1
|
Ornello R, Caponnetto V, Ahmed F, Al-Khazali HM, Ambrosini A, Ashina S, Baraldi C, Bellotti A, Brighina F, Calabresi P, Casillo F, Cevoli S, Cheng S, Chiang CC, Chiarugi A, Christensen RH, Chu MK, Coppola G, Corbelli I, Crema S, De Icco R, de Tommaso M, Di Lorenzo C, Di Stefano V, Diener HC, Ekizoğlu E, Fallacara A, Favoni V, Garces KN, Geppetti P, Goicochea MT, Granato A, Granella F, Guerzoni S, Ha WS, Hassan A, Hirata K, Hoffmann J, Hüssler EM, Hussein M, Iannone LF, Jenkins B, Labastida-Ramirez A, Laporta A, Levin M, Lupica A, Mampreso E, Martinelli D, Monteith TS, Orologio I, Özge A, Pan LLH, Panneerchelvam LL, Peres MFP, Souza MNP, Pozo-Rosich P, Prudenzano MP, Quattrocchi S, Rainero I, Romanenko V, Romozzi M, Russo A, Sances G, Sarchielli P, Schwedt TJ, Silvestro M, Swerts DB, Tassorelli C, Tessitore A, Togha M, Vaghi G, Wang SJ, Ashina M, Sacco S. Evidence-based guidelines for the pharmacological treatment of migraine. Cephalalgia 2025; 45:3331024241305381. [PMID: 40277319 DOI: 10.1177/03331024241305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We here present evidence-based guidelines for the pharmacological treatment of migraine. These guidelines, created by the Italian Society for the Study of Headache and the International Headache Society, aim to offer clear, actionable recommendations to healthcare professionals. They incorporate evidence-based recommendations from randomized controlled trials and expert-based opinions. The guidelines follow the Grading of Recommendations, Assessment, Development and Evaluation approach for assessing the quality of evidence. The guideline development involved a systematic review of literature across multiple databases, adherence to Cochrane review methods, and a structured framework for data extraction and interpretation. Although the guidelines provide a robust foundation for migraine treatment, they also highlight gaps in current research, such as the paucity of head-to-head drug comparisons and the need for long-term outcome studies. These guidelines serve as a resource to standardize migraine treatment and promote high-quality care across different healthcare settings.
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fayyaz Ahmed
- Hull University Teaching Hospitals NHS Trust., Hull, UK
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Sait Ashina
- Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Baraldi
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Alessia Bellotti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Shuli Cheng
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Alberto Chiarugi
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Ilenia Corbelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santiago Crema
- Headache Clinic, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Marina de Tommaso
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Hans-Christoph Diener
- Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Esme Ekizoğlu
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Adriana Fallacara
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Valentina Favoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Kimberly N Garces
- Department of Neurology-Headache Division, University of Miami, Miller School of Medicine, Miami, USA
| | - Pierangelo Geppetti
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
- Department of Molecular Pathobiology and Pain Research Center, College of Dentistry, New York University, New York, USA
| | | | - Antonio Granato
- Clinical Unit of Neurology, Headache Center, Department of Medical, Surgical and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Trieste, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Woo-Seok Ha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Amr Hassan
- Department of Neurology, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Egypt
| | | | - Jan Hoffmann
- Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eva-Maria Hüssler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Luigi Francesco Iannone
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | | | - Alejandro Labastida-Ramirez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Anna Laporta
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Morris Levin
- Headache Center, University of California, San Francisco, CA, USA
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | | | - Daniele Martinelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Teshamae S Monteith
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Ilaria Orologio
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Aynur Özge
- Department of Neurology, Mersin University Medical School, Mersin, Turkey
| | | | | | - Mario F P Peres
- Department of Neurology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Pozo-Rosich
- Headache Clinic, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain; Headache and Neurological Pain Research Group, VHIR, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Prudenzano
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Silvia Quattrocchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Innocenzo Rainero
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Marina Romozzi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Russo
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Grazia Sances
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paola Sarchielli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Marcello Silvestro
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Alessandro Tessitore
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina Hospital, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Shuu-Jiun Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei
