1
|
Partouche E, Adenis V, Stahl P, Huetz C, Edeline JM. What Is the Benefit of Ramped Pulse Shapes for Activating Auditory Cortex Neurons? An Electrophysiological Study in an Animal Model of Cochlear Implant. Brain Sci 2023; 13:brainsci13020250. [PMID: 36831793 PMCID: PMC9954719 DOI: 10.3390/brainsci13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.
Collapse
Affiliation(s)
- Elie Partouche
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Victor Adenis
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Pierre Stahl
- Departement of Scientific and Clinical Research, Oticon Medical, 06220 Vallauris, France
| | - Chloé Huetz
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Jean-Marc Edeline
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
- Correspondence:
| |
Collapse
|
2
|
Macherey O, Stahl P, Intartaglia B, Meunier S, Roman S, Schön D. Temporal integration of short-duration pulse trains in cochlear implant listeners: Psychophysical and electrophysiological measurements. Hear Res 2021; 403:108176. [PMID: 33524792 DOI: 10.1016/j.heares.2021.108176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
While electrically-evoked auditory brainstem response (eABR) thresholds for low-rate pulse trains correlate well with behavioral thresholds measured at the same rate, the correlation is much weaker with behavioral thresholds measured at high rates, such as used clinically. This implies that eABRs to low-rate stimuli cannot be reliably used for objective programming of threshold levels in cochlear implant (CI) users. Here, we investigate whether the use of bunched-up pulses (BUPS), consisting of groups of closely-spaced pulses may be used as an alternative stimulus. Experiment 1 measured psychophysical detection thresholds for several stimuli having a period of 32 ms in nine CI subjects implanted with a Med-EL device. The stimuli differed in the number of pulses present in each period (from 1 to 32), the pulse rate within period (1000 pps and as high as possible for BUPS) and the electrode location (apical or basal). The correlation between psychophysical thresholds obtained for a high-rate (1000 pps) clinical stimulus and for the BUPS stimuli increased as the number of pulses per period of BUPS increased from 1 to 32. This first psychophysical experiment suggests that the temporal processes affecting the threshold of clinical stimuli are also present for BUPS. Experiment 2 measured eABRs on the apical electrode of eight CI subjects for BUPS having 1, 2, 4, 8, 16 or 32 pulses per period. For most subjects, wave V was visible for BUPS having up to 16 pulses per period. The latency of wave V at threshold increased as a function of the number of pulses per period, suggesting that the eABR reflects the integration of multiple pulses at such low levels or that the neural response to each individual pulse increases along the sequence due to facilitation processes. There was also a strong within-subject correlation between electrophysiological and behavioral thresholds for the different BUPS stimuli. This demonstrates that the drop in behavioral threshold obtained when increasing the number of pulses per period of the BUPS can be measured electrophysiologically using eABRs. In contrast, the across-subject correlation between eABR thresholds for BUPS and clinical thresholds remained relatively weak and did not increase with the number of pulses per period. Implications of the use of BUPS for objective programming of CIs are discussed.
Collapse
Affiliation(s)
- Olivier Macherey
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13, France.
