24/2023] Open
Abstract
In response to kidney damage, osteocytes increase the production of several hormones critically involved in mineral metabolism. Recent studies suggest that osteocyte function is altered very early in the course of chronic kidney disease. In the present study, to clarify the role of osteocytes and the canalicular network in mineral homeostasis, we performed four experiments. In Experiment 1, we investigated renal and intestinal Pi handling in osteocyte-less (OCL) model mice [transgenic mice with the dentin matrix protein-1 promoter-driven diphtheria toxin (DT)-receptor that were injected with DT]. In Experiment 2, we administered granulocyte colony-stimulating factor to mice to disrupt the osteocyte canalicular network. In Experiment 3, we investigated the role of osteocytes in dietary Pi signaling. In Experiment 4, we analyzed gene expression level fluctuations in the intestine and liver by comparing mice fed a high Pi diet and OCL mice. Together, the findings of these experiments indicate that osteocyte ablation caused rapid renal Pi excretion (P < 0.01) before the plasma fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH) levels increased. At the same time, we observed a rapid suppression of renal Klotho (P < 0.01), type II sodium phosphate transporters Npt2a (P < 0.01) and Npt2c (P < 0.05), and an increase in intestinal Npt2b (P < 0.01) protein. In OCL mice, Pi excretion in feces was markedly reduced (P < 0.01). Together, these effects of osteocyte ablation are predicted to markedly increase intestinal Pi absorption (P < 0.01), thus suggesting that increased intestinal Pi absorption stimulates renal Pi excretion in OCL mice. In addition, the ablation of osteocytes and feeding of a high Pi diet affected FGF15/bile acid metabolism and controlled Npt2b expression. In conclusion, OCL mice exhibited increased renal Pi excretion due to enhanced intestinal Pi absorption. We discuss the role of FGF23-Klotho on renal and intestinal Pi metabolism in OCL mice.
Collapse
Affiliation(s)
- Osamu Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| | - Mao Ogata
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Arakaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Haruna Sakaguchi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
- *Correspondence: Sawako Tatsumi, ; Ken-ichi Miyamoto,
| |
Collapse
|