1
|
Functional Analysis of Actin-Binding Proteins in the Central Nervous System of Drosophila. Methods Mol Biol 2021. [PMID: 34542862 DOI: 10.1007/978-1-0716-1661-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Using Drosophila actin-binding protein Dunc-115 as an example, this chapter describes a MARCM (mosaic analysis with a repressible cell marker)-based method for analyzing cytoskeletal components for their functions in the nervous system. Following a concise description about the principle, a step-by-step protocol is provided for generating the needed stocks and for histological analysis. Additional details and explanations have been given in the accompanying notes. Together, this should form a practical and sufficient recipe for performing at the single cell level loss-of-function and gain-of-function analyses of proteins associated with the cytoskeleton.
Collapse
|
2
|
Ke YT, Hsu HJ. Generation of Inducible Gene-Switched GAL4 Expressed in the Drosophila Female Germline Stem Cell Niche. G3 (BETHESDA, MD.) 2019; 9:2007-2016. [PMID: 31018943 PMCID: PMC6553524 DOI: 10.1534/g3.119.400246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
The stem cell niche, a regulatory microenvironment, houses and regulates stem cells for maintenance of tissues throughout an organism's lifespan. While it is known that stem cell function declines with age, the role of niche cells in this decline is not completely understood. Drosophila exhibits a short lifespan with well-characterized ovarian germline stem cells (GSCs) and niche compartments, providing a good model with which to study stem cell biology. However, no inducible tools for temporal and spatial control of gene expression in the GSC-niche unit have been previously developed for aging studies. The current UAS-GAL4 systems are not ideal for aging studies because fly physiological aging may be affected by the temperature shifts used to manipulate GAL4 activity. Additionally, the actual needs of the aged niche may be masked by continuously driven gene expression. Since GeneSwitch GAL4 is conveniently activated by the steroid RU486 (mifepristone), we conducted an enhancer-trap screen to isolate GeneSwitch GAL4 lines with expression in the GSC-niche unit. We identified six lines with expression in germarial somatic cells, and two lines (#2305 and #2261) with expression in niche cap cells, the major constituent of the GSC niche. The use of lines #2305 or #2261 to overexpress Drosophila insulin-like peptide 2, which maintains GSC lifespan, in aged niche cap cells significantly delayed age-dependent GSC loss. These results support the notion that insulin signaling is beneficial for maintaining aged stem cells and also validate the utility of our GeneSwitch GAL4 lines for studying stem cell aging.
Collapse
Affiliation(s)
- Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Roblodowski C, He Q. Drosophila Dunc-115 mediates axon projection through actin binding. INVERTEBRATE NEUROSCIENCE 2017; 17:2. [PMID: 28124181 DOI: 10.1007/s10158-017-0195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
A central step in organizing the central nervous system development is the growth cone of an axon navigating through guidance cues to reach its specific target. While a great deal of this process has been understood especially in identifying the extracellular guidance cues and their membrane receptors, much less is known about how guidance signals are further relayed to the actin filaments that are central to the mobility of the growth cone. The previous results from our laboratory have shown that Drosophila gene dunc-115 regulates axon projection in the eye and the central nervous system. Furthermore, Dunc-115 has a villin-headpiece (VHD) domain, implying the possibility of binding to actin. To further characterize Dunc-115's functions, we have identified the isoform Dunc-115L as a possible downstream target in relaying guidance cues further down to the cytoskeleton. Specifically, we have shown that Dunc-115 regulates neural connections in both the eye and the central nervous system in Drosophila and that Dunc-115 contains an actin-binding domain potentially capable of binding to actin filaments. In this report, we show that Dunc-115 binds to actin via its VHD domain directly, suggesting a possible mechanism for how Dunc-115 relays guidance signals.
Collapse
Affiliation(s)
- Christopher Roblodowski
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, 222-05 56th Avenue, Bayside, NY, 11364, USA
| | - Qi He
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.
| |
Collapse
|
4
|
Functional Analysis of Actin-Binding Proteins in the Central Nervous System of Drosophila. Methods Mol Biol 2016; 1365:349-55. [PMID: 26498796 DOI: 10.1007/978-1-4939-3124-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Using Drosophila actin-binding protein Dunc-115 as model system, this chapter describes a MARCM (mosaic analysis with a repressible cell marker)-based method for analyzing cytoskeletal components for their functions in the nervous system. Following a concise description about the principle, a step-by-step protocol is provided for generating the needed stocks and for histological analysis. Additional details and explanations have been given in the accompanying notes. Together, this should form a practical and sufficient recipe for performing at the single-cell-level loss-of-function and gain-of-function analyses of proteins associated with the cytoskeleton.