| | - Pierre Stahl
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13, France
| | | | - Sabine Meunier
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13, France
| | - Stéphane Roman
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France; Department Pediatric Otolaryngology and Neck Surgery, Aix Marseille Univ, Marseille, France
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
3
|
van Gendt MJ, Briaire JJ, Frijns JHM. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study. Hear Res 2019; 377:167-178. [PMID: 30947041 DOI: 10.1016/j.heares.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/13/2019] [Accepted: 03/13/2019] [Indexed: 01/17/2023]
Abstract
Electrically evoked compound action potentials (eCAPs) are measurements of the auditory nerve's response to electrical stimulation. ECAP amplitudes during pulse trains can exhibit temporal alternations. The magnitude of this alternation tends to diminish over time during the stimulus. How this pattern relates to the temporal behavior of nerve fibers is not known. We hypothesized that the stochasticity, refractoriness, adaptation of the threshold and spike-times influence pulse-train eCAP responses. Thirty thousand auditory nerve fibers were modeled in a three-dimensional cochlear model incorporating pulse-shape effects, pulse-history effects, and stochasticity in the individual neural responses. ECAPs in response to pulse trains of different rates and amplitudes were modeled for fibers with different stochastic properties (by variation of the relative spread) and different temporal properties (by variation of the refractory periods, adaptation and latency). The model predicts alternation of peak amplitudes similar to available human data. In addition, the peak alternation was affected by changing the refractoriness, adaptation, and relative spread of auditory nerve fibers. As these parameters are related to factors such as the duration of deafness and neural survival, this study suggests that the eCAP pattern in response to pulse trains could be used to assess the underlying temporal and stochastic behavior of the auditory nerve. As these properties affect the nerve's response to pulse trains, they are of uttermost importance to sound perception with cochlear implants.
Collapse
Affiliation(s)
- M J van Gendt
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands.
| | - J J Briaire
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands
| | - J H M Frijns
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300, RC Leiden, the Netherlands; Leiden Institute for Brain and Cognition, PO Box 9600, 2300, RC Leiden, the Netherlands
| |
Collapse
|
4
|
Guérit F, Marozeau J, Deeks JM, Epp B, Carlyon RP. Effects of the relative timing of opposite-polarity pulses on loudness for cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2751. [PMID: 30522299 DOI: 10.1121/1.5070150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
The symmetric biphasic pulses used in contemporary cochlear implants (CIs) consist of both cathodic and anodic currents, which may stimulate different sites on spiral ganglion neurons and, potentially, interact with each other. The effect on the order of anodic and cathodic stimulation on loudness at short inter-pulse intervals (IPIs; 0-800 μs) is investigated. Pairs of opposite-polarity pseudomonophasic (PS) pulses were used and the amplitude of each pulse was manipulated independently. In experiment 1 the two PS pulses differed in their current level in order to elicit the same loudness when presented separately. Six users of the Advanced Bionics CI (Valencia, CA) loudness-ranked trains of the pulse pairs using a midpoint-comparison procedure. Stimuli with anodic-leading polarity were louder than those with cathodic-leading polarity for IPIs shorter than 400 μs. This effect was small-about 0.3 dB-but consistent across listeners. When the same procedure was repeated with both PS pulses having the same current level (experiment 2), anodic-leading stimuli were still louder than cathodic-leading stimuli at very short intervals. However, when using symmetric biphasic pulses (experiment 3) the effect disappeared at short intervals and reversed at long intervals. Possible peripheral sources of such polarity interactions are discussed.
Collapse
Affiliation(s)
- François Guérit
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, 352 Ørsteds Plads, Kongens Lyngby, 2800, Denmark
| | - Jeremy Marozeau
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, 352 Ørsteds Plads, Kongens Lyngby, 2800, Denmark
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Bastian Epp
- Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, 352 Ørsteds Plads, Kongens Lyngby, 2800, Denmark
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| |
Collapse
|
5
|
Sriperumbudur KK, Pau HW, van Rienen U. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study. IEEE Trans Biomed Eng 2018; 65:658-668. [DOI: 10.1109/tbme.2017.2700361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Badenhorst W, Hanekom T, Hanekom JJ. Analysis of a purely conductance-based stochastic nerve fibre model as applied to compound models of populations of human auditory nerve fibres used in cochlear implant simulations. BIOLOGICAL CYBERNETICS 2017; 111:439-458. [PMID: 29063191 DOI: 10.1007/s00422-017-0736-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
The study presents the application of a purely conductance-based stochastic nerve fibre model to human auditory nerve fibres within finite element volume conduction models of a semi-generic head and user-specific cochleae. The stochastic, threshold and temporal characteristics of the human model are compared and successfully validated against physiological feline results with the application of a mono-polar, bi-phasic, cathodic first stimulus. Stochastic characteristics validated include: (i) the log(Relative Spread) versus log(fibre diameter) distribution for the discharge probability versus stimulus intensity plots and (ii) the required exponential membrane noise versus transmembrane voltage distribution. Intra-user, and to a lesser degree inter-user, comparisons are made with respect to threshold and dynamic range at short and long pulse widths for full versus degenerate single fibres as well as for populations of degenerate fibres of a single user having distributed and aligned somas with varying and equal diameters. Temporal characteristics validated through application of different stimulus pulse rates and different stimulus intensities include: (i) discharge rate, latency and latency standard deviation versus stimulus intensity, (ii) period histograms and (iii) interspike interval histograms. Although the stochastic population model does not reduce the modelled single deterministic fibre threshold, the simulated stochastic and temporal characteristics show that it could be used in future studies to model user-specific temporally encoded information, which influences the speech perception of CI users.