- College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
3
|
Gong J, Duan X, Xiang B, Qin L, Hu J. Transcriptomic changes in the hypothalamus of mice with chronic migraine: Activation of pathways associated with neuropathic inflammation and central sensitization. Mol Cell Neurosci 2024; 131:103968. [PMID: 39251101 DOI: 10.1016/j.mcn.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic migraine is a common central nervous system disorder characterized by recurrent, pulsating headaches. However, the extent and mechanisms of hypothalamic involvement in disease progression have not been thoroughly investigated. Herein, we created a chronic migraine mouse model using repeated intraperitoneal injections of nitroglycerin. We performed transcriptomic sequencing on the hypothalamus of mice with chronic migraine and control mice under normal physiological conditions, followed by differential gene set enrichment and functional analysis of the data. Additionally, we examined the intrinsic connection between chronic migraine and sleep disorders using transcriptomic sequencing data from sleep-deprived mice available in public databases. We identified 39 differentially expressed genes (DEGs) in the hypothalamus of a mouse model of chronic migraine. Functional analysis of DEGs revealed enrichment primarily in signaling transduction, immune-inflammatory responses, and the cellular microenvironment. A comparison of the transcriptomic data of sleep-deprived mice revealed two commonly expressed DEGs. Our findings indicate that the hypothalamic DEGs are primarily enriched in the PI3K/AKT/mTOR pathway and associated with the NF-κB/NLRP3/IL-1 β pathway activation to maintain the central sensitization of the chronic migraine. Chronic migraine-induced gene expression changes in the hypothalamus may help better understand the underlying mechanisms and identify therapeutic targets.
Collapse
Affiliation(s)
- Junyou Gong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xianghan Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Biyu Xiang
- Department of Blood Transfusion, the First Hospital of Nanchang City, Nanchang, China
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiejie Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Xie W, Li R, Tang W, Ma Z, Miao S, Li C, Yang C, Li B, Wang T, Gong Z, Zhou Y, Yu S. Proteomics profiling reveals mitochondrial damage in the thalamus in a mouse model of chronic migraine. J Headache Pain 2023; 24:122. [PMID: 37667199 PMCID: PMC10478405 DOI: 10.1186/s10194-023-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruibing Li
- Department of Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhenjie Ma
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yue Zhou
- College of Life Science, Northwest University, Xi'an, Shanxi, China.
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
6
|
Alterations in metabolic flux in migraine and the translational relevance. J Headache Pain 2022; 23:127. [PMID: 36175833 PMCID: PMC9523955 DOI: 10.1186/s10194-022-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine. MAIN BODY Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibiting hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet unknown. CONCLUSION Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal studies in identifying targets of biomarker or therapeutic development.
Collapse
|
7
|
Santos PSF, Melhado EM, Kaup AO, Costa ATNMD, Roesler CADP, Piovesan ÉJ, Sarmento EM, Theotonio GOM, Campos HCD, Fortini I, Souza JAD, Júnior JAM, Segundo JBA, Carvalho JJFD, Speziali JG, Calia LC, Barea LM, Queiroz LP, Souza MNP, Figueiredo MRCF, Costa MENDM, Peres MFP, Jurno ME, Peixoto PM, Kowacs PA, Rocha-Filho PAS, Filho PFM, Silva-Neto RP, Fragoso YD. Consensus of the Brazilian Headache Society (SBCe) for prophylactic treatment of episodic migraine: part II. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:953-969. [PMID: 36257618 PMCID: PMC10658446 DOI: 10.1055/s-0042-1755320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Migraine affects 1 billion people worldwide and > 30 million Brazilians; besides, it is an underdiagnosed and undertreated disorder. OBJECTIVE The need to disseminate knowledge about the prophylactic treatment of migraine is known, so the Brazilian Headache Society (SBCe, in the Portuguese acronym) appointed a committee of authors with the objective of establishing a consensus with recommendations on the prophylactic treatment of episodic migraine based on articles from the world literature as well as from personal experience. METHODS Meetings were held entirely online, with the participation of 12 groups that reviewed and wrote about the pharmacological categories of drugs and, at the end, met to read and finish the document. The drug classes studied in part II of this Consensus were: antihypertensives, selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, calcium channel blockers, other drugs, and rational polytherapy. RESULTS From this list of drugs, only candesartan has been established as effective in controlling episodic migraine. Flunarizine, venlafaxine, duloxetine, and pizotifen were defined as likely to be effective, while lisinopril, enalapril, escitalopram, fluvoxamine, quetiapine, atorvastatin, simvastatin, cyproheptadine, and melatonin were possibly effective in prophylaxis of the disease. CONCLUSIONS Despite an effort by the scientific community to find really effective drugs in the treatment of migraine, given the large number of drugs tested for this purpose, we still have few therapeutic options.