Collapse
|
5
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
6
|
The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS One 2012; 7:e33261. [PMID: 22438907 PMCID: PMC3305314 DOI: 10.1371/journal.pone.0033261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.
Collapse
|
7
|
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a001800. [PMID: 21106647 DOI: 10.1101/cshperspect.a001800] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
8
|
Demarco RS, Lundquist EA. RACK-1 acts with Rac GTPase signaling and UNC-115/abLIM in Caenorhabditis elegans axon pathfinding and cell migration. PLoS Genet 2010; 6:e1001215. [PMID: 21124943 PMCID: PMC2987834 DOI: 10.1371/journal.pgen.1001215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022] Open
Abstract
Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that the Caenorhabditis elegans counterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia formation in migrating cells and growth cones. In the developing nervous system, the growth cone guides axons of neurons to their correct targets in the organism. The growth cone is a highly dynamic specialization at the tip of the axon that senses cues and responds by crawling toward its target, leaving the axon behind. Key to growth cone motility are dynamic cellular protrusions called lamellipodia and filopodia. These protrusions are required for growth cone movement and steering. The genes that are involved in lamellipodia and filopodia formation in the growth cone are still being discovered, and studies to understand how these genes act together in cell signaling events that control growth cone movement are in their infancy. Here we report discovery of a new gene necessary for growth cone movement in Caenorhabditis elegans called rack-1. This gene is conserved in vertebrates and is involved in cellular signaling. We show that it interacts in a novel manner with other cell signaling genes (the Rac GTPase genes) and a gene involved in lamellipodia and filopodia formation, called unc-115/abLIM. We think that rack-1 is involved in a novel cellular signaling event involving Rac GTPases that regulates lamellipodia and filopodia protrusion in the growth cone during nervous system development.
Collapse
Affiliation(s)
- Rafael S. Demarco
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Erik A. Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Norris AD, Dyer JO, Lundquist EA. The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans. Neural Dev 2009; 4:38. [PMID: 19799769 PMCID: PMC2762468 DOI: 10.1186/1749-8104-4-38] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/02/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While many molecules involved in axon guidance have been identified, the cellular and molecular mechanisms by which these molecules regulate growth cone morphology during axon outgrowth remain to be elucidated. The actin cytoskeleton of the growth cone underlies the formation of lamellipodia and filopodia that control growth cone outgrowth and guidance. The role of the Arp2/3 complex in growth cone filopodia formation has been controversial, and other mechanisms of growth cone filopodia formation remain to be described. RESULTS Here we show that mutations in genes encoding the Arp2/3 complex (arx genes) caused defects in axon guidance. Analysis of developing growth cones in vivo showed that arx mutants displayed defects in filopodia and reduced growth cone size. Time-lapse analysis of growth cones in living animals indicated that arx mutants affected the rate of growth cone filopodia formation but not filopodia stability or length. Two other actin modulatory proteins, UNC-115/abLIM and UNC-34/Enabled, that had been shown previously to affect axon guidance had overlapping roles with Arp2/3 in axon guidance and also affected the rate of filopodia initiation but not stability or length. CONCLUSION Our results indicate that the Arp2/3 complex is required cell-autonomously for axon guidance and growth cone filopodia initiation. Furthermore, they show that two other actin-binding proteins, UNC-115/abLIM and UNC-34/Enabled, also control growth cone filopodia formation, possibly in parallel to Arp2/3. These studies indicate that, in vivo, multiple actin modulatory pathways including the Arp2/3 complex contribute to growth cone filopodia formation during growth cone outgrowth.
Collapse
Affiliation(s)
- Adam D Norris
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
10
|
Functional analysis of actin-binding proteins in the central nervous system of Drosophila. Methods Mol Biol 2009. [PMID: 19768442 DOI: 10.1007/978-1-60761-376-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Using Drosophila actin-binding protein Dunc-115 as an example, this chapter describes an MARCM based method for analyzing cytoskeletal components for their functions in the nervous system. Following a concise description about the principle, a step-by-step protocol is provided for generating the needed stocks and for histological analysis. Additional details and explanations have been given in the accompanying notes. With the two together, it should provide a practical and comprehensive recipe for performing at the single cell level loss-of-function and gain-of-function analyses of proteins associated with the cytoskeleton.
Collapse
|