1
|
Yin F, Qin Z. Long-Chain Molecules with Agro-Bioactivities and Their Applications. Molecules 2023; 28:5880. [PMID: 37570848 PMCID: PMC10421526 DOI: 10.3390/molecules28155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.
Collapse
Affiliation(s)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Bava R, Castagna F, Palma E, Marrelli M, Conforti F, Musolino V, Carresi C, Lupia C, Ceniti C, Tilocca B, Roncada P, Britti D, Musella V. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet Sci 2023; 10:vetsci10050308. [PMID: 37235392 DOI: 10.3390/vetsci10050308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Etnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Dassanayake MK, Chong CH, Khoo TJ, Figiel A, Szumny A, Choo CM. Synergistic Field Crop Pest Management Properties of Plant-Derived Essential Oils in Combination with Synthetic Pesticides and Bioactive Molecules: A Review. Foods 2021; 10:2016. [PMID: 34574123 PMCID: PMC8467659 DOI: 10.3390/foods10092016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a range of phytochemicals with the potential to combat pesticide and fungicide resistance. This review paper summarizes and interprets the findings of experimental work based on plant-based essential oils in combination with existing pesticidal and fungicidal agents and novel bioactive natural and synthetic molecules against the insect pests and fungi responsible for the damage of crops. The insect mortality rate and fractional inhibitory concentration were used to evaluate the insecticidal and fungicidal activities of essential oil synergists against crop-associated pests. A number of studies have revealed that plant-derived essential oils are capable of enhancing the insect mortality rate and reducing the minimum inhibitory concentration of commercially available pesticides, fungicides and other bioactive molecules. Considering these facts, plant-derived essential oils represent a valuable and novel source of bioactive compounds with potent synergism to modulate crop-associated insect pests and phytopathogenic fungi.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Chien Hwa Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Jalan Broga, Semenyih 43500, Malaysia
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37a, 51-630 Wrocław, Poland;
| | - Antoni Szumny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Chee Ming Choo
- Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University Kota Damansara, Petaling Jaya 47810, Malaysia;
| |
Collapse
|
4
|
Schmidt M, Hrabcova V, Jun D, Kuca K, Musilek K. Vector Control and Insecticidal Resistance in the African Malaria Mosquito Anopheles gambiae. Chem Res Toxicol 2018; 31:534-547. [PMID: 29847927 DOI: 10.1021/acs.chemrestox.7b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mosquito-borne diseases (including malaria) belong among the leading causes of death in humans. Vector control is a crucial part of the global strategy for management of mosquito-associated diseases, when insecticide use is the most important component in this effort. However, drug and insecticide resistance threaten the successes made with existing methods. Reduction or elimination of malaria is not possible without effective mosquito control. This article reviews current strategies of intervention in vector control to decrease transmission of disease and covers current relevant knowledge in molecular biology, biochemistry, and medicinal chemistry.
Collapse
Affiliation(s)
- Monika Schmidt
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Veronika Hrabcova
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Daniel Jun
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy , University of Defence , Trebesska 1575 , 500 01 Hradec Kralove , Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre , University Hospital Hradec Kralove , Sokolska 581 , 500 05 Hradec Kralove , Czech Republic.,Faculty of Science, Department of Chemistry , University of Hradec Kralove , Rokitanskeho 62 , 500 03 Hradec Kralove , Czech Republic
| |
Collapse
|
5
|
Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. Molecular Targets for Components of Essential Oils in the Insect Nervous System-A Review. Molecules 2017; 23:E34. [PMID: 29295521 PMCID: PMC5943938 DOI: 10.3390/molecules23010034] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects, they cause paralysis followed by death. This feature let us consider components of EOs as potential bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs. In contrast, there is lack of any data concerning the binding of EO components in insects GABArs. In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with octopamine in binding to its receptor. Electrophysiological experiments performed on Periplaneta americana have shown similarity in the action of EO components and octopamine. This suggests that EOs can modify neuron activity by octopamine receptors. A multitude of potential targets in the insect nervous system makes EO components interesting candidates for bio-insecticides.
Collapse
Affiliation(s)
- Milena Jankowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| | - Maria Stankiewicz
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Carlier PR, Bloomquist JR, Totrov M, Li J. Discovery of Species-selective and Resistance-breaking Anticholinesterase Insecticides for the Malaria Mosquito. Curr Med Chem 2017; 24:2946-2958. [PMID: 28176636 DOI: 10.2174/0929867324666170206130024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Great reductions in malaria mortality have been accomplished in the last 15 years, in part due to the widespread roll-out of insecticide-treated bednets across sub-Saharan Africa. To date, these nets only employ pyrethroids, insecticides that target the voltage-gated sodium ion channel of the malaria vector, Anopheles gambiae. Due to the growing emergence of An. gambiae strains that are resistant to pyrethroids, there is an urgent need to develop new public health insecticides that engage a different target and possess low mammalian toxicity. In this review, we will describe efforts to develop highly species-specific and resistance-breaking inhibitors of An. gambiae acetylcholinesterase (AgAChE). These efforts have been greatly aided by advances in knowledge of the structure of the enzyme, and two major inhibitor design strategies have been explored. Since AgAChE possesses an unpaired Cys residue not present in mammalian AChE, a logical strategy to achieve selective inhibition involves design of compounds that could ligate that Cys. A second strategy involves the design of new molecules to target the catalytic serine of the enzyme. Here the challenge is not only to achieve high inhibition selectivity vs human AChE, but also to demonstrate toxicity to An. gambiae that carry the G119S resistance mutation of AgAChE. The advances made and challenges remaining will be presented. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity".