Collapse
Affiliation(s)
- Paulo Sergio Faro Santos
- Instituto de Neurologia de Curitiba, Departamento de Neurologia, Setor de
Cefaleia e Dor Orofacial, Curitiba PR, Brazil.
| | - Eliana Meire Melhado
- Centro Universitário Padre Albino, Faculdade de Medicina, Departamento de
Neurologia, Catanduva SP, Brazil.
| | - Alexandre Ottoni Kaup
- Houston Headache Clinic, Houston TX, USA.
- Universidade Federal de São Paulo, São Paulo SP, Brazil.
- Universidade de Santo Amaro, São Paulo SP, Brazil.
| | | | | | - Élcio Juliato Piovesan
- Universidade Federal do Paraná, Departamento de Clínica Médica, Disciplina de
Neurologia, Curitiba PR, Brazil.
| | | | | | | | - Ida Fortini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia,
São Paulo SP, Brazil.
| | - Jano Alves de Souza
- Universidade Federal Fluminense, Departamento de Medicina Clínica, Disciplina
de Neurologia, Niterói RJ, Brazil.
| | - Jayme Antunes Maciel Júnior
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento
de Neurologia, Campinas SP, Brazil.
| | | | - João José Freitas de Carvalho
- Unichristus, Curso de Medicina, Disciplina de Neurologia, Fortaleza CE,
Brazil.
- Hospital Geral de Fortaleza, Serviço de Neurologia, Núcleo de Cefaleias,
Fortaleza CE, Brazil.
| | - José Geraldo Speziali
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | - Leandro Cortoni Calia
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo SP,
Brazil.
| | - Liselotte Menke Barea
- Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Disciplina
de Neurologia, Porto Alegre RS, Brazil.
| | - Luiz Paulo Queiroz
- Universidade Federal de Santa Catarina, Hospital Universitário, Serviço de
Neurologia, Florianópolis SC, Brazil.
| | | | | | | | | | - Mauro Eduardo Jurno
- Fundação José Bonifácio Lafayette de Andrada, Faculdade de Medicina de
Barbacena, Barbacena MG, Brazil.
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Regional de Barbacena
Dr. José Américo, Barbacena MG, Brazil.
| | | | - Pedro André Kowacs
- Instituto de Neurologia de Curitiba, Serviço de Neurologia, Curitiba PR,
Brazil.
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Serviço de
Neurologia, Curitiba PR, Brazil.
| | - Pedro Augusto Sampaio Rocha-Filho
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área de
Neuropsquiatria, Recife PE, Brazil.
- Universidade de Pernambuco, Hospital Universitário Oswaldo Cruz, Ambulatório de
Cefaleias, Recife PR, Brazil.
| | - Pedro Ferreira Moreira Filho
- Universidade Federal Fluminense, Hospital Universitário Antônio Pedro,
Departamento de Medicina Clínica, Niterói RJ, Brazil.
| | | | | |
Collapse
|
8
|
Rashid SMU, Sumaria S, Koohi N, Arshad Q, Kaski D. Patient Experience of Flunarizine for Vestibular Migraine: Single Centre Observational Study. Brain Sci 2022; 12:brainsci12040415. [PMID: 35447947 PMCID: PMC9028524 DOI: 10.3390/brainsci12040415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Vestibular migraine (VM) is a leading cause of episodic vertigo, affecting up to 1% of the general population. Despite established diagnostic criteria, there is currently no evidence-based approach for acute treatment of VM, with treatment recommendations generally extrapolated from studies on classical migraine headache. Several small-scale studies have identified flunarizine as a potentially effective prophylactic medication in VM. We conducted a single-centre observational service evaluation study exploring patient experiences of preventative medications over a 28-month period, including flunarizine, for control of VM symptoms. To compare patient experience of flunarizine with other medications, data from patients taking flunarizine were separately analysed. A total of 90% of VM patients taking flunarizine reported symptomatic improvement, compared to only 32% of patients on other medications. Whilst 50% of patients on flunarizine reported side effects. these were not deemed to outweigh the clinical benefits, with most patients deciding to continue treatment. Our data supports the use of flunarizine in VM.