Collapse
Affiliation(s)
- Werner Badenhorst
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Tania Hanekom
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Johan J Hanekom
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
7
|
van Gendt MJ, Briaire JJ, Kalkman RK, Frijns JHM. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation. Hear Res 2017. [PMID: 28625417 DOI: 10.1016/j.heares.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cochlear implants encode speech information by stimulating the auditory nerve with amplitude-modulated pulse trains. A computer model of the auditory nerve's response to electrical stimulation can be used to evaluate different approaches to improving CI patients' perception. In this paper a computationally efficient stochastic and adaptive auditory nerve model was used to investigate full nerve responses to amplitude-modulated electrical pulse trains. The model was validated for nerve responses to AM pulse trains via comparison with animal data. The influence of different parameters, such as adaptation and stochasticity, on long-term adaptation and modulation-following behavior was investigated. Responses to pulse trains with different pulse amplitudes, amplitude modulation frequencies, and modulation depths were modeled. Rate responses as well as period histograms, Vector Strength and the fundamental frequency were characterized in different time bins. The response alterations, including frequency following behavior, observed over the stimulus duration were similar to those seen in animal experiments. The tested model can be used to predict complete nerve responses to arbitrary input, and thus to different sound coding strategies.
Collapse
Affiliation(s)
- M J van Gendt
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J J Briaire
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - R K Kalkman
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J H M Frijns
- ENT-Department, Leiden University Medical Centre, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
8
|
Macherey O, Carlyon RP, Chatron J, Roman S. Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users. J Assoc Res Otolaryngol 2017; 18:513-527. [PMID: 28138791 PMCID: PMC5418159 DOI: 10.1007/s10162-016-0614-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023] Open
Abstract
Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions. In experiment 1, detection thresholds and most comfortable levels (MCLs) were measured in CI users for 100-Hz pulse trains consisting of two consecutive biphasic pulses of the same or of opposite polarity. All combinations of polarities were studied: anodic-cathodic-anodic-cathodic (ACAC), CACA, ACCA, and CAAC. Thresholds were lower when the adjacent phases of the two pulses had the same polarity (ACCA and CAAC) than when they were different (ACAC and CACA). Some subjects showed a lower threshold for ACCA than for CAAC while others showed the opposite trend demonstrating that polarity sensitivity at threshold is genuine and subject- or electrode-dependent. In contrast, anodic (CAAC) pulses always showed a lower MCL than cathodic (ACCA) pulses, confirming previous reports. In experiments 2 and 3, the subjects compared the loudness of several pulse trains differing in current level separately for ACCA and CAAC. For 40 % of the electrodes tested, loudness grew non-monotonically as a function of current level for ACCA but never for CAAC. This finding may relate to a conduction block of the action potentials along the fibers induced by a strong hyperpolarization of their central processes. Further analysis showed that the electrodes showing a lower threshold for ACCA than for CAAC were more likely to yield a non-monotonic loudness growth. It is proposed that polarity sensitivity at threshold reflects the local neural health and that anodic asymmetric pulses should preferably be used to convey sound information while avoiding abnormal loudness percepts.