Collapse
Affiliation(s)
- Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061. United States
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology and Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610-00009. United States
| | - Max Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121. United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
7
|
Engdahl C, Knutsson S, Fredriksson SÅ, Linusson A, Bucht G, Ekström F. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues. PLoS One 2015; 10:e0138598. [PMID: 26447952 PMCID: PMC4598118 DOI: 10.1371/journal.pone.0138598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE.
Collapse
Affiliation(s)
| | | | | | - Anna Linusson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- * E-mail: (GB); (FE)
| | - Fredrik Ekström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- * E-mail: (GB); (FE)
| |
Collapse
|
8
|
Pang YP, Brimijoin S, Ragsdale DW, Zhu KY, Suranyi R. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides. Curr Drug Targets 2012; 13:471-82. [PMID: 22280344 PMCID: PMC3343382 DOI: 10.2174/138945012799499703] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022]
Abstract
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|
9
|
Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle. Chem Biol Interact 2010; 187:142-7. [PMID: 20109441 DOI: 10.1016/j.cbi.2010.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/12/2010] [Accepted: 01/20/2010] [Indexed: 11/22/2022]
Abstract
Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish.
Collapse
|
10
|
Pang YP, Ekström F, Polsinelli GA, Gao Y, Rana S, Hua DH, Andersson B, Andersson PO, Peng L, Singh SK, Mishra RK, Zhu KY, Fallon AM, Ragsdale DW, Brimijoin S. Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases. PLoS One 2009; 4:e6851. [PMID: 19714254 PMCID: PMC2731169 DOI: 10.1371/journal.pone.0006851] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 07/29/2009] [Indexed: 11/18/2022] Open
Abstract
New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 microM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast ( approximately 30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force microscopy, circular dichroism spectroscopy, X-ray crystallography, time-resolved fluorescence spectroscopy, and liquid chromatography triple quadrupole mass spectrometry. These results support our view that the mosquito-specific Cys is a viable target for developing new mosquitocides to control disease vectors and to alleviate resistance problems with reduced toxicity toward non-target species.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (YPP); (FE); (SB)
| | - Fredrik Ekström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- * E-mail: (YPP); (FE); (SB)
| | - Gregory A. Polsinelli
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yang Gao
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sandeep Rana
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Björn Andersson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Per Ola Andersson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lei Peng
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sanjay K. Singh
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajesh K. Mishra
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Ann M. Fallon
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David W. Ragsdale
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Stephen Brimijoin
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (YPP); (FE); (SB)
| |
Collapse
|
11
|
Pang YP, Singh SK, Gao Y, Lassiter TL, Mishra RK, Zhu KY, Brimijoin S. Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human-safe insecticides. PLoS One 2009; 4:e4349. [PMID: 19194505 PMCID: PMC2632757 DOI: 10.1371/journal.pone.0004349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/30/2008] [Indexed: 11/20/2022] Open
Abstract
Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (YP); (SB)
| | - Sanjay K. Singh
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yang Gao
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - T. Leon Lassiter
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajesh K. Mishra
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Brimijoin
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (YP); (SB)
| |
Collapse
|
12
|
Perrin B, Rowland M, Wolfe M, Tsigelny I, Pezzementi L. Thermal denaturation of wild type and mutant recombinant acetylcholinesterase from amphioxus: effects of the temperature of in vitro expression and of reversible inhibitors. INVERTEBRATE NEUROSCIENCE 2008; 8:147-55. [PMID: 18677525 DOI: 10.1007/s10158-008-0075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
We have studied the thermal inactivation at 37 degrees C of wild type and mutant ChE2 (C310A, F312I, C466A, C310A/F312I, and C310A/C466A) from amphioxus (Branchiostoma floridae) expressed in vitro in COS-7 monkey cells under three sets of conditions: 30 degrees C for 48 h, 30 degrees C for 24 h and 37 degrees C for 24 h, and 37 degrees C for 48 h. We found biphasic denaturation curves for all enzymes and conditions, except wild type and C310A ChE2 expressed at 30 degrees C for 48 h. Generally, single mutants are more unstable than wild type, and the double mutants are even more unstable. We propose a model involving stable and unstable conformations of the enzymes to explain these results, and we discuss the implications of the model. We also found a correlation between the melting temperature of the ChEs and the rates at which they denature at 37 degrees C, with the denaturation of the unstable conformation dominating the relationship. Reversible cholinergic inhibitors protect the ChEs from thermal denaturation, and in some cases produce monophasic denaturation curves; we also propose a model to explain this stabilization.
Collapse
Affiliation(s)
- Brian Perrin
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | | | | | | | | |
Collapse
|
13
|
Carlier PR, Anderson TD, Wong DM, Hsu DC, Hartsel J, Ma M, Wong EA, Choudhury R, Lam PCH, Totrov MM, Bloomquist JR. Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae. Chem Biol Interact 2008; 175:368-75. [PMID: 18554580 DOI: 10.1016/j.cbi.2008.04.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 11/26/2022]
Abstract
Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.
Collapse
Affiliation(s)
- Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inactivation of an invertebrate acetylcholinesterase by sulfhydryl reagents: a reconsideration of the implications for insecticide design. Chem Biol Interact 2008; 175:73-5. [PMID: 18384763 DOI: 10.1016/j.cbi.2008.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/15/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We created the mutants C310A, C466A, C310A/C466A and C310A/F312I to assess the roles of the two cysteines and a proposal that the increased rate of inactivation previously found in an F312I mutant was due to increased access of sulfhydryl reagents to Cys310. Our results indicated that both of the cysteines could be involved in inactivation by sulfhydryl reagents, but that the cysteine near the acyl pocket was more accessible. We speculated that the inactivation of aphid AChEs by sulfhydryl reagents was due to the presence of a cysteine homologous to Cys310 and proposed that this residue could be a target for a specific insecticide. Here we reconsider this proposal.
Collapse
|