Collapse
Affiliation(s)
- Sk Mamun Ur Rashid
- Department of Neuro-Otology, Royal National Ear Nose and Throat Hospital, University College London Hospitals, London WC1E 6DG, UK;
| | - Sheetal Sumaria
- Department of Pharmacy, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
| | - Nehzat Koohi
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK; (N.K.); (Q.A.)
| | - Qadeer Arshad
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK; (N.K.); (Q.A.)
- InAmind Laboratory, Department of Psychology, Neuroscience and Behaviour, University of Leicester, Leicester LE1 7RH, UK
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK; (N.K.); (Q.A.)
- Correspondence:
| |
Collapse
|
9
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
10
|
Identification of Constituents and Exploring the Mechanism for Toutongning Capsule in the Treatment of Migraine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5528845. [PMID: 35075364 PMCID: PMC8783712 DOI: 10.1155/2022/5528845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Toutongning capsule (TTNC) is an effective and safe traditional Chinese medicine used in the treatment of migraine. In this present study, a multiscale strategy was used to systematically investigate the mechanism of TTNC in treating migraine, which contained UPLC-UESI-Q Exactive Focus network pharmacology and experimental verification. First, 88 compounds were identified by the UPLC-UESI-Q Exactive Focus method for TTNC. Then, the target fishing for these compounds was performed by means of an efficient drug similarity search tool. Third, a series of network pharmacology experiments were performed to predict the key compounds, targets, and pathways. They were protein-protein interaction (PPI), KEGG pathway enrichment analysis, and herbs-compounds-targets-pathways (H-C-T-P) network construction. As a result, 18 potential key compounds, 20 potential key targets, and 6 potential signaling pathways were obtained for TTNC in treatment with migraine. Finally, molecular docking and experimental were carried out to verify the key targets. In short, the results showed that TTNC is able to treat migraine through multiple components, multiple targets, and multiple pathways. This work may provide a theoretical basis for further research on the molecular mechanism of TTNC in the treatment of migraine.
Collapse
|
11
|
Marichal-Cancino BA, González-Hernández A, Guerrero-Alba R, Medina-Santillán R, Villalón CM. A critical review of the neurovascular nature of migraine and the main mechanisms of action of prophylactic antimigraine medications. Expert Rev Neurother 2021; 21:1035-1050. [PMID: 34388955 DOI: 10.1080/14737175.2021.1968835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Migraine involves neurovascular, functional, and anatomical alterations. Migraineurs experience an intense unilateral and pulsatile headache frequently accompanied with vomiting, nausea, photophobia, etc. Although there is no ideal preventive medication, frequency in migraine days may be partially decreased by some prophylactics, including antihypertensives, antidepressants, antiepileptics, and CGRPergic inhibitors. However, the mechanisms of action involved in antimigraine prophylaxis remain elusive. AREAS COVERED This review recaps some of the main neurovascular phenomena related to migraine and currently available preventive medications. Moreover, it discusses the major mechanisms of action of the recommended prophylactic medications. EXPERT OPINION In the last three years, migraine prophylaxis has evolved from nonspecific to specific antimigraine treatments. Overall, nonspecific treatments mainly involve neural actions, whereas specific pharmacotherapy (represented by CGRP receptor antagonists and CGRPergic monoclonal antibodies) is predominantly mediated by neurovascular mechanisms that may include, among others: (i) reduction in the cortical spreading depression (CSD)-associated events; (ii) inhibition of pain sensitization; (iii) blockade of neurogenic inflammation; and/or (iv) increase in cranial vascular tone. Accordingly, the novel antimigraine prophylaxis promises to be more effective, devoid of significant adverse effects (unlike nonspecific treatments), and more beneficial for the quality of life of migraineurs.