Collapse
Affiliation(s)
- Olivier Macherey
- Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, F-13453, Marseille Cedex 13, France.
| | - Robert P Carlyon
- MRC Cognition and Brain Sciences Unit, 31 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jacques Chatron
- Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, F-13453, Marseille Cedex 13, France
| | - Stéphane Roman
- Department of Pediatric Otolaryngology and Neck Surgery, La Timone Children's Hospital, Aix Marseille Université, 264 rue Saint-Pierre, 13385, Marseille Cedex 5, France
| |
Collapse
|
9
|
Joshi SN, Dau T, Epp B. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation. J Assoc Res Otolaryngol 2017; 18:323-342. [PMID: 28054149 PMCID: PMC5352616 DOI: 10.1007/s10162-016-0608-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023] Open
Abstract
A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike. A single ANF is modeled as a network of two exponential integrate-and-fire point-neuron models, referred to as peripheral and central axons of the ANF. The peripheral axon is excited by the cathodic charge, inhibited by the anodic charge, and exhibits longer spike latencies than the central axon; the central axon is excited by the anodic charge, inhibited by the cathodic charge, and exhibits shorter spike latencies than the peripheral axon. The model also includes subthreshold and suprathreshold adaptive feedback loops which continuously modify the membrane potential and can account for effects of facilitation, accommodation, refractoriness, and spike-rate adaptation in ANF. Although the model is parameterized using data for either single or paired pulse stimulation with monophasic rectangular pulses, it correctly predicts effects of various stimulus pulse shapes, stimulation pulse rates, and level on the neural response statistics. The model may serve as a framework to explore the effects of different stimulus parameters on psychophysical performance measured in cochlear implant listeners.
Collapse
Affiliation(s)
- Suyash Narendra Joshi
- Hearing Systems group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark.
| | - Torsten Dau
- Hearing Systems group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark
| | - Bastian Epp
- Hearing Systems group, Technical University of Denmark, Ørsteds Plads Building 352, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Badenhorst W, Hanekom T, Hanekom JJ. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres. BIOLOGICAL CYBERNETICS 2016; 110:403-416. [PMID: 27562187 DOI: 10.1007/s00422-016-0694-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
Collapse
Affiliation(s)
- Werner Badenhorst
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Tania Hanekom
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Johan J Hanekom
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
11
|
van Gendt M, Briaire J, Kalkman R, Frijns J. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation. Hear Res 2016; 341:130-143. [DOI: 10.1016/j.heares.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
|
12
|
Takanen M, Bruce IC, Seeber BU. Phenomenological modelling of electrically stimulated auditory nerve fibers: A review. NETWORK (BRISTOL, ENGLAND) 2016; 27:157-185. [PMID: 27573993 DOI: 10.1080/0954898x.2016.1219412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Auditory nerve fibers (ANFs) play a crucial role in hearing by encoding and transporting the synaptic input from inner hair cells into afferent spiking information for higher stages of the auditory system. If the inner hair cells are degenerated, cochlear implants may restore hearing by directly stimulating the ANFs. The response of an ANF is affected by several characteristics of the electrical stimulus and of the ANF, and neurophysiological measurements are needed to know how the ANF responds to a particular stimulus. However, recording from individual nerve fibers in humans is not feasible and obtaining compound neural or psychophysical responses is often time-consuming. This motivates the design and use of models to estimate the ANF response to the electrical stimulation. Phenomenological models reproduce the ANF response based on a simplified description of ANF functionality and on a limited parameter space by not directly describing detailed biophysical mechanisms. Here, we give an overview of phenomenological models published to date and demonstrate how different modeling approaches can account for the diverse phenomena affecting the ANF response. To highlight the success achieved in designing such models, we also describe a number of applications of phenomenological models to predict percepts of cochlear implant listeners.
Collapse
Affiliation(s)
- Marko Takanen
- a Audio Information Processing, Department of Electrical and Computer Engineering , Technical University of Munich , Munich , Germany
| | - Ian C Bruce
- b Department of Electrical and Computer Engineering , McMaster University , Hamilton , ON , Canada
| | - Bernhard U Seeber
- a Audio Information Processing, Department of Electrical and Computer Engineering , Technical University of Munich , Munich , Germany
| |
Collapse
|
13
|
Horne CDF, Sumner CJ, Seeber BU. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties. Front Comput Neurosci 2016; 10:8. [PMID: 26903850 PMCID: PMC4744847 DOI: 10.3389/fncom.2016.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.
Collapse
Affiliation(s)
- Colin D F Horne
- Medical Research Council Institute of Hearing Research, University Park Nottingham, UK
| | - Christian J Sumner
- Medical Research Council Institute of Hearing Research, University Park Nottingham, UK
| | - Bernhard U Seeber
- Audio Information Processing, Department of Electrical and Computer Engineering, Technische Universität München Munich, Germany
| |
Collapse
|
14
|
Goldwyn JH, Rubinstein JT, Shea-Brown E. A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 2012; 108:1430-52. [PMID: 22673331 DOI: 10.1152/jn.00095.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Model-based studies of responses of auditory nerve fibers to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe spiking activity while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of individual auditory nerve fibers that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semianalytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data of response to high and low pulse rate stimulation. We find that the model, although constructed to fit data from single and paired pulse experiments, can accurately predict responses to unmodulated and modulated pulse train stimuli. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.
Collapse
Affiliation(s)
- Joshua H Goldwyn
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
15
|
Borkowski LS. Bistability and resonance in the periodically stimulated Hodgkin-Huxley model with noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051901. [PMID: 21728566 DOI: 10.1103/physreve.83.051901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/07/2011] [Indexed: 05/31/2023]
Abstract
We describe general characteristics of the Hodgkin-Huxley neuron's response to a periodic train of short current pulses with Gaussian noise. The deterministic neuron is bistable for antiresonant frequencies. When the stimuli arrive at the resonant frequency the firing rate is a continuous function of the current amplitude I(0) and scales as (I(0)-I(th))(1/2), characteristic of a saddle-node bifurcation at the threshold I(th). Intervals of continuous irregular response alternate with integer mode-locked regions with bistable excitation edge. There is an even-all multimodal transition between the 2 : 1 and 3 : 1 states in the vicinity of the main resonance, which is analogous to the odd-all transition discovered earlier in the high-frequency regime. For I(0)<I(th) and small noise the firing rate has a maximum at the resonant frequency. For larger noise and subthreshold stimulation the maximum firing rate initially shifts toward lower frequencies, then returns to higher frequencies in the limit of large noise. The stochastic coherence antiresonance, defined as a simultaneous occurrence of (i) the maximum of the coefficient of variation and (ii) the minimum of the firing rate vs the noise intensity, occurs over a wide range of parameter values, including monostable regions. Results of this work can be verified experimentally.
Collapse
Affiliation(s)
- L S Borkowski
- Department of Physics, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
16
|
Jahangiri AF, Gerling GJ. A multi-timescale adaptive threshold model for the SAI tactile afferent to predict response to mechanical vibration. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2011:152-155. [PMID: 21814636 DOI: 10.1109/ner.2011.5910511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Leaky Integrate and Fire (LIF) model of a neuron is one of the best known models for a spiking neuron. A current limitation of the LIF model is that it may not accurately reproduce the dynamics of an action potential. There have recently been some studies suggesting that a LIF coupled with a multi-timescale adaptive threshold (MAT) may increase LIF's accuracy in predicting spikes in cortical neurons. We propose a mechanotransduction process coupled with a LIF model with multi-timescale adaptive threshold to model slowly adapting type I (SAI) mechanoreceptor in monkey's glabrous skin. In order to test the performance of the model, the spike timings predicted by this MAT model are compared with neural data. We also test a fixed threshold variant of the model by comparing its outcome with the neural data. Initial results indicate that the MAT model predicts spike timings better than a fixed threshold LIF model only.