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | | | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Roberto Medina-Santillán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina IPN, Ciudad de México C.P, México
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
12
|
Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ. The Role of Metabolism in Migraine Pathophysiology and Susceptibility. Life (Basel) 2021; 11:415. [PMID: 34062792 PMCID: PMC8147354 DOI: 10.3390/life11050415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic supply and demand that may contribute towards migraine susceptibility. Targeting these deficits with nutraceutical supplementation may provide an additional adjunctive therapy. Neuroimaging techniques have demonstrated a metabolic phenotype in migraine similar to mitochondrial cytopathies, featuring reduced free energy availability and increased metabolic rate. This is reciprocated in vivo when modelling a fundamental mechanism of migraine aura, cortical spreading depression. Trials assessing nutraceuticals successful in the treatment of mitochondrial cytopathies including magnesium, coenzyme q10 and riboflavin have also been conducted in migraine. Although promising results have emerged from nutraceutical trials in patients with levels of minerals or vitamins below a critical threshold, they are confounded by lacking control groups or cohorts that are not large enough to be representative. Energetic imbalance in migraine may be relevant in driving the tissue towards maximum metabolic capacity, leaving the brain lacking in free energy. Personalised medicine considering an individual's deficiencies may provide an approach to ameliorate migraine.
Collapse
Affiliation(s)
- Olivia Grech
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Benjamin R. Wakerley
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - Daniel Fulton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Gareth G. Lavery
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Alexandra J. Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| |
Collapse
|
13
|
Urits I, Gress K, Charipova K, Zamarripa AM, Patel PM, Lassiter G, Jung JW, Kaye AD, Viswanath O. Pharmacological options for the treatment of chronic migraine pain. Best Pract Res Clin Anaesthesiol 2020; 34:383-407. [PMID: 33004155 DOI: 10.1016/j.bpa.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022]
Abstract
Migraine is a debilitating neurological condition with symptoms typically consisting of unilateral and pulsating headache, sensitivity to sensory stimuli, nausea, and vomiting. The World Health Organization (WHO) reports that migraine is the third most prevalent medical disorder and second most disabling neurological condition in the world. There are several options for preventive migraine treatments that include, but are not limited to, anticonvulsants, antidepressants, beta blockers, calcium channel blockers, botulinum toxins, NSAIDs, riboflavin, and magnesium. Patients may also benefit from adjunct nonpharmacological options in the comprehensive prevention of migraines, such as cognitive behavior therapy, relaxation therapies, biofeedback, lifestyle guidance, and education. Preventative therapies are an essential component of the overall approach to the pharmacological treatment of migraine. Comparative studies of newer therapies are needed to help patients receive the best treatment option for chronic migraine pain.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Alec M Zamarripa
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| | - Parth M Patel
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| | - Grace Lassiter
- Georgetown University School of Medicine, Washington, DC, USA
| | - Jai Won Jung
- Georgetown University School of Medicine, Washington, DC, USA
| | - Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Omar Viswanath
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA; Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA; Valley Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
| |
Collapse
|
14
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
15
|
Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 2018; 38:1149-1179. [PMID: 29673289 PMCID: PMC6434447 DOI: 10.1177/0271678x18771440] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharmacological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anesthetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses could be of therapeutic use against SD in humans.
Collapse
Affiliation(s)
- Anna Klass
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| | | | - Edgar Santos
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Sprenger T, Viana M, Tassorelli C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018; 15:313-323. [PMID: 29671241 PMCID: PMC5935650 DOI: 10.1007/s13311-018-0621-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A relatively high number of different medications is currently used for migraine prevention in clinical practice. Although these compounds were initially developed for other indications and differ in their mechanisms of action, some general themes can be identified from the mechanisms at play. Efficacious preventive drugs seem to either suppress excitatory nervous signaling via sodium and/or calcium receptors, facilitate GABAergic inhibition, reduce neuronal sensitization, block cortical spreading depression and/or reduce circulating levels of CGRP. We here review such mechanisms for the different compounds.
Collapse
Affiliation(s)
- Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Aukammallee 33, 65191, Wiesbaden, Germany.
| | - M Viana
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - C Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
17
|
Kaufmann D, Bates EA, Yagen B, Bialer M, Saunders GH, Wilcox K, White HS, Brennan KC. sec-Butylpropylacetamide (SPD) has antimigraine properties. Cephalalgia 2016; 36:924-35. [PMID: 26568161 PMCID: PMC4887413 DOI: 10.1177/0333102415612773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Though migraine is disabling and affects 12%-15% of the population, there are few drugs that have been developed specifically for migraine prevention. Valproic acid (VPA) is a broad-spectrum antiepileptic drug (AED) that is also used for migraine prophylaxis, but its clinical use is limited by its side effect profile. sec-Butylpropylacetamide (SPD) is a novel VPA derivative, designed to be more potent and tolerable than VPA, that has shown efficacy in animal seizure and pain models. METHODS We evaluated SPD's antimigraine potential in the cortical spreading depression (CSD) and nitroglycerin (NTG) models of migraine. To evaluate SPD's mechanism of action, we performed whole-cell recordings on cultured cortical neurons and neuroblastoma cells. RESULTS In the CSD model, the SPD-treated group showed a significantly lower median number of CSDs compared to controls. In the NTG-induced mechanical allodynia model, SPD dose-dependently reduced mechanical sensitivity compared to controls. SPD showed both a significant potentiation of GABA-mediated currents and a smaller but significant decrease in NMDA currents in cultured cortical neurons. Kainic acid-evoked currents and voltage-dependent sodium channel currents were not changed by SPD. CONCLUSIONS These results demonstrate SPD's potential as a promising novel antimigraine compound, and suggest a GABAergic mechanism of action.
Collapse
Affiliation(s)
- Dan Kaufmann
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA Department of Neurology, University of Utah, USA
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Denver School of Medicine, USA
| | - Boris Yagen
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Israel David R. Bloom Center for Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Israel David R. Bloom Center for Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Gerald H Saunders
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - Karen Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - K C Brennan
- Department of Neurology, University of Utah, USA
| |
Collapse
|
18
|
Flunarizine in the prophylaxis of migrainous vertigo: a randomized controlled trial. Eur Arch Otorhinolaryngol 2013; 271:2931-6. [DOI: 10.1007/s00405-013-2786-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023]
|
19
|
de Tommaso M, Ceci E, Pica C, Trojano M, Delussi M, Franco G, Livrea P, Ruggieri M. Serum levels of N-acetyl-aspartate in migraine and tension-type headache. J Headache Pain 2012; 13:389-94. [PMID: 22527035 PMCID: PMC3381063 DOI: 10.1007/s10194-012-0448-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/28/2012] [Indexed: 12/14/2022] Open
Abstract
Serum levels of N-acetyl-aspartate (NAA) may be considered a useful marker of neuronal functioning. We aimed to measure serum NAA in cohorts of migraine and tension-type headache patients versus controls, performing correlations with main clinical features. A total of 147 migraine patients (including migraine without aura, with aura and chronic migraine), 65 tension-type headache (including chronic and frequent episodic tension-type headache) and 34 sex- and age-matched controls were selected. Serum was stored at -80 °C. Quantification of NAA was achieved by the standard addition approach and analysis was performed with liquid-chromatography-mass-spectrometry (LC/MS) technique. The NAA levels were significantly decreased in migraine group (0.065 ± 0.019 mol/L), compared with both tension-type headache patients (0.078 ± 0.016 mol/L) and controls (0.085 ± 0.013 mol/L). Control subjects were significantly different from migraine with and without aura and chronic migraine, who differed significantly from episodic and chronic tension-type headache. Migraine with aura patients showed lower NAA levels when compared to all the other headache subtypes, including migraine without aura and chronic migraine. In the migraine group, no significant correlation was found between NAA serum levels, and headache frequency, allodynia and interval from the last and the next attack. The low NAA in the serum may be a sign of neuronal dysfunction predisposing to migraine, probably based on reduced mitochondria function.
Collapse
Affiliation(s)
- Marina de Tommaso
- Neuroscience and Sensory System Department, Bari Aldo Moro University, Policlinico General Hospital, Neurological Building, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|