Collapse
Affiliation(s)
- Anila F Jahangiri
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA, 22904, USA ( )
| | | |
Collapse
|
17
|
Smit JE, Hanekom T, van Wieringen A, Wouters J, Hanekom JJ. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear Res 2010; 269:12-22. [PMID: 20708672 DOI: 10.1016/j.heares.2010.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/29/2010] [Accepted: 08/04/2010] [Indexed: 11/25/2022]
Abstract
The ability of a human auditory nerve fibre computational model to predict threshold differences for biphasic, pseudomonophasic and alternating monophasic waveforms was investigated. The effect of increasing the interphase gap, interpulse interval and pulse rate on thresholds was also simulated. Simulations were performed for both anodic-first and cathodic-first stimuli. Results indicated that the model correctly predicted threshold reductions for pseudomonophasic compared to biphasic waveforms, although reduction for alternating monophasic waveforms was underestimated. Threshold reductions were more pronounced for cathodic-first stimuli compared to anodic-first stimuli. Reversal of the phases in pseudomonophasic stimuli suggested a threshold reduction for anodic-first stimuli, but a threshold increase in cathodic-first stimuli. Inclusion of the persistent sodium and slow potassium currents in the model resulted in a reasonably accurate prediction of the non-monotonic threshold behaviour for pulse rates higher than 1000 pps. However, the model did not correctly predict the threshold changes observed for low pulse rate biphasic and alternating monophasic waveforms. It was suggested that these results could in part be explained by the difference in the refractory periods between real and simulated auditory nerve fibres, but also by the lack of representation of stochasticity observed in real auditory nerve fibres in our auditory nerve model.
Collapse
Affiliation(s)
- Jacoba E Smit
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
18
|
Imennov N, Rubinstein J. Stochastic Population Model for Electrical Stimulation of the Auditory Nerve. IEEE Trans Biomed Eng 2009; 56:2493-501. [DOI: 10.1109/tbme.2009.2016667] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Smit JE, Hanekom T, Hanekom JJ. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre. BIOLOGICAL CYBERNETICS 2009; 101:115-130. [PMID: 19579032 DOI: 10.1007/s00422-009-0324-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.
Collapse
Affiliation(s)
- Jacoba E Smit
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
20
|
van Wieringen A, Macherey O, Carlyon RP, Deeks JM, Wouters J. Alternative pulse shapes in electrical hearing. Hear Res 2008; 242:154-63. [PMID: 18468821 DOI: 10.1016/j.heares.2008.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
Cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic (BI) pulses. We review studies showing that more efficient stimulation can be achieved by modifying these pulses by (1) increasing the inter-phase gap (IPG) between the two phases of each pulse, thereby delaying the recovery of charge, (2) increasing the duration and decreasing the amplitude of one phase - so-called "pseudomonophasic (PS)" waveforms, and (3) combining the pseudomonophasic stimulus with an IPG in a "delayed pseudomonophasic" waveform (PS_IPG). These efficiency gains, measured using changes in threshold and loudness, occur at a wide range of pulse rates, including those commonly used in current CI systems. In monopolar mode, dynamic ranges are larger for PS and for long-IPG pulse shapes than for BI pulses, but this increase in DR is not accompanied by a higher number of discriminable loudness steps, and hence, in a better coding of loudness. Moreover, waveforms with relatively short and long interphase gaps do not yield different patterns of excitation despite the relatively large differences in threshold. Two important findings are that, contrary to data obtained in animal experiments, anodic currents are more effective than cathodic stimulation for human CI patients and that the thresholds decrease with increases in IPG over a much longer time course (more than 3 ms) than for animals. In this review it is discussed how these alternative pulse shapes may be beneficial in terms of reducing power consumption and channel interactions, which issues remain to be addressed, and how models contribute to guiding our research.
Collapse
Affiliation(s)
- Astrid van Wieringen
- ExpORL, Department of Neurosciences, Katholieke Universiteit Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|